\qquad
\qquad

Open the TI-Nspire document What_is_Log.tns.

You may have noticed that above ${ }^{10 \mathrm{x}}$ is ${ }^{[}{ }^{[}{ }^{\circ}{ }^{\top}$. What does \log mean? Why is ${ }_{\llcorner }{ }^{[}{ }^{\prime}{ }^{\prime}$ ’ placed above the exponential key? You will investigate these questions in this activity.

$1.11 .2 \mid 1.3$
What is Log?
Turn the page to begin investigating
logarithms.

Move to page 1.2.

1. The graph of the function $f(x)=2^{x}$ is shown.
a. What are the domain and range of $f(x)$?
b. Recall that $f(x)=2^{x}$ is a one-to-one function, so it has an inverse reflected over the line $y=x$. What are the domain and range of $f^{-1}(x)$?
c. Point P is a point on $f(x)$. Move the Show Reflection slider to Yes to and then move point P. As you do so, point P^{\prime} invisibly traces the graph of $f^{1}(x)$. Since $f(x)$ can be written as $y=2^{x}$, write a corresponding equation for the inverse.
d. The equation $x=2^{y}$ cannot be written as a function of y in terms of x without new notation. Move the Show Function slider to Yes. The inverse of $f(x)$ is actually $f^{-1}(x)=\log _{2}(x)$. In general, $\log _{b} x=y$ is equivalent to $b^{y}=x$ for $x>0, b>0$ and $b \neq 1$. Why do you think x and b must be greater than 0 ? Why can b not be equal to 1 ?
\qquad
Class
e. Move point P so that its coordinates are $(1,2)$. The point $(1,2)$ on $f(x)=2^{x}$ indicates that $2^{1}=2$. P^{\prime} has the coordinates $(2,1)$. The point $(2,1)$ on $f^{-1}(x)=\log _{2}(x)$ indicates that $\log _{2} 2=1$. Use this relationship between exponential expressions and logarithmic expressions to complete the following table. (Move point P as necessary.)

\boldsymbol{P}	$\boldsymbol{P}^{\mathbf{\prime}}$	Exponential Expression	Logarithmic Expression
$(1,2)$	$(2,1)$	$2^{1}=2$	$\log _{2} 2=1$
$(2,4)$			
	$(8,3)$	$2^{0}=1$	
		$2^{-1}=\frac{1}{2}$	
$\left(-2, \frac{1}{4}\right)$			$\log _{2} \frac{1}{8}=-3$

Move to page 1.3.

2. Solve the logarithmic equation $\log _{2} 32=y$ using the patterns from question 1 . Then, use the slider to change the n-value to solve the logarithmic equation. How does the exponential equation verify your result?

Move to page 2.1.

3. Solve the equation $\log _{4} \frac{1}{256}=y$. Then, use the slider to change the n-value to solve the logarithmic equation. How does the exponential equation verify your result?

Student Activity \qquad
\qquad Class \qquad
4. Maya solved the logarithmic equation $\log _{4} 16=y$. She says the answer is 4 since $4 \times 4=16$. Is her answer correct? Why or why not?
5. Alex says that when solving a logarithmic equation in the form $\log _{b} a=y$, he can rewrite it as $b^{a}=y$. Is this a good strategy? Why or why not?

