Open the TI-Nspire document Transformations_of_ Logarithmic_Functions.tns.

In this activity, you will examine the family of logarithmic functions of the form $f(x)=c \log _{b}(x+a)$ where a, b, and c are parameters.

The parameter b is the base of the logarithmic function and $b>0, b \neq 1$. Using the sliders in the left panel of each page, change the value of a parameter, and record the effect of each parameter change on the graph of the corresponding logarithmic function. At the end of this activity, use your results to match each function with its corresponding graph.

Note: The slider for the base b is constructed to use the specific values in the column labeled blist in the Lists \& Spreadsheets page.

Move to page 2.1.

Press atril and ctril to navigate through the lesson.

1. The graph of $y=f 1(x)=\log _{b} x$ is shown in the right panel. Click the arrows to change the value of b, and observe the changes in the graph of $f 1$.
a. Explain why for every value of b, the graph of $f 1$ passes through the point $(1,0)$.
b. For $b>1$, describe the graph of $y=f 1(x)=\log _{b} x$.
c. For $0<b<1$, describe the graph of $y=f 1(x)=\log _{b} x$.
d. Find the domain and range of function $f 1(x)=\log _{b} x$ for all possible values of b.
e. Describe the behavior of the graph of $y=\log _{b} x$ near the y-axis.
\qquad

Move to page 3.1.

2. The graph of $y=f 1(x)=\log _{b}(x+a)$ is shown in the right panel. For various (fixed) values of b, click the arrows to change the value of a, and observe the changes in the graph of $f 1$. Describe the effect of the parameter a on the graph of $y=\log _{b}(x+a)$.

Move to page 4.1.

3. The graph of $y=f 1(x)=c \cdot \log _{b}(x+a)$ is shown in the right panel. For various (fixed) values of a and b, click the arrows to change the value of c, and observe the changes in the graph of $f 1$. Describe the effect of the parameter c on the graph of $y=c \cdot \log _{b}(x+a)$.

Move to page 5.1.

4. Consider a logarithmic function of the form $f(x)=\log _{b}(d x)$ where d is a constant. Use this Graphs Page (without sliders) to interpret the graph of $y=f(x)$ as a common transformation.
a. Display the graphs of $y=f 1(x)=\log _{4}(x)$ and $y=f 2(x)=\log _{4}(16 x)$. How is the graph of $f 2$ related to the graph of $f 1$? Using the properties of logarithms, rewrite the function $f 2$ in terms of $f 1$ to justify your answer.
b. Display the graphs of $y=f 1(x)=\log _{3}(x)$ and $y=f 2(x)=\log _{3}\left(\frac{x}{27}\right)$. How is the graph of $f 2$ related to the graph of $f 1$? Using the properties of logarithms, rewrite the function $f 2$ in terms of $f 1$ to justify your answer.
\qquad
\qquad
5. Without using your calculator, match each equation with its corresponding graph below.
(a) $f(x)=\log _{3}(x+4)$
(b) $f(x)=\log _{1 / 4}(x)$
(c) $f(x)=-\log _{4}(x-2)$
(d) $f(x)=-3 \log _{1 / 2}(x+1)$
(e) $f(x)=\log _{e}(x)=\ln x$
(f) $f(x)=5 \log _{1 / 5}(x+5)$
(i)

(ii)

(iii)

(iv)

(v)

(vi)

