ley, Ortho! What's Your Altitude?	Name
CUTE.8xv, OBTUSE.8xv, RIGHT.8xv,	
RIANGLE.8xv, EQUILATE.8xv, MEDIAL2.8xv	Class

Problem 1 – Exploring the Altitude of a Triangle

1. Define Altitude of a Triangle.

Draw the altitudes of the triangles in the *Cabri Jr.* files *ACUTE*, *OBTUSE*, and *RIGHT* and then sketch the altitudes on the triangles below. To do this, start the *Cabri Jr.* application by pressing $\boxed{\text{APPS}}$ and selecting **CabriJr**. Open the file *ACUTE* by pressing \boxed{Y} , selecting **Open...**, and selecting the file. Construct the altitude of $\triangle ABC$ on your handheld by pressing $\boxed{Z00M}$, selecting **Perp.**, clicking on the side of the triangle, and then clicking on the opposite vertex. Repeat for the files *OBTUSE* and *RIGHT*.

2. Draw the altitudes for $\triangle ABC$, $\triangle DEF$, and $\triangle GHJ$ below.

- **3.** Fill in the blanks of the following statements about whether the altitude of a triangle is inside, outside, or on a side of the triangle.
 - **a.** For the acute $\triangle ABC$, the altitude of vertex *B* is ______ the triangle.
 - **b.** For the obtuse $\triangle DEF$, the altitude of vertex *E* is ______ the triangle.
 - **c.** For the right \triangle *GHJ*, the altitude of vertex *H* is ______ the triangle.

Problem 2 – Exploring the Orthocenter

Open the file *TRIANGLE*. You are given $\triangle ABC$. Construct the altitude of each vertex of the triangle. Use your constructions to answer the following questions.

- 4. What do you notice about the altitudes of all three vertices?
- **5.** The point of concurrency for the altitudes is the **orthocenter**. Create and label this point *R*. Is it possible to move vertex *B* so that the orthocenter is on a side of $\triangle ABC$? If so, what kind of triangle is *ABC* in this case?
- **6.** Can you move vertex *B* so that the orthocenter is inside of $\triangle ABC$? If so, what kind of triangle is *ABC* in this case?
- **7.** Can you move vertex *B* so that the orthocenter is outside of $\triangle ABC$? If so, what kind of triangle is *ABC* in this case?

Problem 3 – Exploring the Altitude of an Equilateral Triangle

Open the file EQUILATE. You are given an equilateral triangle ABC with altitude \overline{BD} and point P on the inside of the triangle. Find the distance from point P to the three sides of the triangle using the **Length** tool found by pressing \overline{GRAPH} and selecting **Measure > D. & Length**. Also, find the length of \overline{BD} and answer the following questions.

8. Use the **Calculate** tool to calculate EP + FP + GP. Move point *A* to 2 different positions and record the measurements in the table below. Next, move point *P* to 2 different positions and record the measurements in the table below.

Position	1 st position	2 nd position	3 rd position	4 th position
BD				
EP+FP+GP				

- **9.** What is the relationship between the measurements of *BD* and EP + FP + GP?
- **10.** Complete the following statement: The sum of the distances from any point in the interior of an equilateral triangle to the sides of the triangle is ______.

Problem 4 – Exploring the Orthocenter of a Medial Triangle

The **medial triangle** is the triangle formed by connecting the midpoints of the sides of a triangle.

Open the file *MEDIAL2*. You are given a triangle, its medial triangle, and the orthocenter of the medial triangle.

11. What triangle center (centroid, circumcenter, incenter, or orthocenter) for $\triangle ABC$ is the orthocenter, *O*, of the medial $\triangle DEF$?