Rational Roots of Polynomial Functions
Time Required
Lisa Blank, Lyme Central School, Chaumont, NY
40 minutes

Activity Overview

In this activity, students apply the Rational Root Theorem in determining the rational roots of 4 polynomial functions. Results of the application of the theorem are compared to results obtained graphically to identify the presence of irrational roots.

Topic: Rational Root Theorem

- Rational and Irrational Roots or Zeros
- Conjugate Pairs

Teacher Preparation and Notes

- Load the Ratrootthm.tns file onto student handhelds.
- tatr moves students to the next page and (tab) will enable movement between regions on a split screen page.
- Problems 1, 2, and 3 may be done in class and problem 4 could either be done in class or assigned as homework. Questions may be answered on the handheld or associated worksheet.
- To download the student and solution TI-Nspire documents (.tns files) and student worksheet, go to education.ti.com/exchange and enter "12222" in the quick search box.

Associated Materials

- Ratrootthm_worksheet_TI-Nspire.doc
- Ratrootthm.tns
- Ratrootthm_Soln.tns

Suggested Related Activity

To download any activity listed, go to education.ti.com/exchange and enter numbers or key words:

- Watch Your P's and Q's (TI-Nspire technology)

Problems 1 \& 2 - Introduction \& Practice

In this activity, students are introduced to the Rational Root Theorem as a means of obtaining the rational roots of a polynomial function.

The Rational Root Theorem is described and the possible rational roots ($\pm \frac{p}{q}$) are determined for a cubic equation.

Students enter the possible values for $\frac{p}{q}$ into column A of a spreadsheet and then evaluate the given function at each $\frac{p}{q}$ value in column B.

Note that the label for column A must be typed into the polynomial equation in place of the variable x. This is done in the grey shaded box near the top of column B.

Ask students what the value of zero implies for the $\frac{p}{q}$ value of $2 / 3$.

1.1	1.2	1.3	1.4	RAD AUTO REAL

Rational Roots of Polynomial Functions

The rational root theorem provides a reasonable method for finding zeros or roots for polynomial equations with integer coefficients.

$$
\begin{aligned}
& \text { Given } \\
& a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n} x^{0}=0 . \\
& \text { Let } a_{0} \text { and } a_{n} \text { be nonzero. Then each rational } \\
& \text { solution } x \text { can be written in the form } x= \pm \frac{p}{q} \\
& \text { for } p \text { and } q \text { satisfying two properties: } \\
& \text { 1. } p \text { is an integer factor of } a_{0} \text {, and }
\end{aligned}
$$

Students explore the graph of the function to identify zeros.

Discuss how the graph compares with the spreadsheet.

What types of zeros might a graph show that the spreadsheet will not show?

A helpful point to note is that irrational roots exist in conjugate pairs. This means that if $\frac{a-\sqrt{b}}{c}$ is a zero, then $\frac{a+\sqrt{b}}{c}$ is also a zero.

