\qquad
\qquad

Problem 1 - Reflecting the Exponential Function

On page 1.3, reflect the point at $(0,1)$ over the line. To do this, select MENU > Transformation $>$ Reflection, then select the point, followed by the line $y=x$.

Use the Coordinates and Equations tool (MENU > Actions > Coordinates and Equations) to get the coordinates of the reflected point. Record the new point in the table below.

Change the value of the point at $(0,1)$ by changing the x-value. Double-click on the x-value and type in the new values from the first column of the table below. Complete the remaining three columns of the table.

Original x-value	Original y-value	Reflected x-value	Reflected y-value
-2			
-1			
0	1		
1			
2			
3			

- What do you notice about the original values and reflected values in each row of the table?

Next, find the locus of the reflected points using the Locus tool (MENU > Construction > Locus). Select the original point, then the reflected point.

- What do your results from the table mean when trying to figure out the equation for the inverse function?

Find the inverse of $y=e^{x}$. Switch x and y in the equation and solve for y. Check your result by going back to page 1.3 and graphing this result to see if it matches the locus graph.

- The inverse of $y=e^{x}$ is: \qquad

Extension - Reflecting Any Exponential Function

Repeat the process of the activity for the function given on page 2.2. Change the value of the base b, to find different inverse functions for the different exponential functions.

