Flipping Over the Coordinate Plane

Introduction

In this activity, students review basic geometry vocabulary while investigating reflections on a coordinate grid.

Grades 6-8

NCTM Geometry Standards

- Apply transformations and use symmetry to analyze mathematical situations
- Describe sizes, positions, and orientations of shapes under informal transformations such as flips, turns, slides, and scaling

Files/Materials Needed

Form Shape.act, Reflect Shape.act

1

Set up a roster that will allow you to group students:
a. Create a new class and copy the students from the existing class to the new class.
b. Change the Display Name to include a letter at the beginning of the display name to identify the group assignment. For example, Joe, Marty, Tom and Marge can be assigned to Group A by modifying their display names to be A-Joe, A-Marty, A-Tom, and A-Marge. This will allow you to sort by Display Name in the List-Graph tab of Activity Center. It will also allow for a comparison across groups, and is an easy way to hide, show, and highlight group work.

PART1 CREATING FIGURES

2
a. Launch TI-Navigator ${ }^{\text {TM }}$ on the computer and start the session.
b. Have each student log into NavNet on their calculator.

3

a. Load Form Shape.act into Activity Center. This sets up the Activity Center so that the students will have two lists: \mathbf{X} and \mathbf{Y}.
b. Have each group create a shape with as many vertices as group members. Give restrictions such as: this shape must be regular, or this shape must have a right angle.
c. Have each group member enter the coordinates of one vertex in the \mathbf{X} and \mathbf{Y} lists and submit them to Activity Center.
d. Once the data is submitted, hide all the data. Then display the points of one group at a time by highlighting the names of members in a specific group.
e. Discuss each group's results with the entire class, giving specific emphasis to any patterns within the points themselves.

PART 2 REFLECTING FIGURES

4
a. Load Reflect Shape.act into Activity Center. This sets up Activity Center so that students will have four lists: the original \mathbf{X}, and \mathbf{Y} that they entered, plus an additional RX and RY, which will be where the students will enter the coordinates of the point after it has been reflected.
b. Tell students to write the points of the vertices so that the new shape is the reflection of the old shape. Tell them which axis to reflect across.
c. Display individual group results as you did in Part I.
d. Discuss each group's results with the entire class, giving specific emphasis to any patterns within the points themselves. For example, students should recognize that $(x,-y)$ is the reflection of (x, y) over the x-axis.

