\qquad
\qquad

Problem 1

A rational function is the quotient of two polynomial functions where the polynomial function in the denominator is of degree 1 or higher. To understand the behavior of rational functions better, let's examine the polynomial functions that make them up.

Graph the function $f(x)=2 x^{2}-8$ on page 1.4. This function will become the numerator of the rational function.

1. What is the y-intercept of the numerator of the rational function?
2. How does the equation show what the y-intercept of the rational function will be?
3. Use the Trace function to find the zeros of the function.

Completely factor the function $f(x)=2 x^{2}-8$.

Return to page 1.4 and enter the factored form of $f(x)=2 x^{2}-8$ in \mathbf{f}. Change the line weight to thick.
4. How does the factored form relate to the zeros of the function?

On page 2.2, enter the function $f(x)=x^{2}-16$ in $\mathbf{f} 1$. This will eventually be the denominator of the function later on.
5. What is the y-intercept of the denominator?

Asymptotes and Zeros

6. How does the equation show what the y-intercept will be?
7. Use Graph Trace to find the zeros.

Enter the factored form of $f(x)=x^{2}-16$ in $\mathbf{f} \mathbf{2}$ on Page 2.2. Change the line weight of $\mathbf{f} \mathbf{2}$ to thick.
8. How does the factored form relate to the zeros of the function?

On page 2.7, re-enter the graph of $\mathbf{f} \mathbf{1}(x)=2 x^{2}-8$ and $\mathbf{f} \mathbf{2}(x)=x^{2}-16$.
You will now graph the rational function: $f(x)=\frac{2 x^{2}-8}{x^{2}-16}$ into $\mathbf{f 3}$.
Note: Since $\mathbf{f} 1(x)=2 x^{2}-8$ and $\mathbf{f} \mathbf{2}(x)=x^{2}-16$, enter $\frac{f 1(x)}{f 2(x)}$ into $\mathbf{f 3}$.
9. What are the zeros of the function $f(x)=\frac{2 x^{2}-8}{x^{2}-16}$?
10. In Graph Trace mode on f3, move the cursor to $x=4$. What happens?

What about when $x=-4$?
11. What is the y-intercept of the rational function?
12. Unhide $\mathbf{f 1}$ and $\mathbf{f 3}$. Where do the numerator's parabola and the rational function intersect? Where do the denominator's parabola and the rational function intersect?
13. Drag the functions $\mathbf{f 1}$ and $\mathbf{f 3}$. How does changing them affect the rational function?

