Find answers to the top 10 questions parents ask about TI graphing calculators.
Learn about the math and science behind what students are into, from art to fashion and more.
Get hundreds of video lessons that show how to graph parent functions and transformations.
Texas Instruments
9-12
45 Minutes
TI-Nspire™TI-Nspire™ CAS
3.2
Students explore Riemann sums to find the approximate area under the graph of a parabola on the interval [0, 1].
Students focus on two questions that define the activity:
How can you use rectangles to approximate the area under the curve y=y 2 and above the x-axis.
Is there a way to use rectangles to find the exact area under the curve?
Students make use of five right-endpoint rectangles to find an approximation of the area under the curve.
Students will be introduced to the Riemann sum. They explore the Riemann sum with right-endpoints.
Next, students use five left-endpoint rectangles to find an approximation of the are under the curve.
Finally, students summarize their findings. They will notice that the concavity of a function and whether it is increasing or decreasing will determine which estimates are overestimates verses underestimates.
TI websites use cookies to optimize site functionality and improve your experience. To find out more or to change your preferences, see our cookie policy page. Click Agree and Proceed to accept cookies and enter the site.
You can control your preferences for how we use cookies to collect and use information while you're on TI websites by adjusting the status of these categories.