
TI-Nspire™ CAS
TI-Nspire™ CX CAS

Reference Guide

This guidebook applies to TI-Nspire™ software version 3.2. To obtain the
latest version of the documentation, go to education.ti.com/guides.

http://www.education.ti.com/guides

ii

Important Information
Except as otherwise expressly stated in the License that accompanies a
program, Texas Instruments makes no warranty, either express or
implied, including but not limited to any implied warranties of
merchantability and fitness for a particular purpose, regarding any
programs or book materials and makes such materials available solely on
an "as-is" basis. In no event shall Texas Instruments be liable to anyone
for special, collateral, incidental, or consequential damages in connection
with or arising out of the purchase or use of these materials, and the sole
and exclusive liability of Texas Instruments, regardless of the form of
action, shall not exceed the amount set forth in the license for the
program. Moreover, Texas Instruments shall not be liable for any claim of
any kind whatsoever against the use of these materials by any other
party.

License
Please see the complete license installed in
C:\Program Files\TI Education\<TI-Nspire™ Product Name>\license.

© 2006 - 2012 Texas Instruments Incorporated

iii

Contents

Expression Templates
Fraction template ..1
Exponent template1
Square root template1
Nth root template ..1
e exponent template2
Log template ..2
Piecewise template (2-piece)2
Piecewise template (N-piece)2
System of 2 equations template3
System of N equations template3
Absolute value template3
dd°mm’ss.ss’’ template3
Matrix template (2 x 2)3
Matrix template (1 x 2)4
Matrix template (2 x 1)4
Matrix template (m x n)4
Sum template (G) ...4
Product template (Π)4
First derivative template5
Second derivative template5
Nth derivative template5
Definite integral template5
Indefinite integral template5
Limit template ..6

Alphabetical Listing

A
abs() ..7
amortTbl() ..7
and ..7
angle() ..8
ANOVA ...8
ANOVA2way ..9
Ans ..11
approx() ..11
4approxFraction()11
approxRational() ..11
arccos() ..11
arccosh() ...12
arccot() ..12
arccoth() ...12
arccsc() ..12
arccsch() ..12
arcLen() ...12
arcsec() ..12
arcsech() ..12
arcsin() ..12
arcsinh() ..12
arctan() ...12
arctanh() ...12
augment() ...12
avgRC() ...13

B
bal() ...13
4Base2 ...14
4Base10 ...14

4Base16 ... 15
binomCdf() ... 15
binomPdf() ... 15

C
ceiling() .. 15
centralDiff() ... 16
cFactor() ... 16
char() .. 17
charPoly() ... 17
c22way .. 17
c2Cdf() .. 17
c2GOF ... 18
c2Pdf() .. 18
ClearAZ ... 18
ClrErr .. 19
colAugment() ... 19
colDim() .. 19
colNorm() ... 19
comDenom() .. 19
completeSquare() 20
conj() .. 21
constructMat() ... 21
CopyVar .. 21
corrMat() .. 22
4cos ... 22
cos() .. 22
cos/() .. 23
cosh() .. 24
cosh/() .. 24
cot() .. 24
cot/() .. 25
coth() .. 25
coth/() .. 25
count() .. 25
countif() ... 26
cPolyRoots() ... 26
crossP() ... 26
csc() ... 27
csc/() ... 27
csch() ... 27
csch/() ... 27
cSolve() ... 28
CubicReg .. 30
cumulativeSum() .. 30
Cycle ... 31
4Cylind .. 31
cZeros() ... 31

D
dbd() ... 33
4DD ... 33
4Decimal ... 33
Define ... 34
Define LibPriv .. 34
Define LibPub .. 35
deltaList() ... 35
deltaTmpCnv() ... 35
DelVar .. 35
delVoid() .. 35

iv

derivative() ...35
deSolve() ...36
det() ..37
diag() ...37
dim() ..37
Disp ...38
4DMS ...38
domain() ...38
dominantTerm() ...39
dotP() ..39

E
e^() ..40
eff() ...40
eigVc() ...40
eigVl() ...41
Else ..41
ElseIf ..41
EndFor ...41
EndFunc ..41
EndIf ..41
EndLoop ..41
EndPrgm ...41
EndTry ...41
EndWhile ..42
euler() ...42
exact() ...42
Exit ..43
4exp ...43
exp() ..43
exp4list() ..44
expand() ..44
expr() ...45
ExpReg ..45

F
factor() ..46
FCdf() ..47
Fill ..47
FiveNumSummary48
floor() ..48
fMax() ...48
fMin() ..49
For ...49
format() ..50
fPart() ..50
FPdf() ..50
freqTable4list() ..50
frequency() ...51
FTest_2Samp ..51
Func ...52

G
gcd() ..52
geomCdf() ...52
geomPdf() ...53
getDenom() ..53
getLangInfo() ...53
getLockInfo() ..53
getMode() ...54
getNum() ..54
getType() ..55
getVarInfo() ..55

Goto .. 56
4Grad ... 56

I
identity() ... 56
If .. 57
ifFn() ... 58
imag() ... 58
impDif() .. 58
Indirection .. 58
inString() .. 59
int() ... 59
intDiv() .. 59
integral ... 59
interpolate() ... 60
invc2() ... 60
invF() .. 60
invNorm() ... 60
invt() ... 60
iPart() .. 61
irr() .. 61
isPrime() .. 61
isVoid() ... 61

L
Lbl ... 62
lcm() .. 62
left() .. 62
libShortcut() ... 63
limit() or lim() ... 63
LinRegBx ... 64
LinRegMx ... 64
LinRegtIntervals ... 65
LinRegtTest .. 66
linSolve() ... 67
@List() .. 67
list4mat() ... 68
4ln .. 68
ln() .. 68
LnReg .. 69
Local ... 70
Lock .. 70
log() .. 71
4logbase .. 71
Logistic ... 72
LogisticD ... 72
Loop .. 73
LU .. 74

M
mat4list() ... 74
max() ... 75
mean() .. 75
median() ... 75
MedMed ... 76
mid() ... 76
min() ... 77
mirr() ... 77
mod() .. 78
mRow() ... 78
mRowAdd() .. 78
MultReg .. 78
MultRegIntervals 79

v

MultRegTests ..79

N
nand ..80
nCr() ..81
nDerivative() ...81
newList() ...81
newMat() ..81
nfMax() ...82
nfMin() ..82
nInt() ...82
nom() ..82
nor ..83
norm() ...83
normalLine() ...83
normCdf() ...83
normPdf() ...84
not ..84
nPr() ..84
npv() ..85
nSolve() ...85

O
OneVar ...86
or ...87
ord() ..87

P
P4Rx() ...87
P4Ry() ...88
PassErr ...88
piecewise() ..88
poissCdf() ..88
poissPdf() ..88
4Polar ..89
polyCoeffs() ..89
polyDegree() ..90
polyEval() ..90
polyGcd() ..90
polyQuotient() ...91
polyRemainder() ..91
polyRoots() ...91
PowerReg ...92
Prgm ...93
prodSeq() ..93
Product (PI) ...93
product() ...93
propFrac() ...94

Q
QR ...94
QuadReg ...95
QuartReg ..96

R
R4Pq() ..97
R4Pr() ...97
4Rad ...97
rand() ..97
randBin() ...98
randInt() ...98
randMat() ...98
randNorm() ...98

randPoly() ... 98
randSamp() .. 98
RandSeed ... 99
real() ... 99
4Rect ... 99
ref() ... 100
remain() .. 100
Request .. 101
RequestStr .. 102
Return .. 102
right() ... 102
rk23() .. 103
root() .. 103
rotate() ... 104
round() ... 104
rowAdd() .. 105
rowDim() .. 105
rowNorm() ... 105
rowSwap() .. 105
rref() ... 105

S
sec() .. 106
sec/() ... 106
sech() .. 106
sech/() .. 107
seq() .. 107
seqGen() ... 108
seqn() .. 108
series() .. 109
setMode() ... 110
shift() .. 111
sign() ... 111
simult() ... 112
4sin .. 112
sin() ... 113
sin/() ... 113
sinh() ... 114
sinh/() ... 114
SinReg .. 115
solve() ... 115
SortA .. 118
SortD .. 118
4Sphere ... 119
sqrt() ... 119
stat.results .. 120
stat.values .. 121
stDevPop() .. 121
stDevSamp() ... 121
Stop .. 122
Store ... 122
string() .. 122
subMat() ... 122
Sum (Sigma) ... 122
sum() ... 123
sumIf() .. 123
sumSeq() ... 123
system() .. 123

T
T (transpose) .. 124
tan() .. 124
tan/() .. 125

vi

tangentLine() ..125
tanh() ..125
tanh/() ..126
taylor() ..126
tCdf() ...126
tCollect() ...127
tExpand() ..127
Text ...127
Then ..127
tInterval ..128
tInterval_2Samp128
tmpCnv() ...129
@tmpCnv() ...129
tPdf() ...129
trace() ..130
Try ...130
tTest ..131
tTest_2Samp ...131
tvmFV() ...132
tvmI() ...132
tvmN() ...132
tvmPmt() ...132
tvmPV() ...132
TwoVar ...133

U
unitV() ...134
unLock ..135

V
varPop() ..135
varSamp() ..135

W
warnCodes() ...136
when() ...136
While ...136

X
xor ...137

Z
zeros() ...137
zInterval ..139
zInterval_1Prop ..139
zInterval_2Prop ..140
zInterval_2Samp140
zTest ..141
zTest_1Prop ..141
zTest_2Prop ..142
zTest_2Samp ...142

Symbols
+ (add) ...143
N(subtract) ..143
·(multiply) ...144
à (divide) ...144
^ (power) ..145
x2 (square) ..146
.+ (dot add) ...146
.. (dot subt.) ..146

.·(dot mult.) .. 146

. / (dot divide) ... 147

.^ (dot power) .. 147
L(negate) ... 147
% (percent) .. 147
= (equal) ... 148
ƒ (not equal) .. 148
< (less than) .. 148
{ (less or equal) .. 149
> (greater than) 149
| (greater or equal) 149
 (logical implication) 149
⇔ (logical double implication, XNOR) ... 150
! (factorial) ... 150
& (append) ... 150
d() (derivative) ... 150
‰() (integral) .. 151
‡() (square root) 152
Π() (prodSeq) .. 152
G() (sumSeq) ... 153
GInt() ... 154
GPrn() .. 154
(indirection) .. 155
E (scientific notation) 155
g (gradian) ... 155
R(radian) .. 155
¡ (degree) ... 156
¡, ', '' (degree/minute/second) 156
± (angle) .. 156
' (prime) .. 157
_ (underscore as an empty element) 157
_ (underscore as unit designator) 157
4 (convert) ... 158
10^() .. 158
^/(reciprocal) ... 158
| (constraint operator) 159
& (store) ... 160
:= (assign) ... 160
© (comment) .. 160
0b, 0h .. 161

Empty (Void) Elements
Calculations involving void elements 162
List arguments containing void elements
162

Shortcuts for Entering Math
Expressions

EOS™ (Equation Operating
System) Hierarchy

Error Codes and Messages

Texas Instruments Support and
Service

Service and Warranty Information

TI-Nspire™ CAS Reference Guide 1

TI-Nspire™ CAS Reference Guide

This guide lists the templates, functions, commands, and operators available for evaluating
math expressions.

Expression Templates
Expression templates give you an easy way to enter math expressions in standard mathematical
notation. When you insert a template, it appears on the entry line with small blocks at positions
where you can enter elements. A cursor shows which element you can enter.

Use the arrow keys or press e to move the cursor to each element’s position, and type a value

or expression for the element. Press · or /· to evaluate the expression.

Fraction template /p keys

 Note: See also / (divide), page 144.

Example:

Exponent template l key

Note: Type the first value, press l, and then type the exponent.

To return the cursor to the baseline, press right arrow (¢).

Note: See also ^ (power), page 145.

Example:

Square root template /q keys

 Note: See also ‡() (square root), page 152.

Example:

Nth root template /l keys

 Note: See also root(), page 103.

Example:

2 TI-Nspire™ CAS Reference Guide

e exponent template u keys

Natural exponential e raised to a power

Note: See also e^(), page 40.

Example:

Log template /s key

Calculates log to a specified base. For a default of base 10, omit the
base.

Note: See also log(), page 71.

Example:

Piecewise template (2-piece)
Catalog >

Lets you create expressions and conditions for a two-piece piecewise
function. To add a piece, click in the template and repeat the
template.

Note: See also piecewise(), page 88.

Example:

Piecewise template (N-piece)
Catalog >

Lets you create expressions and conditions for an N-piece piecewise
function. Prompts for N.

Note: See also piecewise(), page 88.

Example:
See the example for Piecewise template (2-piece).

TI-Nspire™ CAS Reference Guide 3

System of 2 equations template
Catalog >

Creates a system of two equations. To add a row to an existing
system, click in the template and repeat the template.

Note: See also system(), page 123.

Example:

System of N equations template
Catalog >

Lets you create a system of N equations. Prompts for N.

Note: See also system(), page 123.

Example:
See the example for System of equations template (2-equation).

Absolute value template
Catalog >

 Note: See also abs(), page 7.

Example:

dd°mm’ss.ss’’ template
Catalog >

Lets you enter angles in dd°mm’ss.ss’’ format, where dd is the
number of decimal degrees, mm is the number of minutes, and ss.ss
is the number of seconds.

Example:

Matrix template (2 x 2)
Catalog >

Creates a 2 x 2 matrix.

Example:

4 TI-Nspire™ CAS Reference Guide

Matrix template (1 x 2)
Catalog >

.

Example:

Matrix template (2 x 1)
Catalog >

Example:

Matrix template (m x n)
Catalog >

The template appears after you are prompted to specify the number
of rows and columns.

Note: If you create a matrix with a large number of rows and
columns, it may take a few moments to appear.

Example:

Sum template (G)
Catalog >

Note: See also G() (sumSeq), page 153.

Example:

Product template (Π)
Catalog >

Note: See also Π() (prodSeq), page 152.

Example:

TI-Nspire™ CAS Reference Guide 5

First derivative template
Catalog >

The first derivative template can also be used to calculate first
derivative at a point.

Note: See also d() (derivative), page 150.

Example:

Second derivative template
Catalog >

The second derivative template can also be used to calculate second
derivative at a point.

Note: See also d() (derivative), page 150.

Example:

Nth derivative template
Catalog >

The nth derivative template can be used to calculate the nth
derivative.

Note: See also d() (derivative), page 150.

Example:

Definite integral template
Catalog >

Note: See also ‰() integral(), page 151.

Example:

Indefinite integral template
Catalog >

Note: See also ‰() integral(), page 151.

Example:

6 TI-Nspire™ CAS Reference Guide

Limit template
Catalog >

Use N or (N) for left hand limit. Use + for right hand limit.

Note: See also limit(), page 63.

Example:

TI-Nspire™ CAS Reference Guide 7

Alphabetical Listing
Items whose names are not alphabetic (such as +, !, and >) are listed at the end of this section,
starting on page 143. Unless otherwise specified, all examples in this section were performed in
the default reset mode, and all variables are assumed to be undefined.

A

abs()
Catalog >

abs(Expr1)  expression
abs(List1)  list
abs(Matrix1)  matrix

Returns the absolute value of the argument.

Note: See also Absolute value template, page 3.

If the argument is a complex number, returns the number’s modulus.

Note: All undefined variables are treated as real variables.

amortTbl()
Catalog >

amortTbl(NPmt,N,I,PV, [Pmt], [FV], [PpY], [CpY], [PmtAt],
[roundValue])  matrix

Amortization function that returns a matrix as an amortization table
for a set of TVM arguments.

NPmt is the number of payments to be included in the table. The
table starts with the first payment.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 132.

• If you omit Pmt, it defaults to
Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt are the same as for the

TVM functions.

roundValue specifies the number of decimal places for rounding.
Default=2.

The columns in the result matrix are in this order: Payment number,
amount paid to interest, amount paid to principal, and balance.

The balance displayed in row n is the balance after payment n.

You can use the output matrix as input for the other amortization
functions GInt() and GPrn(), page 154, and bal(), page 13.

and
Catalog >

BooleanExpr1 and BooleanExpr2  Boolean expression
BooleanList1 and BooleanList2  Boolean list
BooleanMatrix1 and BooleanMatrix2  Boolean matrix

Returns true or false or a simplified form of the original entry.

8 TI-Nspire™ CAS Reference Guide

Integer1 and Integer2  integer

Compares two real integers bit-by-bit using an and operation.
Internally, both integers are converted to signed, 64-bit binary
numbers. When corresponding bits are compared, the result is 1 if
both bits are 1; otherwise, the result is 0. The returned value
represents the bit results, and is displayed according to the Base
mode.

You can enter the integers in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as decimal (base 10).

In Hex base mode:

Important: Zero, not the letter O.

In Bin base mode:

In Dec base mode:

Note: A binary entry can have up to 64 digits (not counting the
0b prefix). A hexadecimal entry can have up to 16 digits.

angle()
Catalog >

angle(Expr1)  expression

Returns the angle of the argument, interpreting the argument as a
complex number.

Note: All undefined variables are treated as real variables.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

angle(List1)  list
angle(Matrix1)  matrix

Returns a list or matrix of angles of the elements in List1 or Matrix1,
interpreting each element as a complex number that represents a
two-dimensional rectangular coordinate point.

ANOVA
Catalog >

ANOVA List1,List2[,List3,...,List20][,Flag]

Performs a one-way analysis of variance for comparing the means of
two to 20 populations. A summary of results is stored in the
stat.results variable. (See page 120.)

Flag=0 for Data, Flag=1 for Stats

Output variable Description

stat.F Value of the F statistic

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom of the groups

stat.SS Sum of squares of the groups

and
Catalog >

TI-Nspire™ CAS Reference Guide 9

Outputs: Block Design

stat.MS Mean squares for the groups

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat.MSError Mean square for the errors

stat.sp Pooled standard deviation

stat.xbarlist Mean of the input of the lists

stat.CLowerList 95% confidence intervals for the mean of each input list

stat.CUpperList 95% confidence intervals for the mean of each input list

ANOVA2way
Catalog >

ANOVA2way List1,List2[,List3,…,List10][,levRow]

Computes a two-way analysis of variance for comparing the means of
two to 10 populations. A summary of results is stored in the
stat.results variable. (See page 120.)

LevRow=0 for Block

LevRow=2,3,...,Len-1, for Two Factor, where
Len=length(List1)=length(List2) = = length(List10) and
Len / LevRow ∈ {2,3, }

Output variable Description

stat.F F statistic of the column factor

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom of the column factor

stat.SS Sum of squares of the column factor

stat.MS Mean squares for column factor

stat.FBlock F statistic for factor

stat.PValBlock Least probability at which the null hypothesis can be rejected

stat.dfBlock Degrees of freedom for factor

stat.SSBlock Sum of squares for factor

stat.MSBlock Mean squares for factor

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat.MSError Mean squares for the errors

stat.s Standard deviation of the error

Output variable Description

10 TI-Nspire™ CAS Reference Guide

COLUMN FACTOR Outputs

ROW FACTOR Outputs

INTERACTION Outputs

ERROR Outputs

Output variable Description

stat.Fcol F statistic of the column factor

stat.PValCol Probability value of the column factor

stat.dfCol Degrees of freedom of the column factor

stat.SSCol Sum of squares of the column factor

stat.MSCol Mean squares for column factor

Output variable Description

stat.FRow F statistic of the row factor

stat.PValRow Probability value of the row factor

stat.dfRow Degrees of freedom of the row factor

stat.SSRow Sum of squares of the row factor

stat.MSRow Mean squares for row factor

Output variable Description

stat.FInteract F statistic of the interaction

stat.PValInteract Probability value of the interaction

stat.dfInteract Degrees of freedom of the interaction

stat.SSInteract Sum of squares of the interaction

stat.MSInteract Mean squares for interaction

Output variable Description

stat.dfError Degrees of freedom of the errors

stat.SSError Sum of squares of the errors

stat.MSError Mean squares for the errors

s Standard deviation of the error

TI-Nspire™ CAS Reference Guide 11

Ans /v keys

Ans  value

Returns the result of the most recently evaluated expression.

approx()
Catalog >

approx(Expr1)  expression

Returns the evaluation of the argument as an expression containing
decimal values, when possible, regardless of the current Auto or
Approximate mode.

This is equivalent to entering the argument and pressing /
·.

approx(List1)  list
approx(Matrix1)  matrix

Returns a list or matrix where each element has been evaluated to a
decimal value, when possible.

4approxFraction() Catalog >

Expr 4approxFraction([Tol])  expression

List 4approxFraction([Tol])  list

Matrix 4approxFraction([Tol])  matrix

Returns the input as a fraction, using a tolerance of Tol. If Tol is
omitted, a tolerance of 5.E-14 is used.

Note: You can insert this function from the computer keyboard by
typing @>approxFraction(...).

approxRational()
Catalog >

approxRational(Expr[, Tol])  expression

approxRational(List[, Tol])  list

approxRational(Matrix[, Tol])  matrix

Returns the argument as a fraction using a tolerance of Tol. If Tol is
omitted, a tolerance of 5.E-14 is used.

arccos() See cos/(), page 23.

12 TI-Nspire™ CAS Reference Guide

arccosh() See cosh/(), page 24.

arccot() See cot/(), page 25.

arccoth() See coth/(), page 25.

arccsc() See csc/(), page 27.

arccsch() See csch/(), page 27.

arcLen()
Catalog >

arcLen(Expr1,Var,Start,End)  expression

Returns the arc length of Expr1 from Start to End with respect to
variable Var.

Arc length is calculated as an integral assuming a function mode
definition.

arcLen(List1,Var,Start,End)  list

Returns a list of the arc lengths of each element of List1 from Start to
End with respect to Var.

arcsec() See sec/(), page 106.

arcsech() See sech/(), page 107.

arcsin() See sin/(), page 113.

arcsinh() See sinh/(), page 114.

arctan() See tan/(), page 125.

arctanh() See tanh/(), page 126.

augment()
Catalog >

augment(List1, List2)  list

Returns a new list that is List2 appended to the end of List1.

TI-Nspire™ CAS Reference Guide 13

B

augment(Matrix1, Matrix2)  matrix

Returns a new matrix that is Matrix2 appended to Matrix1. When
the “,” character is used, the matrices must have equal row
dimensions, and Matrix2 is appended to Matrix1 as new columns.
Does not alter Matrix1 or Matrix2.

avgRC()
Catalog >

avgRC(Expr1, Var [=Value] [, Step])  expression

avgRC(Expr1, Var [=Value] [, List1])  list

avgRC(List1, Var [=Value] [, Step])  list

avgRC(Matrix1, Var [=Value] [, Step])  matrix

Returns the forward-difference quotient (average rate of change).

Expr1 can be a user-defined function name (see Func).

When Value is specified, it overrides any prior variable assignment or
any current “|” substitution for the variable.

Step is the step value. If Step is omitted, it defaults to 0.001.

Note that the similar function centralDiff() uses the central-
difference quotient.

bal()
Catalog >

bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], [CpY], [PmtAt],
[roundValue])  value

bal(NPmt,amortTable)  value

Amortization function that calculates schedule balance after a
specified payment.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 132.

NPmt specifies the payment number after which you want the data
calculated.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 132.

• If you omit Pmt, it defaults to
Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt are the same as for the

TVM functions.

roundValue specifies the number of decimal places for rounding.
Default=2.

bal(NPmt,amortTable) calculates the balance after payment number
NPmt, based on amortization table amortTable. The amortTable
argument must be a matrix in the form described under amortTbl(),
page 7.

Note: See also GInt() and GPrn(), page 154.

augment()
Catalog >

14 TI-Nspire™ CAS Reference Guide

4Base2 Catalog >

Integer1 4Base2  integer

Note: You can insert this operator from the computer keyboard by
typing @>Base2.

Converts Integer1 to a binary number. Binary or hexadecimal
numbers always have a 0b or 0h prefix, respectively.

Without a prefix, Integer1 is treated as decimal (base 10). The result
is displayed in binary, regardless of the Base mode.

Negative numbers are displayed in “two's complement” form. For
example,

N1 is displayed as
0hFFFFFFFFFFFFFFFF in Hex base mode
0b111...111 (64 1’s) in Binary base mode

N263 is displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode

If you enter a decimal integer that is outside the range of a signed,
64-bit binary form, a symmetric modulo operation is used to bring the
value into the appropriate range. Consider the following examples of
values outside the range.

263 becomes N263 and is displayed as
0h8000000000000000 in Hex base mode
0b100...000 (63 zeros) in Binary base mode

264 becomes 0 and is displayed as
0h0 in Hex base mode
0b0 in Binary base mode

N263 N 1 becomes 263 N 1 and is displayed as
0h7FFFFFFFFFFFFFFF in Hex base mode
0b111...111 (64 1’s) in Binary base mode

4Base10 Catalog >

Integer1 4Base10  integer

Note: You can insert this operator from the computer keyboard by
typing @>Base10.

Converts Integer1 to a decimal (base 10) number. A binary or
hexadecimal entry must always have a 0b or 0h prefix, respectively.

0b binaryNumber
0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A hexadecimal number can
have up to 16.

Without a prefix, Integer1 is treated as decimal. The result is
displayed in decimal, regardless of the Base mode.

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A
hexadecimal number can have up to 16.

0b binaryNumber
0h hexadecimalNumber

TI-Nspire™ CAS Reference Guide 15

C

4Base16 Catalog >

Integer1 4Base16  integer

Note: You can insert this operator from the computer keyboard by
typing @>Base16.

Converts Integer1 to a hexadecimal number. Binary or hexadecimal
numbers always have a 0b or 0h prefix, respectively.

0b binaryNumber
0h hexadecimalNumber

Zero, not the letter O, followed by b or h.

A binary number can have up to 64 digits. A hexadecimal number can
have up to 16.

Without a prefix, Integer1 is treated as decimal (base 10). The result
is displayed in hexadecimal, regardless of the Base mode.

If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value
into the appropriate range. For more information, see 4Base2,
page 14.

binomCdf()
Catalog >

binomCdf(n,p)  number

binomCdf(n,p,lowBound,upBound)  number if lowBound
and upBound are numbers, list if lowBound and upBound are
lists

binomCdf(n,p,upBound) for P(0{X{upBound)  number if
upBound is a number, list if upBound is a list

Computes a cumulative probability for the discrete binomial
distribution with n number of trials and probability p of success on
each trial.

For P(X { upBound), set lowBound=0

binomPdf()
Catalog >

binomPdf(n,p)  number

binomPdf(n,p,XVal)  number if XVal is a number, list if
XVal is a list

Computes a probability for the discrete binomial distribution with n
number of trials and probability p of success on each trial.

ceiling()
Catalog >

ceiling(Expr1)  integer

Returns the nearest integer that is | the argument.

The argument can be a real or a complex number.

Note: See also floor().

ceiling(List1)  list
ceiling(Matrix1)  matrix

Returns a list or matrix of the ceiling of each element.

16 TI-Nspire™ CAS Reference Guide

centralDiff()
Catalog >

centralDiff(Expr1,Var [=Value [,Step])  expression

centralDiff(Expr1,Var [,Step])|Var=Value  expression

centralDiff(Expr1,Var [=Value [,List])  list

centralDiff(List1,Var [=Value][,Step])  list

centralDiff(Matrix1,Var [=Value][,Step])  matrix

Returns the numerical derivative using the central difference quotient
formula.

When Value is specified, it overrides any prior variable assignment or
any current “|” substitution for the variable.

Step is the step value. If Step is omitted, it defaults to 0.001.

When using List1 or Matrix1, the operation gets mapped across the
values in the list or across the matrix elements.

Note: See also avgRC() and d().

cFactor()
Catalog >

cFactor(Expr1[,Var])  expression
cFactor(List1[,Var])  list
cFactor(Matrix1[,Var])  matrix

cFactor(Expr1) returns Expr1 factored with respect to all of its
variables over a common denominator.

Expr1 is factored as much as possible toward linear rational factors
even if this introduces new non-real numbers. This alternative is
appropriate if you want factorization with respect to more than one
variable.

cFactor(Expr1,Var) returns Expr1 factored with respect to variable
Var.

Expr1 is factored as much as possible toward factors that are linear
in Var, with perhaps non-real constants, even if it introduces
irrational constants or subexpressions that are irrational in other
variables.

The factors and their terms are sorted with Var as the main variable.
Similar powers of Var are collected in each factor. Include Var if
factorization is needed with respect to only that variable and you are
willing to accept irrational expressions in any other variables to
increase factorization with respect to Var. There might be some
incidental factoring with respect to other variables.

For the Auto setting of the Auto or Approximate mode,
including Var also permits approximation with floating-point
coefficients where irrational coefficients cannot be explicitly
expressed concisely in terms of the built-in functions. Even when
there is only one variable, including Var might yield more complete
factorization.

Note: See also factor().

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

TI-Nspire™ CAS Reference Guide 17

char()
Catalog >

char(Integer)  character

Returns a character string containing the character numbered Integer
from the handheld character set. The valid range for Integer is 0–
65535.

charPoly()
Catalog >

charPoly(squareMatrix,Var)  polynomial expression

charPoly(squareMatrix,Expr)  polynomial expression

charPoly(squareMatrix1,Matrix2)  polynomial expression

Returns the characteristic polynomial of squareMatrix. The
characteristic polynomial of n×n matrix A, denoted by pA(l), is the
polynomial defined by

pA(l) = det(l• I NA)

where I denotes the n×n identity matrix.

squareMatrix1 and squareMatrix2 must have the equal dimensions.

c22way Catalog >

c22way obsMatrix

chi22way obsMatrix

Computes a c2 test for association on the two-way table of counts in
the observed matrix obsMatrix. A summary of results is stored in the
stat.results variable. (See page 120.)

For information on the effect of empty elements in a matrix, see
“Empty (Void) Elements” on page 162.

Output variable Description

stat.c2 Chi square stat: sum (observed - expected)2/expected

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom for the chi square statistics

stat.ExpMat Matrix of expected elemental count table, assuming null hypothesis

stat.CompMat Matrix of elemental chi square statistic contributions

c2Cdf() Catalog >

c2Cdf(lowBound,upBound,df)  number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

chi2Cdf(lowBound,upBound,df)  number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

Computes the c2 distribution probability between lowBound and
upBound for the specified degrees of freedom df.

For P(X { upBound), set lowBound = 0.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

18 TI-Nspire™ CAS Reference Guide

c2GOF Catalog >

c2GOF obsList,expList,df

chi2GOF obsList,expList,df

Performs a test to confirm that sample data is from a population that
conforms to a specified distribution. obsList is a list of counts and
must contain integers. A summary of results is stored in the
stat.results variable. (See page 120.)

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.c2 Chi square stat: sum((observed - expected)2/expected

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom for the chi square statistics

stat.CompList Elemental chi square statistic contributions

c2Pdf() Catalog >

c2Pdf(XVal,df)  number if XVal is a number, list if XVal is a
list

chi2Pdf(XVal,df)  number if XVal is a number, list if XVal is
a list

Computes the probability density function (pdf) for the c2 distribution
at a specified XVal value for the specified degrees of freedom df.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

ClearAZ
Catalog >

ClearAZ

Clears all single-character variables in the current problem space.

If one or more of the variables are locked, this command displays an
error message and deletes only the unlocked variables. See unLock,
page 135.

TI-Nspire™ CAS Reference Guide 19

ClrErr
Catalog >

ClrErr

Clears the error status and sets system variable errCode to zero.

The Else clause of the Try...Else...EndTry block should use ClrErr
or PassErr. If the error is to be processed or ignored, use ClrErr. If
what to do with the error is not known, use PassErr to send it to the
next error handler. If there are no more pending Try...Else...EndTry
error handlers, the error dialog box will be displayed as normal.

Note: See also PassErr, page 88, and Try, page 130.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

For an example of ClrErr, See Example 2 under the Try
command, page 130.

colAugment()
Catalog >

colAugment(Matrix1, Matrix2)  matrix

Returns a new matrix that is Matrix2 appended to Matrix1. The
matrices must have equal column dimensions, and Matrix2 is
appended to Matrix1 as new rows. Does not alter Matrix1 or
Matrix2.

colDim()
Catalog >

colDim(Matrix)  expression

Returns the number of columns contained in Matrix.

Note: See also rowDim().

colNorm()
Catalog >

colNorm(Matrix)  expression

Returns the maximum of the sums of the absolute values of the
elements in the columns in Matrix.

Note: Undefined matrix elements are not allowed. See also
rowNorm().

comDenom()
Catalog >

comDenom(Expr1[,Var])  expression
comDenom(List1[,Var])  list
comDenom(Matrix1[,Var])  matrix

comDenom(Expr1) returns a reduced ratio of a fully expanded
numerator over a fully expanded denominator.

20 TI-Nspire™ CAS Reference Guide

comDenom(Expr1,Var) returns a reduced ratio of numerator and
denominator expanded with respect to Var. The terms and their
factors are sorted with Var as the main variable. Similar powers of
Var are collected. There might be some incidental factoring of the
collected coefficients. Compared to omitting Var, this often saves
time, memory, and screen space, while making the expression more
comprehensible. It also makes subsequent operations on the result
faster and less likely to exhaust memory.

If Var does not occur in Expr1, comDenom(Expr1,Var) returns a
reduced ratio of an unexpanded numerator over an unexpanded
denominator. Such results usually save even more time, memory, and
screen space. Such partially factored results also make subsequent
operations on the result much faster and much less likely to exhaust
memory.

Even when there is no denominator, the comden function is often a
fast way to achieve partial factorization if factor() is too slow or if it
exhausts memory.

Hint: Enter this comden() function definition and routinely try it as
an alternative to comDenom() and factor().

completeSquare()
Catalog >

completeSquare(ExprOrEqn, Var)  expression or equation

completeSquare(ExprOrEqn, Var^Power)  expression or
equation

completeSquare(ExprOrEqn, Var1 Var2 [...])  expression or
equation

completeSquare(ExprOrEqn, {Var1 Var2 [...]})  expression
or equation

Converts a quadratic polynomial expression of the form a·x2+b·x+c
into the form a·(x-h)2+k

- or -

Converts a quadratic equation of the form a·x2+b·x+c=d into the
form a·(x-h)2=k

The first argument must be a quadratic expression or equation in
standard form with respect to the second argument.

The Second argument must be a single univariate term or a single
univariate term raised to a rational power, for example x, y2, or z(1/3).

The third and fourth syntax attempt to complete the square with
respect to variables Var1, Var2 [,…]).

comDenom()
Catalog >

TI-Nspire™ CAS Reference Guide 21

conj()
Catalog >

conj(Expr1)  expression
conj(List1)  list
conj(Matrix1)  matrix

Returns the complex conjugate of the argument.

Note: All undefined variables are treated as real variables.

constructMat()
Catalog >

constructMat(Expr,Var1,Var2,numRows,numCols)
 matrix

Returns a matrix based on the arguments.

Expr is an expression in variables Var1 and Var2. Elements in the
resulting matrix are formed by evaluating Expr for each incremented
value of Var1 and Var2.

Var1 is automatically incremented from 1 through numRows. Within
each row, Var2 is incremented from 1 through numCols.

CopyVar
Catalog >

CopyVar Var1, Var2

CopyVar Var1., Var2.

CopyVar Var1, Var2 copies the value of variable Var1 to variable
Var2, creating Var2 if necessary. Variable Var1 must have a value.

If Var1 is the name of an existing user-defined function, copies the
definition of that function to function Var2. Function Var1 must be
defined.

Var1 must meet the variable-naming requirements or must be an
indirection expression that simplifies to a variable name meeting the
requirements.

CopyVar Var1. , Var2. copies all members of the Var1. variable
group to the Var2. group, creating Var2. if necessary.

Var1. must be the name of an existing variable group, such as the
statistics stat.nn results, or variables created using the
LibShortcut() function. If Var2. already exists, this command
replaces all members that are common to both groups and adds the
members that do not already exist. If one or more members of Var2.
are locked, all members of Var2. are left unchanged.

22 TI-Nspire™ CAS Reference Guide

corrMat()
Catalog >

corrMat(List1,List2[,…[,List20]])

Computes the correlation matrix for the augmented matrix [List1,
List2, ..., List20].

4cos Catalog >

Expr 4cos

Note: You can insert this operator from the computer keyboard by
typing @>cos.

Represents Expr in terms of cosine. This is a display conversion
operator. It can be used only at the end of the entry line.

4cos reduces all powers of
sin(...) modulo 1Ncos(...)^2

so that any remaining powers of cos(...) have exponents in the range
(0, 2). Thus, the result will be free of sin(...) if and only if sin(...)
occurs in the given expression only to even powers.

Note: This conversion operator is not supported in Degree or
Gradian Angle modes. Before using it, make sure that the Angle
mode is set to Radians and that Expr does not contain explicit
references to degree or gradian angles.

cos() μ key

cos(Expr1)  expression

cos(List1)  list

cos(Expr1) returns the cosine of the argument as an expression.

cos(List1) returns a list of the cosines of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian
angle, according to the current angle mode setting. You can use ¡, G,
or R to override the angle mode temporarily.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

TI-Nspire™ CAS Reference Guide 23

cos(squareMatrix1)  squareMatrix

Returns the matrix cosine of squareMatrix1. This is not the same as
calculating the cosine of each element.

When a scalar function f(A) operates on squareMatrix1 (A), the
result is calculated by the algorithm:

Compute the eigenvalues (li) and eigenvectors (Vi) of A.

squareMatrix1 must be diagonalizable. Also, it cannot have symbolic
variables that have not been assigned a value.

Form the matrices:

Then A = X B X/and f(A) = X f(B) X/. For example, cos(A) = X cos(B)
X/ where:

cos(B) =

All computations are performed using floating-point arithmetic.

In Radian angle mode:

cos/() μ key

cos/(Expr1)  expression
cos/(List1)  list

cos/(Expr1) returns the angle whose cosine is Expr1 as an
expression.

cos/(List1) returns a list of the inverse cosines of each element of
List1.

Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing
arccos(...).

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

cos/(squareMatrix1)  squareMatrix

Returns the matrix inverse cosine of squareMatrix1. This is not the
same as calculating the inverse cosine of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode and Rectangular Complex Format:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

cos() μ key

24 TI-Nspire™ CAS Reference Guide

cosh()
Catalog >

cosh(Expr1)  expression
cosh(List1)  list

cosh(Expr1) returns the hyperbolic cosine of the argument as an
expression.

cosh(List1) returns a list of the hyperbolic cosines of each element of
List1.

cosh(squareMatrix1)  squareMatrix

Returns the matrix hyperbolic cosine of squareMatrix1. This is not
the same as calculating the hyperbolic cosine of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode:

cosh/() Catalog >

cosh/(Expr1)  expression
cosh/(List1)  list

cosh/(Expr1) returns the inverse hyperbolic cosine of the argument
as an expression.

cosh/(List1) returns a list of the inverse hyperbolic cosines of each
element of List1.

Note: You can insert this function from the keyboard by typing
arccosh(...).

cosh/(squareMatrix1)  squareMatrix

Returns the matrix inverse hyperbolic cosine of squareMatrix1. This
is not the same as calculating the inverse hyperbolic cosine of each
element. For information about the calculation method, refer to
cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode and In Rectangular Complex Format:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

cot() μ key

cot(Expr1)  expression
cot(List1)  list

Returns the cotangent of Expr1 or returns a list of the cotangents of
all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian
angle, according to the current angle mode setting. You can use ¡, G,
or R to override the angle mode temporarily.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

TI-Nspire™ CAS Reference Guide 25

cot/() μ key

cot/(Expr1)  expression
cot/(List1)  list

Returns the angle whose cotangent is Expr1 or returns a list
containing the inverse cotangents of each element of List1.

Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing
arccot(...).

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

coth()
Catalog >

coth(Expr1)  expression
coth(List1)  list

Returns the hyperbolic cotangent of Expr1 or returns a list of the
hyperbolic cotangents of all elements of List1.

coth/() Catalog >

coth/(Expr1)  expression
coth/(List1)  list

Returns the inverse hyperbolic cotangent of Expr1 or returns a list
containing the inverse hyperbolic cotangents of each element of
List1.

Note: You can insert this function from the keyboard by typing
arccoth(...).

count()
Catalog >

count(Value1orList1 [,Value2orList2 [,...]])  value

Returns the accumulated count of all elements in the arguments that
evaluate to numeric values.

Each argument can be an expression, value, list, or matrix. You can
mix data types and use arguments of various dimensions.

For a list, matrix, or range of cells, each element is evaluated to
determine if it should be included in the count.

Within the Lists & Spreadsheet application, you can use a range of
cells in place of any argument.

Empty (void) elements are ignored. For more information on empty
elements, see page 162. In the last example, only 1/2 and 3+4*i are counted. The

remaining arguments, assuming x is undefined, do not evaluate
to numeric values.

26 TI-Nspire™ CAS Reference Guide

countif()
Catalog >

countif(List,Criteria)  value

Returns the accumulated count of all elements in List that meet the
specified Criteria.

Criteria can be:

• A value, expression, or string. For example, 3 counts only those
elements in List that simplify to the value 3.

• A Boolean expression containing the symbol ? as a placeholder
for each element. For example, ?<5 counts only those elements
in List that are less than 5.

Within the Lists & Spreadsheet application, you can use a range of
cells in place of List.

Empty (void) elements in the list are ignored. For more information on
empty elements, see page 162.

Note: See also sumIf(), page 123, and frequency(), page 51.

Counts the number of elements equal to 3.

Counts the number of elements equal to “def.”

Counts the number of elements equal to x; this example
assumes the variable x is undefined.

Counts 1 and 3.

Counts 3, 5, and 7.

Counts 1, 3, 7, and 9.

cPolyRoots()
Catalog >

cPolyRoots(Poly,Var)  list

cPolyRoots(ListOfCoeffs)  list

The first syntax, cPolyRoots(Poly,Var), returns a list of complex
roots of polynomial Poly with respect to variable Var.

Poly must be a polynomial in one variable.

The second syntax, cPolyRoots(ListOfCoeffs), returns a list of
complex roots for the coefficients in ListOfCoeffs.

Note: See also polyRoots(), page 91.

crossP() Catalog >

crossP(List1, List2)  list

Returns the cross product of List1 and List2 as a list.

List1 and List2 must have equal dimension, and the dimension must
be either 2 or 3.

crossP(Vector1, Vector2)  vector

Returns a row or column vector (depending on the arguments) that is
the cross product of Vector1 and Vector2.

Both Vector1 and Vector2 must be row vectors, or both must be
column vectors. Both vectors must have equal dimension, and the
dimension must be either 2 or 3.

TI-Nspire™ CAS Reference Guide 27

csc() μ key

csc(Expr1)  expression
csc(List1)  list

Returns the cosecant of Expr1 or returns a list containing the
cosecants of all elements in List1.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

csc/() μ key

csc/(Expr1)  expression
csc/(List1)  list

Returns the angle whose cosecant is Expr1 or returns a list
containing the inverse cosecants of each element of List1.

Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing
arccsc(...).

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

csch()
Catalog >

csch(Expr1)  expression

csch(List1)  list

Returns the hyperbolic cosecant of Expr1 or returns a list of the
hyperbolic cosecants of all elements of List1.

csch/() Catalog >

csch/(Expr1)  expression
csch/(List1)  list

Returns the inverse hyperbolic cosecant of Expr1 or returns a list
containing the inverse hyperbolic cosecants of each element of List1.

Note: You can insert this function from the keyboard by typing
arccsch(...).

28 TI-Nspire™ CAS Reference Guide

cSolve()
Catalog >

cSolve(Equation, Var)  Boolean expression

cSolve(Equation, Var=Guess)  Boolean expression

cSolve(Inequality, Var)  Boolean expression

Returns candidate complex solutions of an equation or inequality for
Var. The goal is to produce candidates for all real and non-real
solutions. Even if Equation is real, cSolve() allows non-real results
in Real result Complex Format.

Although all undefined variables that do not end with an underscore
(_) are processed as if they were real, cSolve() can solve polynomial
equations for complex solutions.

cSolve() temporarily sets the domain to complex during the solution
even if the current domain is real. In the complex domain, fractional
powers having odd denominators use the principal rather than the
real branch. Consequently, solutions from solve() to equations
involving such fractional powers are not necessarily a subset of those
from cSolve().

cSolve() starts with exact symbolic methods. cSolve() also uses
iterative approximate complex polynomial factoring, if necessary.

Note: See also cZeros(), solve(), and zeros().

Note: If Equation is non-polynomial with functions such as abs(),
angle(), conj(), real(), or imag(), you should place an underscore

(press /_) at the end of Var. By default, a variable is treated
as a real value.

In Display Digits mode of Fix 2:

To see the entire result, press £ and then use ¡ and ¢ to move
the cursor.

If you use var_ , the variable is treated as complex.

You should also use var_ for any other variables in Equation that
might have unreal values. Otherwise, you may receive unexpected
results.

z is treated as real:

z_ is treated as complex:

cSolve(Eqn1 and Eqn2 [and …],

VarOrGuess1, VarOrGuess2 [, …])  Boolean expression

cSolve(SystemOfEqns, VarOrGuess1,

VarOrGuess2 [, …])  Boolean expression

Returns candidate complex solutions to the simultaneous algebraic
equations, where each varOrGuess specifies a variable that you
want to solve for.

Optionally, you can specify an initial guess for a variable. Each
varOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3+i.
If all of the equations are polynomials and if you do NOT specify any
initial guesses, cSolve() uses the lexical Gröbner/Buchberger
elimination method to attempt to determine all complex solutions.

Note: The following examples use an underscore (press /
_) so that the variables will be treated as complex.

TI-Nspire™ CAS Reference Guide 29

Complex solutions can include both real and non-real solutions, as in
the example to the right.

To see the entire result, press £ and then use ¡ and ¢ to move
the cursor.

Simultaneous polynomial equations can have extra variables that
have no values, but represent given numeric values that could be
substituted later.

To see the entire result, press £ and then use ¡ and ¢ to move
the cursor.

You can also include solution variables that do not appear in the
equations. These solutions show how families of solutions might
contain arbitrary constants of the form ck, where k is an integer suffix
from 1 through 255.

For polynomial systems, computation time or memory exhaustion
may depend strongly on the order in which you list solution variables.
If your initial choice exhausts memory or your patience, try
rearranging the variables in the equations and/or varOrGuess list.

To see the entire result, press £ and then use ¡ and ¢ to move
the cursor.

If you do not include any guesses and if any equation is non-
polynomial in any variable but all equations are linear in all solution
variables, cSolve() uses Gaussian elimination to attempt to
determine all solutions.

If a system is neither polynomial in all of its variables nor linear in its
solution variables, cSolve() determines at most one solution using
an approximate iterative method. To do so, the number of solution
variables must equal the number of equations, and all other variables
in the equations must simplify to numbers.

A non-real guess is often necessary to determine a non-real solution.
For convergence, a guess might have to be rather close to a solution.

To see the entire result, press £ and then use ¡ and ¢ to move
the cursor.

cSolve()
Catalog >

30 TI-Nspire™ CAS Reference Guide

CubicReg
Catalog >

CubicReg X, Y[, [Freq] [, Category, Include]]

Computes the cubic polynomial regression y = a·x3+b·
x2+c·x+d on lists X and Y with frequency Freq. A summary of
results is stored in the stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression equation: a·x3+b·x2+c·x+d

stat.a, stat.b, stat.c,
stat.d

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

cumulativeSum()
Catalog >

cumulativeSum(List1)  list

Returns a list of the cumulative sums of the elements in List1,
starting at element 1.

cumulativeSum(Matrix1)  matrix

Returns a matrix of the cumulative sums of the elements in Matrix1.
Each element is the cumulative sum of the column from top to
bottom.

An empty (void) element in List1 or Matrix1 produces a void element
in the resulting list or matrix. For more information on empty
elements, see page 162.

TI-Nspire™ CAS Reference Guide 31

Cycle
Catalog >

Cycle

Transfers control immediately to the next iteration of the current loop
(For, While, or Loop).

Cycle is not allowed outside the three looping structures (For,
While, or Loop).

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Function listing that sums the integers from 1 to 100 skipping
50.

4Cylind Catalog >

Vector 4Cylind

Note: You can insert this operator from the computer keyboard by
typing @>Cylind.

Displays the row or column vector in cylindrical form [r,±q, z].

Vector must have exactly three elements. It can be either a row or a
column.

cZeros()
Catalog >

cZeros(Expr, Var)  list

Returns a list of candidate real and non-real values of Var that make
Expr=0. cZeros() does this by computing
exp4list(cSolve(Expr=0,Var),Var). Otherwise, cZeros() is similar
to zeros().

Note: See also cSolve(), solve(), and zeros().

In Display Digits mode of Fix 3:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

Note: If Expr is non-polynomial with functions such as abs(),
angle(), conj(), real(), or imag(), you should place an underscore

(press /_) at the end of Var. By default, a variable is treated
as a real value. If you use var_ , the variable is treated as complex.

You should also use var_ for any other variables in Expr that might
have unreal values. Otherwise, you may receive unexpected results.

z is treated as real:

z_ is treated as complex:

cZeros({Expr1, Expr2 [, …] },
{VarOrGuess1,VarOrGuess2 [, …] })  matrix

Returns candidate positions where the expressions are zero
simultaneously. Each VarOrGuess specifies an unknown whose
value you seek.

Optionally, you can specify an initial guess for a variable. Each
VarOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3+i.

32 TI-Nspire™ CAS Reference Guide

If all of the expressions are polynomials and you do NOT specify any
initial guesses, cZeros() uses the lexical Gröbner/Buchberger
elimination method to attempt to determine all complex zeros.

Note: The following examples use an underscore _ (press

/_) so that the variables will be treated as complex.

Complex zeros can include both real and non-real zeros, as in the
example to the right.

Each row of the resulting matrix represents an alternate zero, with
the components ordered the same as the VarOrGuess list. To extract
a row, index the matrix by [row].

Extract row 2:

Simultaneous polynomials can have extra variables that have no
values, but represent given numeric values that could be substituted
later.

You can also include unknown variables that do not appear in the
expressions. These zeros show how families of zeros might contain
arbitrary constants of the form ck, where k is an integer suffix from 1
through 255.

For polynomial systems, computation time or memory exhaustion
may depend strongly on the order in which you list unknowns. If your
initial choice exhausts memory or your patience, try rearranging the
variables in the expressions and/or VarOrGuess list.

If you do not include any guesses and if any expression is non-
polynomial in any variable but all expressions are linear in all
unknowns, cZeros() uses Gaussian elimination to attempt to
determine all zeros.

If a system is neither polynomial in all of its variables nor linear in its
unknowns, cZeros() determines at most one zero using an
approximate iterative method. To do so, the number of unknowns
must equal the number of expressions, and all other variables in the
expressions must simplify to numbers.

A non-real guess is often necessary to determine a non-real zero. For
convergence, a guess might have to be rather close to a zero.

cZeros()
Catalog >

TI-Nspire™ CAS Reference Guide 33

D

dbd()
Catalog >

dbd(date1,date2)  value

Returns the number of days between date1 and date2 using the
actual-day-count method.

date1 and date2 can be numbers or lists of numbers within the range
of the dates on the standard calendar. If both date1 and date2 are
lists, they must be the same length.

date1 and date2 must be between the years 1950 through 2049.

You can enter the dates in either of two formats. The decimal
placement differentiates between the date formats.

MM.DDYY (format used commonly in the United States)
DDMM.YY (format use commonly in Europe)

4DD Catalog >

Expr1 4DD  value
List1 4DD  list
Matrix1 4DD  matrix

Note: You can insert this operator from the computer keyboard by
typing @>DD.

Returns the decimal equivalent of the argument expressed in degrees.
The argument is a number, list, or matrix that is interpreted by the
Angle mode setting in gradians, radians or degrees.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

4Decimal Catalog >

Expression1 4Decimal  expression

List1 4Decimal  expression

Matrix1 4Decimal  expression

Note: You can insert this operator from the computer keyboard by
typing @>Decimal.

Displays the argument in decimal form. This operator can be used
only at the end of the entry line.

34 TI-Nspire™ CAS Reference Guide

Define
Catalog >

Define Var = Expression

Define Function(Param1, Param2, ...) = Expression

Defines the variable Var or the user-defined function Function.

Parameters, such as Param1, provide placeholders for passing
arguments to the function. When calling a user-defined function, you
must supply arguments (for example, values or variables) that
correspond to the parameters. When called, the function evaluates
Expression using the supplied arguments.

Var and Function cannot be the name of a system variable or built-in
function or command.

Note: This form of Define is equivalent to executing the expression:
expression & Function(Param1,Param2).

Define Function(Param1, Param2, ...) = Func
 Block
EndFunc

Define Program(Param1, Param2, ...) = Prgm
 Block
EndPrgm

In this form, the user-defined function or program can execute a block
of multiple statements.

Block can be either a single statement or a series of statements on
separate lines. Block also can include expressions and instructions
(such as If, Then, Else, and For).

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Note: See also Define LibPriv, page 34, and Define LibPub,
page 35.

Define LibPriv
Catalog >

Define LibPriv Var = Expression

Define LibPriv Function(Param1, Param2, ...) = Expression

Define LibPriv Function(Param1, Param2, ...) = Func
 Block
EndFunc

Define LibPriv Program(Param1, Param2, ...) = Prgm
 Block
EndPrgm

Operates the same as Define, except defines a private library
variable, function, or program. Private functions and programs do not
appear in the Catalog.

Note: See also Define, page 34, and Define LibPub, page 35.

TI-Nspire™ CAS Reference Guide 35

Define LibPub
Catalog >

Define LibPub Var = Expression

Define LibPub Function(Param1, Param2, ...) = Expression

Define LibPub Function(Param1, Param2, ...) = Func
 Block
EndFunc

Define LibPub Program(Param1, Param2, ...) = Prgm
 Block
EndPrgm

Operates the same as Define, except defines a public library
variable, function, or program. Public functions and programs appear
in the Catalog after the library has been saved and refreshed.

Note: See also Define, page 34, and Define LibPriv, page 34.

deltaList() See @List(), page 67.

deltaTmpCnv() See @tmpCnv(), page 129.

DelVar
Catalog >

DelVar Var1[, Var2] [, Var3] ...

DelVar Var.
Deletes the specified variable or variable group from memory.

If one or more of the variables are locked, this command displays an
error message and deletes only the unlocked variables. See unLock,
page 135.

DelVar Var. deletes all members of the Var. variable group (such as
the statistics stat.nn results or variables created using the
LibShortcut() function). The dot (.) in this form of the DelVar
command limits it to deleting a variable group; the simple variable
Var is not affected.

delVoid()
Catalog >

delVoid(List1)  list

Returns a list that has the contents of List1 with all empty (void)
elements removed.

For more information on empty elements, see page 162.

derivative() See d(), page 150.

36 TI-Nspire™ CAS Reference Guide

deSolve()
Catalog >

deSolve(1stOr2ndOrderODE, Var, depVar)
 a general solution

Returns an equation that explicitly or implicitly specifies a general
solution to the 1st- or 2nd-order ordinary differential equation (ODE).
In the ODE:

• Use a prime symbol (press º) to denote the 1st derivative of
the dependent variable with respect to the independent variable.

• Use two prime symbols to denote the corresponding second
derivative.

The prime symbol is used for derivatives within deSolve() only. In
other cases, use d().

The general solution of a 1st-order equation contains an arbitrary
constant of the form ck, where k is an integer suffix from 1 through
255. The solution of a 2nd-order equation contains two such
constants.

Apply solve() to an implicit solution if you want to try to convert it to
one or more equivalent explicit solutions.

When comparing your results with textbook or manual solutions, be
aware that different methods introduce arbitrary constants at
different points in the calculation, which may produce different
general solutions.

deSolve(1stOrderODE and initCond, Var, depVar)
  a particular solution

Returns a particular solution that satisfies 1stOrderODE and
initCond. This is usually easier than determining a general solution,
substituting initial values, solving for the arbitrary constant, and then
substituting that value into the general solution.

initCond is an equation of the form:

depVar (initialIndependentValue) = initialDependentValue

The initialIndependentValue and initialDependentValue can be
variables such as x0 and y0 that have no stored values. Implicit
differentiation can help verify implicit solutions.

deSolve(2ndOrderODE and initCond1 and initCond2,
Var, depVar)  a particular solution

Returns a particular solution that satisfies 2nd Order ODE and has a
specified value of the dependent variable and its first derivative at
one point.

For initCond1, use the form:

depVar (initialIndependentValue) = initialDependentValue

For initCond2, use the form:

depVar (initialIndependentValue) = initial1stDerivativeValue

TI-Nspire™ CAS Reference Guide 37

deSolve(2ndOrderODE and bndCond1 and
bndCond2, Var, depVar)  a particular solution

Returns a particular solution that satisfies 2ndOrderODE and has
specified values at two different points.

det()
Catalog >

det(squareMatrix[, Tolerance])  expression

Returns the determinant of squareMatrix.

Optionally, any matrix element is treated as zero if its absolute value
is less than Tolerance. This tolerance is used only if the matrix has
floating-point entries and does not contain any symbolic variables
that have not been assigned a value. Otherwise, Tolerance is
ignored.

• If you use /· or set the Auto or Approximate

mode to Approximate, computations are done using floating-
point arithmetic.

• If Tolerance is omitted or not used, the default tolerance is
calculated as:

5EM14 ·max(dim(squareMatrix))·
rowNorm(squareMatrix)

diag()
Catalog >

diag(List)  matrix
diag(rowMatrix)  matrix
diag(columnMatrix)  matrix

Returns a matrix with the values in the argument list or matrix in its
main diagonal.

diag(squareMatrix)  rowMatrix

Returns a row matrix containing the elements from the main diagonal
of squareMatrix.

squareMatrix must be square.

dim()
Catalog >

dim(List)  integer

Returns the dimension of List.

dim(Matrix)  list

Returns the dimensions of matrix as a two-element list {rows,
columns}.

dim(String)  integer

Returns the number of characters contained in character string
String.

deSolve()
Catalog >

38 TI-Nspire™ CAS Reference Guide

Disp
Catalog >

Disp [exprOrString1] [, exprOrString2] ...

Displays the arguments in the Calculator history. The arguments are
displayed in succession, with thin spaces as separators.

Useful mainly in programs and functions to ensure the display of
intermediate calculations.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

4DMS Catalog >

Expr 4DMS
List 4DMS
Matrix 4DMS

Note: You can insert this operator from the computer keyboard by
typing @>DMS.

Interprets the argument as an angle and displays the equivalent DMS

(DDDDDD¡MM'SS.ss'') number. See ¡, ', '' on page 156 for DMS
(degree, minutes, seconds) format.

Note: 4DMS will convert from radians to degrees when used in
radian mode. If the input is followed by a degree symbol ¡ , no
conversion will occur. You can use 4DMS only at the end of an entry
line.

In Degree angle mode:

domain()
Catalog >

domain(Expr1, Var)  expression

Returns the domain of Expr1 with respect to Var.

domain() can be used to examine domains of functions. It is
restricted to real and finite domain.

This functionality has limitations due to shortcomings of computer
algebra simplification and solver algorithms.

Certain functions cannot be used as arguments for domain(),
regardless of whether they appear explicitly or within user-defined
variables and functions. In the following example, the expression
cannot be simplified because ‰() is a disallowed function.

TI-Nspire™ CAS Reference Guide 39

dominantTerm()
Catalog >

dominantTerm(Expr1, Var [, Point])  expression

dominantTerm(Expr1, Var [, Point]) | Var>Point
 expression

dominantTerm(Expr1, Var [, Point]) | Var<Point
 expression

Returns the dominant term of a power series representation of Expr1
expanded about Point. The dominant term is the one whose
magnitude grows most rapidly near Var = Point. The resulting power
of (Var N Point) can have a negative and/or fractional exponent. The
coefficient of this power can include logarithms of (Var N Point) and
other functions of Var that are dominated by all powers of (Var N
Point) having the same exponent sign.

Point defaults to 0. Point can be ˆ or Nˆ, in which cases the
dominant term will be the term having the largest exponent of Var
rather than the smallest exponent of Var.

dominantTerm(…) returns “dominantTerm(…)” if it is unable
to determine such a representation, such as for essential singularities
such as sin(1/z) at z=0, eN1/z at z=0, or ez at z = ˆ or Nˆ.

If the series or one of its derivatives has a jump discontinuity at Point,
the result is likely to contain sub-expressions of the form sign(…) or
abs(…) for a real expansion variable or (-1)floor(…angle(…)…) for a
complex expansion variable, which is one ending with “_”. If you
intend to use the dominant term only for values on one side of Point,
then append to dominantTerm(...) the appropriate one of “| Var >
Point”, “| Var < Point”, “| “Var | Point”, or “Var { Point” to
obtain a simpler result.

dominantTerm() distributes over 1st-argument lists and matrices.

dominantTerm() is useful when you want to know the simplest
possible expression that is asymptotic to another expression as
Var " Point. dominantTerm() is also useful when it isn’t obvious
what the degree of the first non-zero term of a series will be, and you
don’t want to iteratively guess either interactively or by a program
loop.

Note: See also series(), page 109.

dotP()
Catalog >

dotP(List1, List2)  expression

Returns the “dot” product of two lists.

dotP(Vector1, Vector2)  expression

Returns the “dot” product of two vectors.

Both must be row vectors, or both must be column vectors.

40 TI-Nspire™ CAS Reference Guide

E

e^() u key

e^(Expr1)  expression

Returns e raised to the Expr1 power.

Note: See also e exponent template, page 2.

Note: Pressing u to display e^(is different from pressing the

character E on the keyboard.

You can enter a complex number in rei q polar form. However, use this
form in Radian angle mode only; it causes a Domain error in Degree
or Gradian angle mode.

e^(List1)  list

Returns e raised to the power of each element in List1.

e^(squareMatrix1)  squareMatrix

Returns the matrix exponential of squareMatrix1. This is not the
same as calculating e raised to the power of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

eff()
Catalog >

eff(nominalRate,CpY)  value

Financial function that converts the nominal interest rate
nominalRate to an annual effective rate, given CpY as the number of
compounding periods per year.

nominalRate must be a real number, and CpY must be a real number
> 0.

Note: See also nom(), page 82.

eigVc()
Catalog >

eigVc(squareMatrix)  matrix

Returns a matrix containing the eigenvectors for a real or complex
squareMatrix, where each column in the result corresponds to an
eigenvalue. Note that an eigenvector is not unique; it may be scaled
by any constant factor. The eigenvectors are normalized, meaning
that if V = [x1, x2, … , xn], then:

x1
2 + x2

2 + … + xn
2 = 1

squareMatrix is first balanced with similarity transformations until
the row and column norms are as close to the same value as possible.
The squareMatrix is then reduced to upper Hessenberg form and the
eigenvectors are computed via a Schur factorization.

In Rectangular Complex Format:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

TI-Nspire™ CAS Reference Guide 41

eigVl()
Catalog >

eigVl(squareMatrix)  list

Returns a list of the eigenvalues of a real or complex squareMatrix.

squareMatrix is first balanced with similarity transformations until
the row and column norms are as close to the same value as possible.
The squareMatrix is then reduced to upper Hessenberg form and the
eigenvalues are computed from the upper Hessenberg matrix.

In Rectangular complex format mode:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

Else See If, page 57.

ElseIf
Catalog >

If BooleanExpr1 Then
Block1

ElseIf BooleanExpr2 Then
Block2
©

ElseIf BooleanExprN Then
BlockN

EndIf
 ©

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

EndFor See For, page 49.

EndFunc See Func, page 52.

EndIf See If, page 57.

EndLoop See Loop, page 73.

EndPrgm See Prgm, page 93.

EndTry See Try, page 130.

42 TI-Nspire™ CAS Reference Guide

EndWhile See While, page 136.

euler()
Catalog >

euler(Expr, Var, depVar, {Var0 VarMax}, depVar0, VarStep
[, eulerStep])  matrix

euler(SystemOfExpr, Var, ListOfDepVars, {Var0, VarMax},
ListOfDepVars0, VarStep [, eulerStep])  matrix

euler(ListOfExpr, Var, ListOfDepVars, {Var0, VarMax},
ListOfDepVars0, VarStep [, eulerStep])  matrix

Uses the Euler method to solve the system

 = Expr(Var, depVar)

with depVar(Var0)=depVar0 on the interval [Var0,VarMax]. Returns a
matrix whose first row defines the Var output values and whose
second row defines the value of the first solution component at the
corresponding Var values, and so on.

Expr is the right-hand side that defines the ordinary differential
equation (ODE).

SystemOfExpr is the system of right-hand sides that define the system
of ODEs (corresponds to order of dependent variables in
ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs
(corresponds to the order of dependent variables in ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent variables.

{Var0, VarMax} is a two-element list that tells the function to
integrate from Var0 to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

VarStep is a nonzero number such that sign(VarStep) =
sign(VarMax-Var0) and solutions are returned at Var0+i·VarStep for
all i=0,1,2,… such that Var0+i·VarStep is in [var0,VarMax] (there may
not be a solution value at VarMax).

eulerStep is a positive integer (defaults to 1) that defines the number
of euler steps between output values. The actual step size used by the
euler method is VarStepàeulerStep.

Differential equation:
y'=0.001*y*(100-y) and y(0)=10

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

Compare above result with CAS exact solution obtained using
deSolve() and seqGen():

System of equations:

with y1(0)=2 and y2(0)=5

exact()
Catalog >

exact(Expr1 [, Tolerance])  expression
exact(List1 [, Tolerance])  list
exact(Matrix1 [, Tolerance])  matrix

Uses Exact mode arithmetic to return, when possible, the rational-
number equivalent of the argument.

Tolerance specifies the tolerance for the conversion; the default is 0
(zero).

depVard
Vard

TI-Nspire™ CAS Reference Guide 43

Exit
Catalog >

Exit

Exits the current For, While, or Loop block.

Exit is not allowed outside the three looping structures (For, While,
or Loop).

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Function listing:

4exp Catalog >

Expr 4exp

Represents Expr in terms of the natural exponential e. This is a
display conversion operator. It can be used only at the end of the
entry line.

Note: You can insert this operator from the computer keyboard by
typing @>exp.

exp() u key

exp(Expr1)  expression

Returns e raised to the Expr1 power.

Note: See also e exponent template, page 2.

You can enter a complex number in rei q polar form. However, use this
form in Radian angle mode only; it causes a Domain error in Degree
or Gradian angle mode.

exp(List1)  list

Returns e raised to the power of each element in List1.

exp(squareMatrix1)  squareMatrix

Returns the matrix exponential of squareMatrix1. This is not the
same as calculating e raised to the power of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

44 TI-Nspire™ CAS Reference Guide

exp4list()
Catalog >

exp4list(Expr,Var)  list

Examines Expr for equations that are separated by the word “or,”
and returns a list containing the right-hand sides of the equations of
the form Var=Expr. This gives you an easy way to extract some
solution values embedded in the results of the solve(), cSolve(),
fMin(), and fMax() functions.

Note: exp4list() is not necessary with the zeros() and cZeros()
functions because they return a list of solution values directly.

You can insert this function from the keyboard by typing
exp@>list(...).

expand()
Catalog >

expand(Expr1 [, Var])  expression

expand(List1 [,Var])  list

expand(Matrix1 [,Var])  matrix

expand(Expr1) returns Expr1 expanded with respect to all its
variables. The expansion is polynomial expansion for polynomials and
partial fraction expansion for rational expressions.

The goal of expand() is to transform Expr1 into a sum and/or
difference of simple terms. In contrast, the goal of factor() is to
transform Expr1 into a product and/or quotient of simple factors.

expand(Expr1,Var) returns Expr1 expanded with respect to Var.
Similar powers of Var are collected. The terms and their factors are
sorted with Var as the main variable. There might be some incidental
factoring or expansion of the collected coefficients. Compared to
omitting Var, this often saves time, memory, and screen space, while
making the expression more comprehensible.

Even when there is only one variable, using Var might make the
denominator factorization used for partial fraction expansion more
complete.

Hint: For rational expressions, propFrac() is a faster but less extreme
alternative to expand().

Note: See also comDenom() for an expanded numerator over an
expanded denominator.

TI-Nspire™ CAS Reference Guide 45

expand(Expr1,[Var]) also distributes logarithms and fractional
powers regardless of Var. For increased distribution of logarithms and
fractional powers, inequality constraints might be necessary to
guarantee that some factors are nonnegative.

expand(Expr1, [Var]) also distributes absolute values, sign(), and
exponentials, regardless of Var.

Note: See also tExpand() for trigonometric angle-sum and
multiple-angle expansion.

expr()
Catalog >

expr(String)  expression

Returns the character string contained in String as an expression and
immediately executes it.

ExpReg
Catalog >

ExpReg X, Y [, [Freq] [, Category, Include]]

Computes the exponential regression y = a·(b)x on lists X and Y
with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression equation: a·(b)x

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data

expand()
Catalog >

46 TI-Nspire™ CAS Reference Guide

F

stat.r Correlation coefficient for transformed data (x, ln(y))

stat.Resid Residuals associated with the exponential model

stat.ResidTrans Residuals associated with linear fit of transformed data

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

factor()
Catalog >

factor(Expr1[, Var])  expression

factor(List1[,Var])  list

factor(Matrix1[,Var])  matrix

factor(Expr1) returns Expr1 factored with respect to all of its
variables over a common denominator.

Expr1 is factored as much as possible toward linear rational factors
without introducing new non-real subexpressions. This alternative is
appropriate if you want factorization with respect to more than one
variable.

factor(Expr1,Var) returns Expr1 factored with respect to variable
Var.

Expr1 is factored as much as possible toward real factors that are
linear in Var, even if it introduces irrational constants or
subexpressions that are irrational in other variables.

The factors and their terms are sorted with Var as the main variable.
Similar powers of Var are collected in each factor. Include Var if
factorization is needed with respect to only that variable and you are
willing to accept irrational expressions in any other variables to
increase factorization with respect to Var. There might be some
incidental factoring with respect to other variables.

For the Auto setting of the Auto or Approximate mode,
including Var permits approximation with floating-point coefficients
where irrational coefficients cannot be explicitly expressed concisely
in terms of the built-in functions. Even when there is only one
variable, including Var might yield more complete factorization.

Note: See also comDenom() for a fast way to achieve partial
factoring when factor() is not fast enough or if it exhausts memory.

Note: See also cFactor() for factoring all the way to complex
coefficients in pursuit of linear factors.

Output variable Description

TI-Nspire™ CAS Reference Guide 47

factor(rationalNumber) returns the rational number factored into
primes. For composite numbers, the computing time grows
exponentially with the number of digits in the second-largest factor.
For example, factoring a 30-digit integer could take more than a day,
and factoring a 100-digit number could take more than a century.

To stop a calculation manually,

• Windows®: Hold down the F12 key and press Enter
repeatedly.

• Macintosh®: Hold down the F5 key and press Enter
repeatedly.

• Handheld: Hold down the c key and press ·
repeatedly.

If you merely want to determine if a number is prime, use isPrime()
instead. It is much faster, particularly if rationalNumber is not prime
and if the second-largest factor has more than five digits.

FCdf() Catalog >

FCdf(lowBound,upBound,dfNumer,dfDenom)  number if
lowBound and upBound are numbers, list if lowBound and
upBound are lists

FCdf(lowBound,upBound,dfNumer,dfDenom)  number if
lowBound and upBound are numbers, list if lowBound and
upBound are lists

Computes the F distribution probability between lowBound and
upBound for the specified dfNumer (degrees of freedom) and
dfDenom.

For P(X { upBound), set lowBound = 0.

Fill
Catalog >

Fill Expr, matrixVar  matrix

Replaces each element in variable matrixVar with Expr.

matrixVar must already exist.

Fill Expr, listVar  list

Replaces each element in variable listVar with Expr.

listVar must already exist.

factor()
Catalog >

48 TI-Nspire™ CAS Reference Guide

FiveNumSummary
Catalog >

FiveNumSummary X[,[Freq][,Category,Include]]

Provides an abbreviated version of the 1-variable statistics on list X.
A summary of results is stored in the stat.results variable. (See page
120.)

X represents a list containing the data.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1.

Category is a list of numeric category codes for the corresponding X
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

An empty (void) element in any of the lists X, Freq, or Category
results in a void for the corresponding element of all those lists. For
more information on empty elements, see page 162.

Output variable Description

stat.MinX Minimum of x values.

stat.Q1X 1st Quartile of x.

stat.MedianX Median of x.

stat.Q3X 3rd Quartile of x.

stat.MaxX Maximum of x values.

floor()
Catalog >

floor(Expr1)  integer

Returns the greatest integer that is { the argument. This function is
identical to int().

The argument can be a real or a complex number.

floor(List1)  list
floor(Matrix1)  matrix

Returns a list or matrix of the floor of each element.

Note: See also ceiling() and int().

fMax()
Catalog >

fMax(Expr, Var)  Boolean expression
fMax(Expr, Var,lowBound)
fMax(Expr, Var,lowBound,upBound)

fMax(Expr, Var) | lowBound{Var{upBound

Returns a Boolean expression specifying candidate values of Var that
maximize Expr or locate its least upper bound.

TI-Nspire™ CAS Reference Guide 49

You can use the constraint (“|”) operator to restrict the solution
interval and/or specify other constraints.

For the Approximate setting of the Auto or Approximate mode,
fMax() iteratively searches for one approximate local maximum. This
is often faster, particularly if you use the “|” operator to constrain the
search to a relatively small interval that contains exactly one local
maximum.

Note: See also fMin() and max().

fMin()
Catalog >

fMin(Expr, Var)  Boolean expression

fMin(Expr, Var,lowBound)
fMin(Expr, Var,lowBound,upBound)

fMin(Expr, Var) | lowBound{Var{upBound

Returns a Boolean expression specifying candidate values of Var that
minimize Expr or locate its greatest lower bound.

You can use the constraint (“|”) operator to restrict the solution
interval and/or specify other constraints.

For the Approximate setting of the Auto or Approximate mode,
fMin() iteratively searches for one approximate local minimum. This
is often faster, particularly if you use the “|” operator to constrain the
search to a relatively small interval that contains exactly one local
minimum.

Note: See also fMax() and min().

For
Catalog >

For Var, Low, High [, Step]
 Block
EndFor

Executes the statements in Block iteratively for each value of Var,
from Low to High, in increments of Step.

Var must not be a system variable.

Step can be positive or negative. The default value is 1.

Block can be either a single statement or a series of statements
separated with the “:” character.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

fMax()
Catalog >

50 TI-Nspire™ CAS Reference Guide

format()
Catalog >

format(Expr[, formatString])  string

Returns Expr as a character string based on the format template.

Expr must simplify to a number.

formatString is a string and must be in the form: “F[n]”, “S[n]”,
“E[n]”, “G[n][c]”, where [] indicate optional portions.

F[n]: Fixed format. n is the number of digits to display after the
decimal point.

S[n]: Scientific format. n is the number of digits to display after the
decimal point.

E[n]: Engineering format. n is the number of digits after the first
significant digit. The exponent is adjusted to a multiple of three, and
the decimal point is moved to the right by zero, one, or two digits.

G[n][c]: Same as fixed format but also separates digits to the left of
the radix into groups of three. c specifies the group separator
character and defaults to a comma. If c is a period, the radix will be
shown as a comma.

[Rc]: Any of the above specifiers may be suffixed with the Rc radix
flag, where c is a single character that specifies what to substitute for
the radix point.

fPart()
Catalog >

fPart(Expr1)  expression
fPart(List1)  list
fPart(Matrix1)  matrix

Returns the fractional part of the argument.

For a list or matrix, returns the fractional parts of the elements.

The argument can be a real or a complex number.

FPdf() Catalog >

FPdf(XVal,dfNumer,dfDenom)  number if XVal is a number,
list if XVal is a list

Computes the F distribution probability at XVal for the specified
dfNumer (degrees of freedom) and dfDenom.

freqTable4list() Catalog >

freqTable4list(List1,freqIntegerList)  list

Returns a list containing the elements from List1 expanded according
to the frequencies in freqIntegerList. This function can be used for
building a frequency table for the Data & Statistics application.

List1 can be any valid list.

freqIntegerList must have the same dimension as List1 and must
contain non-negative integer elements only. Each element specifies
the number of times the corresponding List1 element will be
repeated in the result list. A value of zero excludes the corresponding
List1 element.

Note: You can insert this function from the computer keyboard by
typing freqTable@>list(...).

Empty (void) elements are ignored. For more information on empty
elements, see page 162.

TI-Nspire™ CAS Reference Guide 51

frequency()
Catalog >

frequency(List1,binsList)  list

Returns a list containing counts of the elements in List1. The counts
are based on ranges (bins) that you define in binsList.

If binsList is {b(1), b(2), …, b(n)}, the specified ranges are {?{b(1),
b(1)<?{b(2),…,b(n-1)<?{b(n), b(n)>?}. The resulting list is one
element longer than binsList.

Each element of the result corresponds to the number of elements
from List1 that are in the range of that bin. Expressed in terms of the
countIf() function, the result is { countIf(list, ?{b(1)), countIf(list,
b(1)<?{b(2)), …, countIf(list, b(n-1)<?{b(n)), countIf(list, b(n)>?)}.

Elements of List1 that cannot be “placed in a bin” are ignored.
Empty (void) elements are also ignored. For more information on
empty elements, see page 162.

Within the Lists & Spreadsheet application, you can use a range of
cells in place of both arguments.

Note: See also countIf(), page 26.

Explanation of result:
2 elements from Datalist are {2.5
4 elements from Datalist are >2.5 and {4.5
3 elements from Datalist are >4.5
The element “hello” is a string and cannot be placed in any of
the defined bins.

FTest_2Samp Catalog >

FTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth]]]

FTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth]]]

(Data list input)

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

FTest_2Samp sx1,n1,sx2,n2[,Hypoth]

(Summary stats input)

Performs a two-sample F test. A summary of results is stored in the
stat.results variable. (See page 120.)

For Ha: s1 > s2, set Hypoth>0
For Ha: s1 ƒ s2 (default), set Hypoth =0
For Ha: s1 < s2, set Hypoth<0

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.F Calculated F statistic for the data sequence

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.dfNumer numerator degrees of freedom = n1-1

stat.dfDenom denominator degrees of freedom = n2-1

stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List 1 and List 2

stat.x1_bar
stat.x2_bar

Sample means of the data sequences in List 1 and List 2

stat.n1, stat.n2 Size of the samples

52 TI-Nspire™ CAS Reference Guide

G

Func
Catalog >

Func
Block

EndFunc

Template for creating a user-defined function.

Block can be a single statement, a series of statements separated
with the “:” character, or a series of statements on separate lines.
The function can use the Return instruction to return a specific
result.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Define a piecewise function:

Result of graphing g(x)

gcd()
Catalog >

gcd(Number1, Number2)  expression

Returns the greatest common divisor of the two arguments. The gcd
of two fractions is the gcd of their numerators divided by the lcm of
their denominators.

In Auto or Approximate mode, the gcd of fractional floating-point
numbers is 1.0.

gcd(List1, List2)  list

Returns the greatest common divisors of the corresponding elements
in List1 and List2.

gcd(Matrix1, Matrix2)  matrix

Returns the greatest common divisors of the corresponding elements
in Matrix1 and Matrix2.

geomCdf()
Catalog >

geomCdf(p,lowBound,upBound)  number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

geomCdf(p,upBound) for P(1{X{upBound)  number if
upBound is a number, list if upBound is a list

Computes a cumulative geometric probability from lowBound to
upBound with the specified probability of success p.

For P(X { upBound), set lowBound = 1.

TI-Nspire™ CAS Reference Guide 53

geomPdf()
Catalog >

geomPdf(p,XVal)  number if XVal is a number, list if XVal
is a list

Computes a probability at XVal, the number of the trial on which the
first success occurs, for the discrete geometric distribution with the
specified probability of success p.

getDenom()
Catalog >

getDenom(Expr1)  expression

Transforms the argument into an expression having a reduced
common denominator, and then returns its denominator.

getLangInfo()
Catalog >

getLangInfo()  string

Returns a string that corresponds to the short name of the currently
active language. You can, for example, use it in a program or function
to determine the current language.

English = “en”
Danish = “da”
German = “de”
Finnish = “fi”
French = “fr”
Italian = “it”
Dutch = “nl”
Belgian Dutch = “nl_BE”
Norwegian = “no”
Portuguese = “pt”
Spanish = “es”
Swedish = “sv”

getLockInfo()
Catalog >

getLockInfo(Var)  value

Returns the current locked/unlocked state of variable Var.

value =0: Var is unlocked or does not exist.
value =1: Var is locked and cannot be modified or deleted.

See Lock, page 70, and unLock, page 135.

54 TI-Nspire™ CAS Reference Guide

getMode()
Catalog >

getMode(ModeNameInteger)  value

getMode(0)  list

getMode(ModeNameInteger) returns a value representing the
current setting of the ModeNameInteger mode.

getMode(0) returns a list containing number pairs. Each pair
consists of a mode integer and a setting integer.

For a listing of the modes and their settings, refer to the table below.

If you save the settings with getMode(0) & var, you can use
setMode(var) in a function or program to temporarily restore the
settings within the execution of the function or program only. See
setMode(), page 110.

Mode
Name

Mode
Integer Setting Integers

Display Digits 1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6, 8=Float7,
9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12, 14=Fix0, 15=Fix1,
16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7, 22=Fix8, 23=Fix9,
24=Fix10, 25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential Format 3 1=Normal, 2=Scientific, 3=Engineering

Real or Complex 4 1=Real, 2=Rectangular, 3=Polar

Auto or Approx. 5 1=Auto, 2=Approximate, 3=Exact

Vector Format 6 1=Rectangular, 2=Cylindrical, 3=Spherical

Base 7 1=Decimal, 2=Hex, 3=Binary

Unit system 8 1=SI, 2=Eng/US

getNum()
Catalog >

getNum(Expr1)  expression

Transforms the argument into an expression having a reduced
common denominator, and then returns its numerator.

TI-Nspire™ CAS Reference Guide 55

getType()
Catalog >

getType(var)  string

Returns a string that indicates the data type of variable var.

If var has not been defined, returns the string "NONE".

getVarInfo()
Catalog >

getVarInfo()  matrix or string

getVarInfo(LibNameString)  matrix or string

getVarInfo() returns a matrix of information (variable name, type,
library accessibility, and locked/unlocked state) for all variables and
library objects defined in the current problem.

If no variables are defined, getVarInfo() returns the string
"NONE".

getVarInfo(LibNameString) returns a matrix of information for
all library objects defined in library LibNameString. LibNameString
must be a string (text enclosed in quotation marks) or a string
variable.

If the library LibNameString does not exist, an error occurs.

Note the example, in which the result of getVarInfo() is assigned to
variable vs. Attempting to display row 2 or row 3 of vs returns an
“Invalid list or matrix” error because at least one of elements in those
rows (variable b, for example) revaluates to a matrix.

This error could also occur when using Ans to reevaluate a
getVarInfo() result.

The system gives the above error because the current version of the
software does not support a generalized matrix structure where an
element of a matrix can be either a matrix or a list.

56 TI-Nspire™ CAS Reference Guide

I

Goto
Catalog >

Goto labelName

Transfers control to the label labelName.

labelName must be defined in the same function using a Lbl
instruction.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

4Grad Catalog >

Expr1 4 Grad  expression

Converts Expr1 to gradian angle measure.

Note: You can insert this operator from the computer keyboard by
typing @>Grad.

In Degree angle mode:

In Radian angle mode:

identity()
Catalog >

identity(Integer)  matrix

Returns the identity matrix with a dimension of Integer.

Integer must be a positive integer.

TI-Nspire™ CAS Reference Guide 57

If
Catalog >

If BooleanExpr
Statement

If BooleanExpr Then
Block

EndIf

If BooleanExpr evaluates to true, executes the single statement
Statement or the block of statements Block before continuing
execution.

If BooleanExpr evaluates to false, continues execution without
executing the statement or block of statements.

Block can be either a single statement or a sequence of statements
separated with the “:” character.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

If BooleanExpr Then
 Block1
Else
 Block2
EndIf

If BooleanExpr evaluates to true, executes Block1 and then skips
Block2.

If BooleanExpr evaluates to false, skips Block1 but executes
Block2.

Block1 and Block2 can be a single statement.

If BooleanExpr1 Then
Block1

ElseIf BooleanExpr2 Then
Block2

 ©
ElseIf BooleanExprN Then

BlockN
EndIf

Allows for branching. If BooleanExpr1 evaluates to true, executes
Block1. If BooleanExpr1 evaluates to false, evaluates
BooleanExpr2, and so on.

58 TI-Nspire™ CAS Reference Guide

ifFn()
Catalog >

ifFn(BooleanExpr,Value_If_true [,Value_If_false
[,Value_If_unknown]])  expression, list, or matrix

Evaluates the boolean expression BooleanExpr (or each element
from BooleanExpr) and produces a result based on the following
rules:

• BooleanExpr can test a single value, a list, or a matrix.
• If an element of BooleanExpr evaluates to true, returns the

corresponding element from Value_If_true.
• If an element of BooleanExpr evaluates to false, returns the

corresponding element from Value_If_false. If you omit
Value_If_false, returns undef.

• If an element of BooleanExpr is neither true nor false, returns
the corresponding element Value_If_unknown. If you omit
Value_If_unknown, returns undef.

• If the second, third, or fourth argument of the ifFn() function is a
single expression, the Boolean test is applied to every position in
BooleanExpr.

Note: If the simplified BooleanExpr statement involves a list or
matrix, all other list or matrix arguments must have the same
dimension(s), and the result will have the same dimension(s).

Test value of 1 is less than 2.5, so its corresponding
Value_If_True element of 5 is copied to the result list.

Test value of 2 is less than 2.5, so its corresponding
Value_If_True element of 6 is copied to the result list.

Test value of 3 is not less than 2.5, so its corresponding
Value_If_False element of 10 is copied to the result list.

Value_If_true is a single value and corresponds to any selected
position.

Value_If_false is not specified. Undef is used.

One element selected from Value_If_true. One element
selected from Value_If_unknown.

imag()
Catalog >

imag(Expr1)  expression

Returns the imaginary part of the argument.

Note: All undefined variables are treated as real variables. See also
real(), page 99

imag(List1)  list

Returns a list of the imaginary parts of the elements.

imag(Matrix1)  matrix

Returns a matrix of the imaginary parts of the elements.

impDif()
Catalog >

impDif(Equation, Var, dependVar[,Ord])
 expression

where the order Ord defaults to 1.

Computes the implicit derivative for equations in which one variable
is defined implicitly in terms of another.

Indirection See #(), page 155.

TI-Nspire™ CAS Reference Guide 59

inString()
Catalog >

inString(srcString, subString[, Start])  integer

Returns the character position in string srcString at which the first
occurrence of string subString begins.

Start, if included, specifies the character position within srcString
where the search begins. Default = 1 (the first character of srcString).

If srcString does not contain subString or Start is > the length of
srcString, returns zero.

int()
Catalog >

int(Expr)  integer
int(List1)  list
int(Matrix1)  matrix

Returns the greatest integer that is less than or equal to the
argument. This function is identical to floor().

The argument can be a real or a complex number.

For a list or matrix, returns the greatest integer of each of the
elements.

intDiv()
Catalog >

intDiv(Number1, Number2)  integer
intDiv(List1, List2)  list
intDiv(Matrix1, Matrix2)  matrix

Returns the signed integer part of (Number1 ÷ Number2).

For lists and matrices, returns the signed integer part of
(argument 1 ÷ argument 2) for each element pair.

integral See ‰(), page 151.

60 TI-Nspire™ CAS Reference Guide

interpolate()
Catalog >

interpolate(xValue, xList, yList, yPrimeList)  list

This function does the following:

Given xList, yList=f(xList), and yPrimeList=f'(xList) for some
unknown function f, a cubic interpolant is used to approximate the
function f at xValue. It is assumed that xList is a list of monotonically
increasing or decreasing numbers, but this function may return a
value even when it is not. This function walks through xList looking
for an interval [xList[i], xList[i+1]] that contains xValue. If it finds such
an interval, it returns an interpolated value for f(xValue); otherwise, it
returns undef.

xList, yList, and yPrimeList must be of equal dimension | 2 and
contain expressions that simplify to numbers.

xValue can be an undefined variable, a number, or a list of numbers.

Differential equation:
y'=-3·y+6·t+5 and y(0)=5

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

Use the interpolate() function to calculate the function values for
the xvaluelist:

invc2() Catalog >

invc2(Area,df)
invChi2(Area,df)

Computes the Inverse cumulative c2 (chi-square) probability function
specified by degree of freedom, df for a given Area under the curve.

invF() Catalog >

invF(Area,dfNumer,dfDenom)

invF(Area,dfNumer,dfDenom)

computes the Inverse cumulative F distribution function specified by
dfNumer and dfDenom for a given Area under the curve.

invNorm()
Catalog >

invNorm(Area[,m[,s]])

Computes the inverse cumulative normal distribution function for a
given Area under the normal distribution curve specified by m and s.

invt()
Catalog >

invt(Area,df)

Computes the inverse cumulative student-t probability function
specified by degree of freedom, df for a given Area under the curve.

TI-Nspire™ CAS Reference Guide 61

iPart()
Catalog >

iPart(Number)  integer
iPart(List1)  list
iPart(Matrix1)  matrix

Returns the integer part of the argument.

For lists and matrices, returns the integer part of each element.

The argument can be a real or a complex number.

irr()
Catalog >

irr(CF0,CFList [,CFFreq])  value

Financial function that calculates internal rate of return of an
investment.

CF0 is the initial cash flow at time 0; it must be a real number.

CFList is a list of cash flow amounts after the initial cash flow CF0.

CFFreq is an optional list in which each element specifies the
frequency of occurrence for a grouped (consecutive) cash flow
amount, which is the corresponding element of CFList. The default is
1; if you enter values, they must be positive integers < 10,000.

Note: See also mirr(), page 77.

isPrime()
Catalog >

isPrime(Number)  Boolean constant expression

Returns true or false to indicate if number is a whole number | 2 that
is evenly divisible only by itself and 1.

If Number exceeds about 306 digits and has no factors {1021,
isPrime(Number) displays an error message.

If you merely want to determine if Number is prime, use isPrime()
instead of factor(). It is much faster, particularly if Number is not
prime and has a second-largest factor that exceeds about five digits.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Function to find the next prime after a specified number:

isVoid()
Catalog >

isVoid(Var)  Boolean constant expression
isVoid(Expr)  Boolean constant expression
isVoid(List)  list of Boolean constant expressions

Returns true or false to indicate if the argument is a void data type.

For more information on void elements, see page 162.

62 TI-Nspire™ CAS Reference Guide

L

Lbl
Catalog >

Lbl labelName

Defines a label with the name labelName within a function.

You can use a Goto labelName instruction to transfer control to the
instruction immediately following the label.

labelName must meet the same naming requirements as a variable
name.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

lcm()
Catalog >

lcm(Number1, Number2)  expression
lcm(List1, List2)  list
lcm(Matrix1, Matrix2)  matrix

Returns the least common multiple of the two arguments. The lcm of
two fractions is the lcm of their numerators divided by the gcd of
their denominators. The lcm of fractional floating-point numbers is
their product.

For two lists or matrices, returns the least common multiples of the
corresponding elements.

left()
Catalog >

left(sourceString[, Num])  string

Returns the leftmost Num characters contained in character string
sourceString.

If you omit Num, returns all of sourceString.

left(List1[, Num])  list

Returns the leftmost Num elements contained in List1.

If you omit Num, returns all of List1.

left(Comparison)  expression

Returns the left-hand side of an equation or inequality.

TI-Nspire™ CAS Reference Guide 63

libShortcut()
Catalog >

libShortcut(LibNameString, ShortcutNameString
[, LibPrivFlag])  list of variables

Creates a variable group in the current problem that contains
references to all the objects in the specified library document
libNameString. Also adds the group members to the Variables menu.
You can then refer to each object using its ShortcutNameString.

Set LibPrivFlag=0 to exclude private library objects (default)
Set LibPrivFlag=1 to include private library objects

To copy a variable group, see CopyVar on page 21.
To delete a variable group, see DelVar on page 35.

This example assumes a properly stored and refreshed library
document named linalg2 that contains objects defined as
clearmat, gauss1, and gauss2.

limit() or lim()
Catalog >

limit(Expr1, Var, Point [,Direction])  expression
limit(List1, Var, Point [, Direction])  list
limit(Matrix1, Var, Point [, Direction])  matrix

Returns the limit requested.

Note: See also Limit template, page 6.

Direction: negative=from left, positive=from right, otherwise=both.
(If omitted, Direction defaults to both.)

Limits at positive ˆ and at negative ˆ are always converted to one-
sided limits from the finite side.

Depending on the circumstances, limit() returns itself or undef when
it cannot determine a unique limit. This does not necessarily mean
that a unique limit does not exist. undef means that the result is
either an unknown number with finite or infinite magnitude, or it is
the entire set of such numbers.

limit() uses methods such as L’Hopital’s rule, so there are unique
limits that it cannot determine. If Expr1 contains undefined variables
other than Var, you might have to constrain them to obtain a more
concise result.

Limits can be very sensitive to rounding error. When possible, avoid
the Approximate setting of the Auto or Approximate mode and
approximate numbers when computing limits. Otherwise, limits that
should be zero or have infinite magnitude probably will not, and
limits that should have finite non-zero magnitude might not.

64 TI-Nspire™ CAS Reference Guide

LinRegBx
Catalog >

LinRegBx X,Y[,[Freq][,Category,Include]]
Computes the linear regression y = a+b·x on lists X and Y with
frequency Freq. A summary of results is stored in the stat.results
variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression Equation: a+b·x

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LinRegMx
Catalog >

LinRegMx X,Y[,[Freq][,Category,Include]]

Computes the linear regression y = m·x+b on lists X and Y with
frequency Freq. A summary of results is stored in the stat.results
variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

TI-Nspire™ CAS Reference Guide 65

Output variable Description

stat.RegEqn Regression Equation: y = m·x+b

stat.m, stat.b Regression coefficients

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LinRegtIntervals
Catalog >

LinRegtIntervals X,Y[,F[,0[,CLev]]]

For Slope. Computes a level C confidence interval for the slope.

LinRegtIntervals X,Y[,F[,1,Xval[,CLev]]]

For Response. Computes a predicted y-value, a level C prediction
interval for a single observation, and a level C confidence interval for
the mean response.

A summary of results is stored in the stat.results variable. (See page
120.)

All the lists must have equal dimension.

X and Y are lists of independent and dependent variables.

F is an optional list of frequency values. Each element in F specifies
the frequency of occurrence for each corresponding X and Y data
point. The default value is 1. All elements must be integers | 0.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression Equation: a+b·x

stat.a, stat.b Regression coefficients

stat.df Degrees of freedom

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

66 TI-Nspire™ CAS Reference Guide

For Slope type only

For Response type only

Output variable Description

[stat.CLower,
stat.CUpper]

Confidence interval for the slope

stat.ME Confidence interval margin of error

stat.SESlope Standard error of slope

stat.s Standard error about the line

Output variable Description

[stat.CLower,
stat.CUpper]

Confidence interval for the mean response

stat.ME Confidence interval margin of error

stat.SE Standard error of mean response

[stat.LowerPred,
stat.UpperPred]

Prediction interval for a single observation

stat.MEPred Prediction interval margin of error

stat.SEPred Standard error for prediction

stat.y a + b·XVal

LinRegtTest
Catalog >

LinRegtTest X,Y[,Freq[,Hypoth]]

Computes a linear regression on the X and Y lists and a t test on the
value of slope b and the correlation coefficient r for the equation
y=a+bx. It tests the null hypothesis H0:b=0 (equivalently, r=0)
against one of three alternative hypotheses.

All the lists must have equal dimension.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Hypoth is an optional value specifying one of three alternative
hypotheses against which the null hypothesis (H0:b=r=0) will be
tested.

For Ha: bƒ0 and rƒ0 (default), set Hypoth=0
For Ha: b<0 and r<0, set Hypoth<0
For Ha: b>0 and r>0, set Hypoth>0

A summary of results is stored in the stat.results variable. (See page
120.)

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

TI-Nspire™ CAS Reference Guide 67

Output variable Description

stat.RegEqn Regression equation: a + b·x

stat.t t-Statistic for significance test

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom

stat.a, stat.b Regression coefficients

stat.s Standard error about the line

stat.SESlope Standard error of slope

stat.r2 Coefficient of determination

stat.r Correlation coefficient

stat.Resid Residuals from the regression

linSolve()
Catalog >

linSolve(SystemOfLinearEqns, Var1, Var2, ...)  list
linSolve(LinearEqn1 and LinearEqn2 and ...,

Var1, Var2, ...)  list

linSolve({LinearEqn1, LinearEqn2, ...}, Var1, Var2, ...)
 list

linSolve(SystemOfLinearEqns, {Var1, Var2, ...})
 list

linSolve(LinearEqn1 and LinearEqn2 and ...,
{Var1, Var2, ...})  list

linSolve({LinearEqn1, LinearEgn2, ...}, {Var1, Var2, ...})
 list

Returns a list of solutions for the variables Var1, Var2, ...

The first argument must evaluate to a system of linear equations or a
single linear equation. Otherwise, an argument error occurs.

For example, evaluating linSolve(x=1 and x=2,x) produces an
“Argument Error” result.

@List() Catalog >

@List(List1)  list

Note: You can insert this function from the keyboard by typing
deltaList(...).

Returns a list containing the differences between consecutive
elements in List1. Each element of List1 is subtracted from the next
element of List1. The resulting list is always one element shorter than
the original List1.

68 TI-Nspire™ CAS Reference Guide

list4mat() Catalog >

list4mat(List [, elementsPerRow])  matrix

Returns a matrix filled row-by-row with the elements from List.

elementsPerRow, if included, specifies the number of elements per
row. Default is the number of elements in List (one row).

If List does not fill the resulting matrix, zeros are added.

Note: You can insert this function from the computer keyboard by
typing list@>mat(...).

4ln Catalog >

Expr 4ln  expression

Causes the input Expr to be converted to an expression containing
only natural logs (ln).

Note: You can insert this operator from the computer keyboard by
typing @>ln.

ln() /u keys

ln(Expr1)  expression
ln(List1)  list

Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the elements.
If complex format mode is Real:

If complex format mode is Rectangular:

ln(squareMatrix1)  squareMatrix

Returns the matrix natural logarithm of squareMatrix1. This is not
the same as calculating the natural logarithm of each element. For
information about the calculation method, refer to cos() on.

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode and Rectangular complex format:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

TI-Nspire™ CAS Reference Guide 69

LnReg
Catalog >

LnReg X, Y[, [Freq] [, Category, Include]]

Computes the logarithmic regression y = a+b·ln(x) on lists X and Y
with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression equation: a+b·ln(x)

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data

stat.r Correlation coefficient for transformed data (ln(x), y)

stat.Resid Residuals associated with the logarithmic model

stat.ResidTrans Residuals associated with linear fit of transformed data

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

70 TI-Nspire™ CAS Reference Guide

Local
Catalog >

Local Var1[, Var2] [, Var3] ...

Declares the specified vars as local variables. Those variables exist
only during evaluation of a function and are deleted when the
function finishes execution.

Note: Local variables save memory because they only exist
temporarily. Also, they do not disturb any existing global variable
values. Local variables must be used for For loops and for temporarily
saving values in a multi-line function since modifications on global
variables are not allowed in a function.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Lock
Catalog >

Lock Var1[, Var2] [, Var3] ...
Lock Var.

Locks the specified variables or variable group. Locked variables
cannot be modified or deleted.

You cannot lock or unlock the system variable Ans, and you cannot
lock the system variable groups stat. or tvm.

Note: The Lock command clears the Undo/Redo history when
applied to unlocked variables.

See unLock, page 135, and getLockInfo(), page 53.

TI-Nspire™ CAS Reference Guide 71

log() /s keys

log(Expr1[,Expr2])  expression
log(List1[,Expr2])  list

Returns the base-Expr2 logarithm of the first argument.

Note: See also Log template, page 2.

For a list, returns the base-Expr2 logarithm of the elements.

If the second argument is omitted, 10 is used as the base.

If complex format mode is Real:

If complex format mode is Rectangular:

log(squareMatrix1[,Expr])  squareMatrix

Returns the matrix base-Expr logarithm of squareMatrix1. This is
not the same as calculating the base-Expr logarithm of each element.
For information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

If the base argument is omitted, 10 is used as base.

In Radian angle mode and Rectangular complex format:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

4logbase Catalog >

Expr 4logbase(Expr1)  expression

Causes the input Expression to be simplified to an expression using
base Expr1.

Note: You can insert this operator from the computer keyboard by
typing @>logbase(...).

72 TI-Nspire™ CAS Reference Guide

Logistic
Catalog >

Logistic X, Y[, [Freq] [, Category, Include]]

Computes the logistic regression y = (c/(1+a·e-bx)) on lists X and Y
with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression equation: c/(1+a·e-bx)

stat.a, stat.b, stat.c Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

LogisticD
Catalog >

LogisticD X, Y [, [Iterations] , [Freq] [, Category, Include]]

Computes the logistic regression y = (c/(1+a·e-bx)+d) on lists X and
Y with frequency Freq, using a specified number of Iterations. A
summary of results is stored in the stat.results variable. (See page
120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

TI-Nspire™ CAS Reference Guide 73

Output variable Description

stat.RegEqn Regression equation: c/(1+a·e-bx)+d)

stat.a, stat.b, stat.c,
stat.d

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

Loop
Catalog >

Loop
Block

EndLoop

Repeatedly executes the statements in Block. Note that the loop will
be executed endlessly, unless a Goto or Exit instruction is executed
within Block.

Block is a sequence of statements separated with the “:” character.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

74 TI-Nspire™ CAS Reference Guide

M

LU
Catalog >

LU Matrix, lMatrix, uMatrix, pMatrix[,Tol]

Calculates the Doolittle LU (lower-upper) decomposition of a real or
complex matrix. The lower triangular matrix is stored in lMatrix, the
upper triangular matrix in uMatrix, and the permutation matrix
(which describes the row swaps done during the calculation) in
pMatrix.

lMatrix · uMatrix = pMatrix · matrix

Optionally, any matrix element is treated as zero if its absolute value
is less than Tol. This tolerance is used only if the matrix has floating-
point entries and does not contain any symbolic variables that have
not been assigned a value. Otherwise, Tol is ignored.

• If you use /· or set the Auto or Approximate

mode to Approximate, computations are done using floating-
point arithmetic.

• If Tol is omitted or not used, the default tolerance is calculated
as:
5EM14 ·max(dim(Matrix)) ·rowNorm(Matrix)

The LU factorization algorithm uses partial pivoting with row
interchanges.

mat4list() Catalog >

mat4list(Matrix)  list

Returns a list filled with the elements in Matrix. The elements are
copied from Matrix row by row.

Note: You can insert this function from the computer keyboard by
typing mat@>list(...).

TI-Nspire™ CAS Reference Guide 75

max()
Catalog >

max(Expr1, Expr2)  expression
max(List1, List2)  list
max(Matrix1, Matrix2)  matrix

Returns the maximum of the two arguments. If the arguments are
two lists or matrices, returns a list or matrix containing the maximum
value of each pair of corresponding elements.

max(List)  expression

Returns the maximum element in list.

max(Matrix1)  matrix

Returns a row vector containing the maximum element of each
column in Matrix1.

Empty (void) elements are ignored. For more information on empty
elements, see page 162.

Note: See also fMax() and min().

mean()
Catalog >

mean(List[, freqList])  expression

Returns the mean of the elements in List.

Each freqList element counts the number of consecutive occurrences
of the corresponding element in List.

mean(Matrix1[, freqMatrix])  matrix

Returns a row vector of the means of all the columns in Matrix1.
Each freqMatrix element counts the number of consecutive
occurrences of the corresponding element in Matrix1.

Empty (void) elements are ignored. For more information on empty
elements, see page 162.

In Rectangular vector format:

median()
Catalog >

median(List[, freqList])  expression

Returns the median of the elements in List.

Each freqList element counts the number of consecutive occurrences
of the corresponding element in List.

76 TI-Nspire™ CAS Reference Guide

median(Matrix1[, freqMatrix])  matrix

Returns a row vector containing the medians of the columns in
Matrix1.

Each freqMatrix element counts the number of consecutive
occurrences of the corresponding element in Matrix1.

Notes:

• All entries in the list or matrix must simplify to numbers.
• Empty (void) elements in the list or matrix are ignored. For more

information on empty elements, see page 162.

MedMed
Catalog >

MedMed X,Y [, Freq] [, Category, Include]]

Computes the median-median line y = (m·x+b) on lists X and Y
with frequency Freq. A summary of results is stored in the
stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Median-median line equation: m·x+b

stat.m, stat.b Model coefficients

stat.Resid Residuals from the median-median line

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

mid()
Catalog >

mid(sourceString, Start[, Count])  string

Returns Count characters from character string sourceString,
beginning with character number Start.

If Count is omitted or is greater than the dimension of sourceString,
returns all characters from sourceString, beginning with character
number Start.

Count must be | 0. If Count = 0, returns an empty string.

median()
Catalog >

TI-Nspire™ CAS Reference Guide 77

mid(sourceList, Start [, Count])  list

Returns Count elements from sourceList, beginning with element
number Start.

If Count is omitted or is greater than the dimension of sourceList,
returns all elements from sourceList, beginning with element number
Start.

Count must be | 0. If Count = 0, returns an empty list.

mid(sourceStringList, Start[, Count])  list

Returns Count strings from the list of strings sourceStringList,
beginning with element number Start.

min()
Catalog >

min(Expr1, Expr2)  expression
min(List1, List2)  list
min(Matrix1, Matrix2)  matrix

Returns the minimum of the two arguments. If the arguments are two
lists or matrices, returns a list or matrix containing the minimum
value of each pair of corresponding elements.

min(List)  expression

Returns the minimum element of List.

min(Matrix1)  matrix

Returns a row vector containing the minimum element of each
column in Matrix1.

Note: See also fMin() and max().

mirr()
Catalog >

mirr(financeRate,reinvestRate,CF0,CFList[,CFFreq])

Financial function that returns the modified internal rate of return of
an investment.

financeRate is the interest rate that you pay on the cash flow
amounts.

reinvestRate is the interest rate at which the cash flows are
reinvested.

CF0 is the initial cash flow at time 0; it must be a real number.

CFList is a list of cash flow amounts after the initial cash flow CF0.

CFFreq is an optional list in which each element specifies the
frequency of occurrence for a grouped (consecutive) cash flow
amount, which is the corresponding element of CFList. The default is
1; if you enter values, they must be positive integers < 10,000.

Note: See also irr(), page 61.

mid()
Catalog >

78 TI-Nspire™ CAS Reference Guide

mod()
Catalog >

mod(Expr1, Expr2)  expression
mod(List1, List2)  list
mod(Matrix1, Matrix2)  matrix

Returns the first argument modulo the second argument as defined
by the identities:

mod(x,0) = x
mod(x,y) = x - y floor(x/y)

When the second argument is non-zero, the result is periodic in that
argument. The result is either zero or has the same sign as the second
argument.

If the arguments are two lists or two matrices, returns a list or matrix
containing the modulo of each pair of corresponding elements.

Note: See also remain(), page 100

mRow()
Catalog >

mRow(Expr, Matrix1, Index)  matrix

Returns a copy of Matrix1 with each element in row Index of
Matrix1 multiplied by Expr.

mRowAdd()
Catalog >

mRowAdd(Expr, Matrix1, Index1, Index2)  matrix

Returns a copy of Matrix1 with each element in row Index2 of
Matrix1 replaced with:

Expr · row Index1 + row Index2

MultReg
Catalog >

MultReg Y, X1[,X2[,X3,…[,X10]]]
Calculates multiple linear regression of list Y on lists X1, X2, …, X10.
A summary of results is stored in the stat.results variable. (See page
120.)

All the lists must have equal dimension.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression Equation: b0+b1·x1+b2·x2+ ...

stat.b0, stat.b1, ... Regression coefficients

stat.R2 Coefficient of multiple determination

stat.yList yList = b0+b1·x1+ ...

stat.Resid Residuals from the regression

TI-Nspire™ CAS Reference Guide 79

Outputs

MultRegIntervals
Catalog >

MultRegIntervals Y, X1[,X2[,X3,…[,X10]]],XValList[,CLevel]

Computes a predicted y-value, a level C prediction interval for a single
observation, and a level C confidence interval for the mean response.

A summary of results is stored in the stat.results variable. (See page
120.)

All the lists must have equal dimension.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression Equation: b0+b1·x1+b2·x2+ ...

stat.y A point estimate: y = b0 + b1 · xl + ... for XValList

stat.dfError Error degrees of freedom

stat.CLower, stat.CUpper Confidence interval for a mean response

stat.ME Confidence interval margin of error

stat.SE Standard error of mean response

stat.LowerPred,
stat.UpperrPred

Prediction interval for a single observation

stat.MEPred Prediction interval margin of error

stat.SEPred Standard error for prediction

stat.bList List of regression coefficients, {b0,b1,b2,...}

stat.Resid Residuals from the regression

MultRegTests
Catalog >

MultRegTests Y, X1[,X2[,X3,…[,X10]]]

Multiple linear regression test computes a multiple linear regression
on the given data and provides the global F test statistic and t test
statistics for the coefficients.

A summary of results is stored in the stat.results variable. (See page
120.)

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression Equation: b0+b1·x1+b2·x2+ ...

stat.F Global F test statistic

stat.PVal P-value associated with global F statistic

stat.R2 Coefficient of multiple determination

80 TI-Nspire™ CAS Reference Guide

N

stat.AdjR2 Adjusted coefficient of multiple determination

stat.s Standard deviation of the error

stat.DW Durbin-Watson statistic; used to determine whether first-order auto correlation is present in the model

stat.dfReg Regression degrees of freedom

stat.SSReg Regression sum of squares

stat.MSReg Regression mean square

stat.dfError Error degrees of freedom

stat.SSError Error sum of squares

stat.MSError Error mean square

stat.bList {b0,b1,...} List of coefficients

stat.tList List of t statistics, one for each coefficient in the bList

stat.PList List P-values for each t statistic

stat.SEList List of standard errors for coefficients in bList

stat.yList yList = b0+b1·x1+ . . .

stat.Resid Residuals from the regression

stat.sResid Standardized residuals; obtained by dividing a residual by its standard deviation

stat.CookDist Cook’s distance; measure of the influence of an observation based on the residual and leverage

stat.Leverage Measure of how far the values of the independent variable are from their mean values

nand /= keys

BooleanExpr1 nand BooleanExpr2 returns Boolean expression
BooleanList1 nand BooleanList2 returns Boolean list
BooleanMatrix1 nand BooleanMatrix2 returns Boolean matrix

Returns the negation of a logical and operation on the two
arguments. Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Integer1 nand Integer2  integer

Compares two real integers bit-by-bit using a nand operation.
Internally, both integers are converted to signed, 64-bit binary
numbers. When corresponding bits are compared, the result is 1 if
both bits are 1; otherwise, the result is 0. The returned value
represents the bit results, and is displayed according to the Base
mode.

You can enter the integers in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as decimal (base 10).

Output variable Description

TI-Nspire™ CAS Reference Guide 81

nCr()
Catalog >

nCr(Expr1, Expr2)  expression

For integer Expr1 and Expr2 with Expr1 | Expr2 | 0, nCr() is the
number of combinations of Expr1 things taken Expr2 at a time. (This
is also known as a binomial coefficient.) Both arguments can be
integers or symbolic expressions.

nCr(Expr, 0)  1

nCr(Expr, negInteger)  0

nCr(Expr, posInteger)  Expr·(ExprN1)...

(ExprNposInteger+1)/ posInteger!

nCr(Expr, nonInteger)  expression!/

((ExprNnonInteger)!·nonInteger!)

nCr(List1, List2)  list

Returns a list of combinations based on the corresponding element
pairs in the two lists. The arguments must be the same size list.

nCr(Matrix1, Matrix2)  matrix

Returns a matrix of combinations based on the corresponding
element pairs in the two matrices. The arguments must be the same
size matrix.

nDerivative()
Catalog >

nDerivative(Expr1,Var=Value[,Order])  value

nDerivative(Expr1,Var[,Order]) | Var=Value  value

Returns the numerical derivative calculated using auto differentiation
methods.

When Value is specified, it overrides any prior variable assignment or
any current “|” substitution for the variable.

Order of the derivative must be 1 or 2.

newList()
Catalog >

newList(numElements)  list

Returns a list with a dimension of numElements. Each element is
zero.

newMat()
Catalog >

newMat(numRows, numColumns)  matrix

Returns a matrix of zeros with the dimension numRows by
numColumns.

82 TI-Nspire™ CAS Reference Guide

nfMax()
Catalog >

nfMax(Expr, Var)  value
nfMax(Expr, Var, lowBound)  value

nfMax(Expr, Var, lowBound, upBound)  value

nfMax(Expr, Var) | lowBound{Var{upBound  value

Returns a candidate numerical value of variable Var where the local
maximum of Expr occurs.

If you supply lowBound and upBound, the function looks in the
closed interval [lowBound,upBound] for the local maximum.

Note: See also fMax() and d().

nfMin()
Catalog >

nfMin(Expr, Var)  value
nfMin(Expr, Var, lowBound)  value

nfMin(Expr, Var, lowBound, upBound)  value

nfMin(Expr, Var) | lowBound{Var{upBound  value

Returns a candidate numerical value of variable Var where the local
minimum of Expr occurs.

If you supply lowBound and upBound, the function looks in the
closed interval [lowBound,upBound] for the local minimum.

Note: See also fMin() and d().

nInt()
Catalog >

nInt(Expr1, Var, Lower, Upper)  expression

If the integrand Expr1 contains no variable other than Var, and if
Lower and Upper are constants, positive ˆ, or negative ˆ, then

nInt() returns an approximation of ‰(Expr1, Var, Lower, Upper).
This approximation is a weighted average of some sample values of
the integrand in the interval Lower<Var<Upper.

The goal is six significant digits. The adaptive algorithm terminates
when it seems likely that the goal has been achieved, or when it
seems unlikely that additional samples will yield a worthwhile
improvement.

A warning is displayed (“Questionable accuracy”) when it seems that
the goal has not been achieved.

Nest nInt() to do multiple numeric integration. Integration limits can
depend on integration variables outside them.

Note: See also ‰(), page 151.

nom()
Catalog >

nom(effectiveRate,CpY)  value

Financial function that converts the annual effective interest rate
effectiveRate to a nominal rate, given CpY as the number of
compounding periods per year.

effectiveRate must be a real number, and CpY must be a real number
> 0.

Note: See also eff(), page 40.

TI-Nspire™ CAS Reference Guide 83

nor /= keys

BooleanExpr1 nor BooleanExpr2 returns Boolean expression
BooleanList1 nor BooleanList2 returns Boolean list
BooleanMatrix1 nor BooleanMatrix2 returns Boolean matrix

Returns the negation of a logical or operation on the two arguments.
Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Integer1 nor Integer2  integer

Compares two real integers bit-by-bit using a nor operation.
Internally, both integers are converted to signed, 64-bit binary
numbers. When corresponding bits are compared, the result is 1 if
both bits are 1; otherwise, the result is 0. The returned value
represents the bit results, and is displayed according to the Base
mode.

You can enter the integers in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as decimal (base 10).

norm()
Catalog >

norm(Matrix)  expression

norm(Vector)  expression

Returns the Frobenius norm.

normalLine()
Catalog >

normalLine(Expr1,Var,Point)  expression

normalLine(Expr1,Var=Point)  expression

Returns the normal line to the curve represented by Expr1 at the
point specified in Var=Point.

Make sure that the independent variable is not defined. For example,
If f1(x):=5 and x:=3, then normalLine(f1(x),x,2) returns “false.”

normCdf()
Catalog >

normCdf(lowBound,upBound[,m[,s]])  number if lowBound
and upBound are numbers, list if lowBound and upBound are
lists

Computes the normal distribution probability between lowBound
and upBound for the specified m (default=0) and s (default=1).

For P(X { upBound), set lowBound = .ˆ.

84 TI-Nspire™ CAS Reference Guide

normPdf()
Catalog >

normPdf(XVal[,m[,s]])  number if XVal is a number, list if
XVal is a list

Computes the probability density function for the normal distribution
at a specified XVal value for the specified m and s.

not
Catalog >

not BooleanExpr  Boolean expression

Returns true, false, or a simplified form of the argument.

not Integer1  integer

Returns the one’s complement of a real integer. Internally, Integer1 is
converted to a signed, 64-bit binary number. The value of each bit is
flipped (0 becomes 1, and vice versa) for the one’s complement.
Results are displayed according to the Base mode.

You can enter the integer in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, the integer is treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value
into the appropriate range. For more information, see 4Base2,
page 14.

In Hex base mode:

In Bin base mode:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.
Note: A binary entry can have up to 64 digits (not counting the
0b prefix). A hexadecimal entry can have up to 16 digits.

nPr()
Catalog >

nPr(Expr1, Expr2)  expression

For integer Expr1 and Expr2 with Expr1 | Expr2 | 0, nPr() is the
number of permutations of Expr1 things taken Expr2 at a time. Both
arguments can be integers or symbolic expressions.

nPr(Expr, 0)  1

nPr(Expr, negInteger)  1/((Expr+1)·(Expr+2)...

(expressionNnegInteger))

nPr(Expr, posInteger)  Expr·(ExprN1)...
(ExprNposInteger+1)

nPr(Expr, nonInteger)  Expr! / (ExprNnonInteger)!

nPr(List1, List2)  list

Returns a list of permutations based on the corresponding element
pairs in the two lists. The arguments must be the same size list.

nPr(Matrix1, Matrix2)  matrix

Returns a matrix of permutations based on the corresponding
element pairs in the two matrices. The arguments must be the same
size matrix.

Important: Zero, not the letter O.

TI-Nspire™ CAS Reference Guide 85

npv()
Catalog >

npv(InterestRate,CFO,CFList[,CFFreq])

Financial function that calculates net present value; the sum of the
present values for the cash inflows and outflows. A positive result for
npv indicates a profitable investment.

InterestRate is the rate by which to discount the cash flows (the cost
of money) over one period.

CF0 is the initial cash flow at time 0; it must be a real number.

CFList is a list of cash flow amounts after the initial cash flow CF0.

CFFreq is a list in which each element specifies the frequency of
occurrence for a grouped (consecutive) cash flow amount, which is
the corresponding element of CFList. The default is 1; if you enter
values, they must be positive integers < 10,000.

nSolve()
Catalog >

nSolve(Equation,Var[=Guess])  number or error_string

nSolve(Equation,Var[=Guess],lowBound)
 number or error_string

nSolve(Equation,Var[=Guess],lowBound,upBound)
 number or error_string

nSolve(Equation,Var[=Guess]) | lowBound{Var{upBound
 number or error_string

Iteratively searches for one approximate real numeric solution to
Equation for its one variable. Specify the variable as:

variable
– or –
variable = real number

For example, x is valid and so is x=3.

Note: If there are multiple solutions, you can use a guess to
help find a particular solution.

nSolve() is often much faster than solve() or zeros(), particularly if
the “|” operator is used to constrain the search to a small interval
containing exactly one simple solution.

nSolve() attempts to determine either one point where the residual
is zero or two relatively close points where the residual has opposite
signs and the magnitude of the residual is not excessive. If it cannot
achieve this using a modest number of sample points, it returns the
string “no solution found.”

Note: See also cSolve(), cZeros(), solve(), and zeros().

86 TI-Nspire™ CAS Reference Guide

O

OneVar
Catalog >

OneVar [1,]X[,[Freq][,Category,Include]]
OneVar [n,]X1,X2[X3[,…[,X20]]]

Calculates 1-variable statistics on up to 20 lists. A summary of results
is stored in the stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of numeric category codes for the corresponding X
values.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

An empty (void) element in any of the lists X, Freq, or Category
results in a void for the corresponding element of all those lists. An
empty element in any of the lists X1 through X20 results in a void for
the corresponding element of all those lists. For more information on
empty elements, see page 162.

Output variable Description

stat.v Mean of x values

stat.Gx Sum of x values

stat.Gx2 Sum of x2 values

stat.sx Sample standard deviation of x

stat.sx Population standard deviation of x

stat.n Number of data points

stat.MinX Minimum of x values

stat.Q1X 1st Quartile of x

stat.MedianX Median of x

stat.Q3X 3rd Quartile of x

stat.MaxX Maximum of x values

stat.SSX Sum of squares of deviations from the mean of x

TI-Nspire™ CAS Reference Guide 87

P

or
Catalog >

BooleanExpr1 or BooleanExpr2 returns Boolean expression
BooleanList1 or BooleanList2 returns Boolean list
BooleanMatrix1 or BooleanMatrix2 returns Boolean matrix

Returns true or false or a simplified form of the original entry.

Returns true if either or both expressions simplify to true. Returns
false only if both expressions evaluate to false.

Note: See xor.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Integer1 or Integer2  integer

Compares two real integers bit-by-bit using an or operation.
Internally, both integers are converted to signed, 64-bit binary
numbers. When corresponding bits are compared, the result is 1 if
either bit is 1; the result is 0 only if both bits are 0. The returned value
represents the bit results, and is displayed according to the Base
mode.

You can enter the integers in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value
into the appropriate range. For more information, see 4Base2,
page 14.

Note: See xor.

In Hex base mode:

Important: Zero, not the letter O.

In Bin base mode:

Note: A binary entry can have up to 64 digits (not counting the
0b prefix). A hexadecimal entry can have up to 16 digits.

ord()
Catalog >

ord(String)  integer
ord(List1)  list

Returns the numeric code of the first character in character string
String, or a list of the first characters of each list element.

P4Rx() Catalog >

P4Rx(rExpr, qExpr)  expression
P4Rx(rList, qList)  list
P4Rx(rMatrix, qMatrix)  matrix

Returns the equivalent x-coordinate of the
(r, q) pair.

Note: The q argument is interpreted as either a degree, gradian or
radian angle, according to the current angle mode. If the argument is
an expression, you can use ¡, G or R to override the angle mode
setting temporarily.

Note: You can insert this function from the computer keyboard by
typing P@>Rx(...).

In Radian angle mode:

88 TI-Nspire™ CAS Reference Guide

P4Ry() Catalog >

P4Ry(rExpr, qExpr)  expression
P4Ry(rList, qList)  list
P4Ry(rMatrix, qMatrix)  matrix

Returns the equivalent y-coordinate of the (r, q) pair.

Note: The q argument is interpreted as either a degree, radian or
gradian angle, according to the current angle mode. If the argument
is an expression, you can use ¡, G or R to override the angle mode
setting temporarily.

Note: You can insert this function from the computer keyboard by
typing P@>Ry(...).

In Radian angle mode:

PassErr
Catalog >

PassErr

Passes an error to the next level.

If system variable errCode is zero, PassErr does not do anything.

The Else clause of the Try...Else...EndTry block should use ClrErr
or PassErr. If the error is to be processed or ignored, use ClrErr. If
what to do with the error is not known, use PassErr to send it to the
next error handler. If there are no more pending Try...Else...EndTry
error handlers, the error dialog box will be displayed as normal.

Note: See also ClrErr, page 19, and Try, page 130.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

For an example of PassErr, See Example 2 under the Try
command, page 130.

piecewise()
Catalog >

piecewise(Expr1 [, Cond1 [, Expr2 [, Cond2 [, …]]]])

Returns definitions for a piecewise function in the form of a list. You
can also create piecewise definitions by using a template.

Note: See also Piecewise template, page 2.

poissCdf()
Catalog >

poissCdf(l,lowBound,upBound)  number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

poissCdf(l,upBound) for P(0{X{upBound)  number if
upBound is a number, list if upBound is a list

Computes a cumulative probability for the discrete Poisson
distribution with specified mean l.

For P(X { upBound), set lowBound=0

poissPdf()
Catalog >

poissPdf(l,XVal)  number if XVal is a number, list if XVal is
a list

Computes a probability for the discrete Poisson distribution with the
specified mean l.

TI-Nspire™ CAS Reference Guide 89

4Polar Catalog >

Vector 4Polar

Note: You can insert this operator from the computer keyboard by
typing @>Polar.

Displays vector in polar form [r ±q]. The vector must be of
dimension 2 and can be a row or a column.

Note: 4Polar is a display-format instruction, not a conversion
function. You can use it only at the end of an entry line, and it does
not update ans.

Note: See also 4Rect, page 99.

complexValue 4Polar

Displays complexVector in polar form.

• Degree angle mode returns (r±q).

• Radian angle mode returns reiq.

complexValue can have any complex form. However, an reiq entry
causes an error in Degree angle mode.

Note: You must use the parentheses for an (r±q) polar entry.

In Radian angle mode:

In Gradian angle mode:

In Degree angle mode:

polyCoeffs()
Catalog >

polyCoeffs(Poly [,Var])  list

Returns a list of the coefficients of polynomial Poly with respect to
variable Var.

Poly must be a polynomial expression in Var. We recommend that
you do not omit Var unless Poly is an expression in a single variable.

Expands the polynomial and selects x for the omitted Var.

90 TI-Nspire™ CAS Reference Guide

polyDegree()
Catalog >

polyDegree(Poly [,Var])  value

Returns the degree of polynomial expression Poly with respect to
variable Var. If you omit Var, the polyDegree() function selects a
default from the variables contained in the polynomial Poly.

Poly must be a polynomial expression in Var. We recommend that
you do not omit Var unless Poly is an expression in a single variable.

Constant polynomials

The degree can be extracted even though the coefficients
cannot. This is because the degree can be extracted without
expanding the polynomial.

polyEval()
Catalog >

polyEval(List1, Expr1)  expression
polyEval(List1, List2)  expression

Interprets the first argument as the coefficient of a descending-degree
polynomial, and returns the polynomial evaluated for the value of the
second argument.

polyGcd()
Catalog >

polyGcd(Expr1,Expr2)  expression

Returns greatest common divisor of the two arguments.

Expr1 and Expr2 must be polynomial expressions.

List, matrix, and Boolean arguments are not allowed.

TI-Nspire™ CAS Reference Guide 91

polyQuotient()
Catalog >

polyQuotient(Poly1,Poly2 [,Var])  expression

Returns the quotient of polynomial Poly1 divided by polynomial
Poly2 with respect to the specified variable Var.

Poly1 and Poly2 must be polynomial expressions in Var. We
recommend that you do not omit Var unless Poly1 and Poly2 are
expressions in the same single variable.

polyRemainder()
Catalog >

polyRemainder(Poly1,Poly2 [,Var])  expression

Returns the remainder of polynomial Poly1 divided by polynomial
Poly2 with respect to the specified variable Var.

Poly1 and Poly2 must be polynomial expressions in Var. We
recommend that you do not omit Var unless Poly1 and Poly2 are
expressions in the same single variable.

polyRoots()
Catalog >

polyRoots(Poly,Var)  list

polyRoots(ListOfCoeffs)  list

The first syntax, polyRoots(Poly,Var), returns a list of real roots of
polynomial Poly with respect to variable Var. If no real roots exist,
returns an empty list: { }.

Poly must be a polynomial in one variable.

The second syntax, polyRoots(ListOfCoeffs), returns a list of real
roots for the coefficients in ListOfCoeffs.

Note: See also cPolyRoots(), page 26.

92 TI-Nspire™ CAS Reference Guide

PowerReg
Catalog >

PowerReg X,Y [, Freq] [, Category, Include]]

Computes the power regression y = (a·(x)b) on lists X and Y with
frequency Freq. A summary of results is stored in the stat.results
variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression equation: a·(x)b

stat.a, stat.b Regression coefficients

stat.r2 Coefficient of linear determination for transformed data

stat.r Correlation coefficient for transformed data (ln(x), ln(y))

stat.Resid Residuals associated with the power model

stat.ResidTrans Residuals associated with linear fit of transformed data

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

TI-Nspire™ CAS Reference Guide 93

Prgm
Catalog >

Prgm
 Block
EndPrgm

Template for creating a user-defined program. Must be used with the
Define, Define LibPub, or Define LibPriv command.

Block can be a single statement, a series of statements separated
with the “:” character, or a series of statements on separate lines.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Calculate GCD and display intermediate results.

prodSeq() See Π(), page 152.

Product (PI) See Π(), page 152.

product()
Catalog >

product(List[, Start[, End]])  expression

Returns the product of the elements contained in List. Start and End
are optional. They specify a range of elements.

product(Matrix1[, Start[, End]])  matrix

Returns a row vector containing the products of the elements in the
columns of Matrix1. Start and end are optional. They specify a range
of rows.

Empty (void) elements are ignored. For more information on empty
elements, see page 162.

94 TI-Nspire™ CAS Reference Guide

Q

propFrac()
Catalog >

propFrac(Expr1[, Var])  expression

propFrac(rational_number) returns rational_number as the sum
of an integer and a fraction having the same sign and a greater
denominator magnitude than numerator magnitude.

propFrac(rational_expression,Var) returns the sum of proper
ratios and a polynomial with respect to Var. The degree of Var in the
denominator exceeds the degree of Var in the numerator in each
proper ratio. Similar powers of Var are collected. The terms and their
factors are sorted with Var as the main variable.

If Var is omitted, a proper fraction expansion is done with respect to
the most main variable. The coefficients of the polynomial part are
then made proper with respect to their most main variable first and so
on.

For rational expressions, propFrac() is a faster but less extreme
alternative to expand().

You can use the propFrac() function to represent mixed fractions
and demonstrate addition and subtraction of mixed fractions.

QR
Catalog >

QR Matrix, qMatrix, rMatrix[, Tol]

Calculates the Householder QR factorization of a real or complex
matrix. The resulting Q and R matrices are stored to the specified
Matrix. The Q matrix is unitary. The R matrix is upper triangular.

Optionally, any matrix element is treated as zero if its absolute value
is less than Tol. This tolerance is used only if the matrix has floating-
point entries and does not contain any symbolic variables that have
not been assigned a value. Otherwise, Tol is ignored.

• If you use /· or set the Auto or Approximate

mode to Approximate, computations are done using floating-
point arithmetic.

• If Tol is omitted or not used, the default tolerance is calculated
as:
5EL14 ·max(dim(Matrix)) ·rowNorm(Matrix)

The floating-point number (9.) in m1 causes results to be
calculated in floating-point form.

TI-Nspire™ CAS Reference Guide 95

The QR factorization is computed numerically using Householder
transformations. The symbolic solution is computed using Gram-
Schmidt. The columns in qMatName are the orthonormal basis
vectors that span the space defined by matrix.

QuadReg
Catalog >

QuadReg X,Y [, Freq] [, Category, Include]]

Computes the quadratic polynomial regression y = a·x2+b·x+c on
lists X and Y with frequency Freq. A summary of results is stored in
the stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression equation: a·x2+b·x+c

stat.a, stat.b, stat.c Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

QR
Catalog >

96 TI-Nspire™ CAS Reference Guide

QuartReg
Catalog >

QuartReg X,Y [, Freq] [, Category, Include]]

Computes the quartic polynomial regression
y = a·x4+b·x3+c· x2+d·x+e on lists X and Y with frequency Freq.
A summary of results is stored in the stat.results variable. (See page
120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression equation: a·x4+b·x3+c· x2+d·x+e

stat.a, stat.b, stat.c,
stat.d, stat.e

Regression coefficients

stat.R2 Coefficient of determination

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

TI-Nspire™ CAS Reference Guide 97

R

R4Pq() Catalog >

R4Pq (xExpr, yExpr)  expression
R4Pq (xList, yList)  list
R4Pq (xMatrix, yMatrix)  matrix

Returns the equivalent q-coordinate of the
(x,y) pair arguments.

Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.

Note: You can insert this function from the computer keyboard by
typing R@>Ptheta(...).

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

R4Pr() Catalog >

R4Pr (xExpr, yExpr)  expression
R4Pr (xList, yList)  list
R4Pr (xMatrix, yMatrix)  matrix

Returns the equivalent r-coordinate of the (x,y) pair arguments.

Note: You can insert this function from the computer keyboard by
typing R@>Pr(...).

In Radian angle mode:

4Rad Catalog >

Expr14Rad  expression

Converts the argument to radian angle measure.

Note: You can insert this operator from the computer keyboard by
typing @>Rad.

In Degree angle mode:

In Gradian angle mode:

rand()
Catalog >

rand()  expression
rand(#Trials)  list

rand() returns a random value between 0 and 1.

rand(#Trials) returns a list containing #Trials random values
between 0 and 1.

Sets the random-number seed.

98 TI-Nspire™ CAS Reference Guide

randBin()
Catalog >

randBin(n, p)  expression
randBin(n, p, #Trials)  list

randBin(n, p) returns a random real number from a specified
Binomial distribution.

randBin(n, p, #Trials) returns a list containing #Trials random real
numbers from a specified Binomial distribution.

randInt()
Catalog >

randInt(lowBound,upBound)  expression
randInt(lowBound,upBound ,#Trials)  list

randInt(lowBound,upBound) returns a random integer within the
range specified by lowBound and upBound integer bounds.

randInt(lowBound,upBound ,#Trials) returns a list containing
#Trials random integers within the specified range.

randMat()
Catalog >

randMat(numRows, numColumns)  matrix

Returns a matrix of integers between -9 and 9 of the specified
dimension.

Both arguments must simplify to integers.

Note: The values in this matrix will change each time you press

·.

randNorm()
Catalog >

randNorm(m, s)  expression
randNorm(m, s, #Trials)  list

randNorm(m, s) returns a decimal number from the specified
normal distribution. It could be any real number but will be heavily
concentrated in the interval [mN3·s, m+3·s].

randNorm(m, s, #Trials) returns a list containing #Trials decimal
numbers from the specified normal distribution.

randPoly()
Catalog >

randPoly(Var, Order)  expression

Returns a polynomial in Var of the specified Order. The coefficients
are random integers in the range L9 through 9. The leading
coefficient will not be zero.

Order must be 0–99.

randSamp()
Catalog >

randSamp(List,#Trials[,noRepl])  list

Returns a list containing a random sample of #Trials trials from List
with an option for sample replacement (noRepl=0), or no sample
replacement (noRepl=1). The default is with sample replacement.

TI-Nspire™ CAS Reference Guide 99

RandSeed
Catalog >

RandSeed Number

If Number = 0, sets the seeds to the factory defaults for the random-
number generator. If Number ƒ 0, it is used to generate two seeds,
which are stored in system variables seed1 and seed2.

real()
Catalog >

real(Expr1)  expression

Returns the real part of the argument.

Note: All undefined variables are treated as real variables. See also
imag(), page 58.

real(List1)  list

Returns the real parts of all elements.

real(Matrix1)  matrix

Returns the real parts of all elements.

4Rect Catalog >

Vector 4Rect

Note: You can insert this operator from the computer keyboard by
typing @>Rect.

Displays Vector in rectangular form [x, y, z]. The vector must be of
dimension 2 or 3 and can be a row or a column.

Note: 4Rect is a display-format instruction, not a conversion
function. You can use it only at the end of an entry line, and it does
not update ans.

Note: See also 4Polar, page 89.

complexValue 4Rect

Displays complexValue in rectangular form a+bi. The complexValue
can have any complex form. However, an reiq entry causes an error in
Degree angle mode.

Note: You must use parentheses for an (r±q) polar entry.

In Radian angle mode:

In Gradian angle mode:

In Degree angle mode:

Note: To type ±, select it from the symbol list in the Catalog.

100 TI-Nspire™ CAS Reference Guide

ref()
Catalog >

ref(Matrix1[, Tol])  matrix

Returns the row echelon form of Matrix1.

Optionally, any matrix element is treated as zero if its absolute value
is less than Tol. This tolerance is used only if the matrix has floating-
point entries and does not contain any symbolic variables that have
not been assigned a value. Otherwise, Tol is ignored.

• If you use /· or set the Auto or Approximate

mode to Approximate, computations are done using floating-
point arithmetic.

• If Tol is omitted or not used, the default tolerance is calculated
as:
5EL14 ·max(dim(Matrix1)) ·rowNorm(Matrix1)

Avoid undefined elements in Matrix1. They can lead to unexpected
results.

For example, if a is undefined in the following expression, a warning
message appears and the result is shown as:

The warning appears because the generalized element 1/a would not
be valid for a=0.

You can avoid this by storing a value to a beforehand or by using the
constraint (“|”) operator to substitute a value, as shown in the
following example.

Note: See also rref(), page 105.

remain()
Catalog >

remain(Expr1, Expr2)  expression
remain(List1, List2)  list
remain(Matrix1, Matrix2)  matrix

Returns the remainder of the first argument with respect to the
second argument as defined by the identities:

remain(x,0)  x
remain(x,y)  xNy·iPart(x/y)

As a consequence, note that remain(Nx,y)  Nremain(x,y). The
result is either zero or it has the same sign as the first argument.

Note: See also mod(), page 78.

TI-Nspire™ CAS Reference Guide 101

Request
Catalog >

Request promptString, var[, DispFlag [, statusVar]]
Request promptString, func(arg1, ...argn)

[, DispFlag [, statusVar]]

Programming command: Pauses the program and displays a dialog
box containing the message promptString and an input box for the
user’s response.

When the user types a response and clicks OK, the contents of the
input box are assigned to variable var.

If the user clicks Cancel, the program proceeds without accepting
any input. The program uses the previous value of var if var was
already defined.

The optional DispFlag argument can be any expression.

• If DispFlag is omitted or evaluates to 1, the prompt message
and user’s response are displayed in the Calculator history.

• If DispFlag evaluates to 0, the prompt and response are not
displayed in the history.

Define a program:
Define request_demo()=Prgm
Request “Radius: ”,r
Disp “Area = “,pi*r2

EndPrgm

Run the program and type a response:
request_demo()

Result after selecting OK:
Radius: 6/2
Area= 28.2743

The optional statusVar argument gives the program a way to
determine how the user dismissed the dialog box. Note that statusVar
requires the DispFlag argument.

• If the user clicked OK or pressed Enter or Ctrl+Enter, variable
statusVar is set to a value of 1.

• Otherwise, variable statusVar is set to a value of 0.

The func() argument allows a program to store the user’s response as
a function definition. This syntax operates as if the user executed the
command:

Define func(arg1, ...argn) = user’s response

The program can then use the defined function func(). The
promptString should guide the user to enter an appropriate
user’s response that completes the function definition.

Note: You can use the Request command within a user-defined
program but not within a function.

To stop a program that contains a Request command inside an
infinite loop:

• Windows®: Hold down the F12 key and press Enter
repeatedly.

• Macintosh®: Hold down the F5 key and press Enter
repeatedly.

• Handheld: Hold down the c key and press ·
repeatedly.

Note: See also RequestStr, page 102.

Define a program:
Define polynomial()=Prgm
Request "Enter a polynomial in x:",p(x)
Disp "Real roots are:",polyRoots(p(x),x)

EndPrgm

Run the program and type a response:
polynomial()

Result after selecting OK:
Enter a polynomial in x: x^3+3x+1
Real roots are: {-0.322185}

102 TI-Nspire™ CAS Reference Guide

RequestStr
Catalog >

RequestStr promptString, var[, DispFlag]

Programming command: Operates identically to the first syntax of the
Request command, except that the user’s response is always
interpreted as a string. By contrast, the Request command interprets
the response as an expression unless the user encloses it in quotation
marks (““).

Note: You can use the RequestStr command within a user-
defined program but not within a function.

To stop a program that contains a RequestStr command inside an
infinite loop:

• Windows®: Hold down the F12 key and press Enter
repeatedly.

• Macintosh®: Hold down the F5 key and press Enter
repeatedly.

• Handheld: Hold down the c key and press ·
repeatedly.

Note: See also Request, page 101.

Define a program:
Define requestStr_demo()=Prgm
RequestStr “Your name:”,name,0
Disp “Response has “,dim(name),” characters.”

EndPrgm

Run the program and type a response:
requestStr_demo()

Result after selecting OK (Note that the DispFlag argument of
0 omits the prompt and response from the history):

requestStr_demo()
Response has 5 characters.

Return
Catalog >

Return [Expr]

Returns Expr as the result of the function. Use within a
Func...EndFunc block.

Note: Use Return without an argument within a Prgm...EndPrgm
block to exit a program.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

right()
Catalog >

right(List1[, Num])  list

Returns the rightmost Num elements contained in List1.

If you omit Num, returns all of List1.

right(sourceString[, Num])  string

Returns the rightmost Num characters contained in character string
sourceString.

If you omit Num, returns all of sourceString.

right(Comparison)  expression

Returns the right side of an equation or inequality.

TI-Nspire™ CAS Reference Guide 103

rk23()
Catalog >

rk23(Expr, Var, depVar, {Var0, VarMax}, depVar0, VarStep
[, diftol])  matrix

rk23(SystemOfExpr, Var, ListOfDepVars, {Var0, VarMax},
ListOfDepVars0, VarStep [, diftol])  matrix

rk23(ListOfExpr, Var, ListOfDepVars, {Var0, VarMax},
ListOfDepVars0, VarStep [, diftol])  matrix

Uses the Runge-Kutta method to solve the system

 = Expr(Var, depVar)

with depVar(Var0)=depVar0 on the interval [Var0,VarMax]. Returns a
matrix whose first row defines the Var output values as defined by
VarStep. The second row defines the value of the first solution
component at the corresponding Var values, and so on.

Expr is the right hand side that defines the ordinary differential
equation (ODE).

SystemOfExpr is a system of right-hand sides that define the system
of ODEs (corresponds to order of dependent variables in
ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs
(corresponds to order of dependent variables in ListOfDepVars).

Var is the independent variable.

ListOfDepVars is a list of dependent variables.

{Var0, VarMax} is a two-element list that tells the function to
integrate from Var0 to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

If VarStep evaluates to a nonzero number: sign(VarStep) =
sign(VarMax-Var0) and solutions are returned at Var0+i*VarStep for
all i=0,1,2,… such that Var0+i*VarStep is in [var0,VarMax] (may not
get a solution value at VarMax).

if VarStep evaluates to zero, solutions are returned at the "Runge-
Kutta" Var values.

diftol is the error tolerance (defaults to 0.001).

Differential equation:
y'=0.001*y*(100-y) and y(0)=10

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

Same equation with diftol set to 1.E•6

Compare above result with CAS exact solution obtained using
deSolve() and seqGen():

System of equations:

with y1(0)=2 and y2(0)=5

root()
Catalog >

root(Expr)  root

root(Expr1, Expr2)  root

root(Expr) returns the square root of Expr.

root(Expr1, Expr2) returns the Expr2 root of Expr1. Expr1 can be
a real or complex floating point constant, an integer or complex
rational constant, or a general symbolic expression.

Note: See also Nth root template, page 1.

depVard
Vard

104 TI-Nspire™ CAS Reference Guide

rotate()
Catalog >

rotate(Integer1[,#ofRotations])  integer

Rotates the bits in a binary integer. You can enter Integer1 in any
number base; it is converted automatically to a signed, 64-bit binary
form. If the magnitude of Integer1 is too large for this form, a
symmetric modulo operation brings it within the range. For more
information, see 4Base2, page 14.

In Bin base mode:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

If #ofRotations is positive, the rotation is to the left. If #ofRotations
is negative, the rotation is to the right. The default is L1 (rotate right
one bit).

For example, in a right rotation:

In Hex base mode:

Each bit rotates right.

0b00000000000001111010110000110101

Rightmost bit rotates to leftmost.

produces:

0b10000000000000111101011000011010

The result is displayed according to the Base mode.

Important: To enter a binary or hexadecimal number, always
use the 0b or 0h prefix (zero, not the letter O).

rotate(List1[,#ofRotations])  list

Returns a copy of List1 rotated right or left by #of Rotations
elements. Does not alter List1.

If #ofRotations is positive, the rotation is to the left. If #of Rotations
is negative, the rotation is to the right. The default is L1 (rotate right
one element).

In Dec base mode:

rotate(String1[,#ofRotations])  string

Returns a copy of String1 rotated right or left by #ofRotations
characters. Does not alter String1.

If #ofRotations is positive, the rotation is to the left. If #ofRotations
is negative, the rotation is to the right. The default is L1 (rotate right
one character).

round()
Catalog >

round(Expr1[, digits])  expression

Returns the argument rounded to the specified number of digits after
the decimal point.

digits must be an integer in the range 0–12. If digits is not included,
returns the argument rounded to 12 significant digits.

Note: Display digits mode may affect how this is displayed.

round(List1[, digits])  list

Returns a list of the elements rounded to the specified number of
digits.

round(Matrix1[, digits])  matrix

Returns a matrix of the elements rounded to the specified number of
digits.

TI-Nspire™ CAS Reference Guide 105

rowAdd()
Catalog >

rowAdd(Matrix1, rIndex1, rIndex2)  matrix

Returns a copy of Matrix1 with row rIndex2 replaced by the sum of
rows rIndex1 and rIndex2.

rowDim()
Catalog >

rowDim(Matrix)  expression

Returns the number of rows in Matrix.

Note: See also colDim(), page 19.

rowNorm()
Catalog >

rowNorm(Matrix)  expression

Returns the maximum of the sums of the absolute values of the
elements in the rows in Matrix.

Note: All matrix elements must simplify to numbers. See also
colNorm(), page 19.

rowSwap()
Catalog >

rowSwap(Matrix1, rIndex1, rIndex2)  matrix

Returns Matrix1 with rows rIndex1 and rIndex2 exchanged.

rref()
Catalog >

rref(Matrix1[, Tol])  matrix

Returns the reduced row echelon form of Matrix1.

106 TI-Nspire™ CAS Reference Guide

S

Optionally, any matrix element is treated as zero if its absolute value
is less than Tol. This tolerance is used only if the matrix has floating-
point entries and does not contain any symbolic variables that have
not been assigned a value. Otherwise, Tol is ignored.

• If you use /· or set the Auto or Approximate

mode to Approximate, computations are done using floating-
point arithmetic.

• If Tol is omitted or not used, the default tolerance is calculated
as:
5EL14 ·max(dim(Matrix1)) ·rowNorm(Matrix1)

Note: See also ref(), page 100.

sec() μ key

sec(Expr1)  expression
sec(List1)  list

Returns the secant of Expr1 or returns a list containing the secants of
all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian
angle, according to the current angle mode setting. You can use ¡, G,
or R to override the angle mode temporarily.

In Degree angle mode:

sec/() μ key

sec/(Expr1)  expression
sec/(List1)  list

Returns the angle whose secant is Expr1 or returns a list containing
the inverse secants of each element of List1.

Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing
arcsec(...).

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

sech()
Catalog >

sech(Expr1)  expression
sech(List1)  list

Returns the hyperbolic secant of Expr1 or returns a list containing the
hyperbolic secants of the List1 elements.

rref()
Catalog >

TI-Nspire™ CAS Reference Guide 107

sech/() Catalog >

sech/(Expr1)  expression

sech/ (List1)  list

Returns the inverse hyperbolic secant of Expr1 or returns a list
containing the inverse hyperbolic secants of each element of List1.

Note: You can insert this function from the keyboard by typing
arcsech(...).

In Radian angle and Rectangular complex mode:

seq()
Catalog >

seq(Expr, Var, Low, High[, Step])  list

Increments Var from Low through High by an increment of Step,
evaluates Expr, and returns the results as a list. The original contents
of Var are still there after seq() is completed.

The default value for Step = 1.

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

108 TI-Nspire™ CAS Reference Guide

seqGen()
Catalog >

seqGen(Expr, Var, depVar, {Var0, VarMax}[, ListOfInitTerms
[, VarStep [, CeilingValue]]])  list

Generates a list of terms for sequence depVar(Var)=Expr as follows:
Increments independent variable Var from Var0 through VarMax by
VarStep, evaluates depVar(Var) for corresponding values of Var
using the Expr formula and ListOfInitTerms, and returns the results
as a list.

seqGen(ListOrSystemOfExpr, Var, ListOfDepVars, {Var0, VarMax}
[, MatrixOfInitTerms [, VarStep [, CeilingValue]]])  matrix

Generates a matrix of terms for a system (or list) of sequences
ListOfDepVars(Var)=ListOrSystemOfExpr as follows: Increments
independent variable Var from Var0 through VarMax by VarStep,
evaluates ListOfDepVars(Var) for corresponding values of Var using
ListOrSystemOfExpr formula and MatrixOfInitTerms, and returns
the results as a matrix.

The original contents of Var are unchanged after seqGen() is
completed.

The default value for VarStep = 1.

Generate the first 5 terms of the sequence u(n) = u(n-1)2/2,
with u(1)=2 and VarStep=1.

Example in which Var0=2:

Example in which initial term is symbolic:

System of two sequences:

Note: The Void (_) in the initial term matrix above is used to
indicate that the initial term for u1(n) is calculated using the
explicit sequence formula u1(n)=1/n.

seqn()
Catalog >

seqn(Expr(u, n [, ListOfInitTerms[, nMax
[, CeilingValue]]])  list

Generates a list of terms for a sequence u(n)=Expr(u, n) as follows:
Increments n from 1 through nMax by 1, evaluates u(n) for
corresponding values of n using the Expr(u, n) formula and
ListOfInitTerms, and returns the results as a list.

seqn(Expr(n [, nMax [, CeilingValue]])  list

Generates a list of terms for a non-recursive sequence u(n)=Expr(n)
as follows: Increments n from 1 through nMax by 1, evaluates u(n)
for corresponding values of n using the Expr(n) formula, and returns
the results as a list.

If nMax is missing, nMax is set to 2500

If nMax=0, nMax is set to 2500

Note: seqn() calls seqGen() with n0=1 and nstep =1

Generate the first 6 terms of the sequence u(n) = u(n-1)/2, with
u(1)=2.

TI-Nspire™ CAS Reference Guide 109

series()
Catalog >

series(Expr1, Var, Order [, Point])  expression

series(Expr1, Var, Order [, Point]) | Var>Point  expression

series(Expr1, Var, Order [, Point]) | Var<Point  expression

Returns a generalized truncated power series representation of Expr1
expanded about Point through degree Order. Order can be any
rational number. The resulting powers of (Var N Point) can include
negative and/or fractional exponents. The coefficients of these
powers can include logarithms of (Var N Point) and other functions
of Var that are dominated by all powers of (Var N Point) having the
same exponent sign.

Point defaults to 0. Point can be ˆ or Nˆ, in which cases the
expansion is through degree Order in 1/(Var N Point).

series(...) returns “series(...)” if it is unable to determine such a
representation, such as for essential singularities such as sin(1/z) at
z=0, eN1/z at z=0, or ez at z = ˆ or Nˆ.

If the series or one of its derivatives has a jump discontinuity at Point,
the result is likely to contain sub-expressions of the form sign(…) or
abs(…) for a real expansion variable or (-1)floor(…angle(…)…) for a
complex expansion variable, which is one ending with “_”. If you
intend to use the series only for values on one side of Point, then
append the appropriate one of “| Var > Point”, “| Var < Point”, “|
“Var | Point”, or “Var { Point” to obtain a simpler result.

series() can provide symbolic approximations to indefinite integrals
and definite integrals for which symbolic solutions otherwise can't be
obtained.

series() distributes over 1st-argument lists and matrices.

series() is a generalized version of taylor().

As illustrated by the last example to the right, the display routines
downstream of the result produced by series(...) might rearrange
terms so that the dominant term is not the leftmost one.

Note: See also dominantTerm(), page 39.

110 TI-Nspire™ CAS Reference Guide

setMode()
Catalog >

setMode(modeNameInteger, settingInteger)  integer
setMode(list)  integer list

Valid only within a function or program.

setMode(modeNameInteger, settingInteger) temporarily sets
mode modeNameInteger to the new setting settingInteger, and
returns an integer corresponding to the original setting of that
mode. The change is limited to the duration of the program/
function’s execution.

modeNameInteger specifies which mode you want to set. It must
be one of the mode integers from the table below.

settingInteger specifies the new setting for the mode. It must be
one of the setting integers listed below for the specific mode you
are setting.

setMode(list) lets you change multiple settings. list contains
pairs of mode integers and setting integers. setMode(list)
returns a similar list whose integer pairs represent the original
modes and settings.

If you have saved all mode settings with getMode(0) & var,
you can use setMode(var) to restore those settings until the
function or program exits. See getMode(), page 54.

Note: The current mode settings are passed to called
subroutines. If any subroutine changes a mode setting, the mode
change will be lost when control returns to the calling routine.

Note for entering the example: In the Calculator
application on the handheld, you can enter multi-line definitions

by pressing @ instead of · at the end of each line. On the
computer keyboard, hold down Alt and press Enter.

Display approximate value of p using the default setting for Display
Digits, and then display p with a setting of Fix2. Check to see that
the default is restored after the program executes.

Mode
Name

Mode
Integer Setting Integers

Display Digits 1 1=Float, 2=Float1, 3=Float2, 4=Float3, 5=Float4, 6=Float5, 7=Float6, 8=Float7,
9=Float8, 10=Float9, 11=Float10, 12=Float11, 13=Float12, 14=Fix0, 15=Fix1,
16=Fix2, 17=Fix3, 18=Fix4, 19=Fix5, 20=Fix6, 21=Fix7, 22=Fix8, 23=Fix9, 24=Fix10,
25=Fix11, 26=Fix12

Angle 2 1=Radian, 2=Degree, 3=Gradian

Exponential Format 3 1=Normal, 2=Scientific, 3=Engineering

Real or Complex 4 1=Real, 2=Rectangular, 3=Polar

Auto or Approx. 5 1=Auto, 2=Approximate, 3=Exact

Vector Format 6 1=Rectangular, 2=Cylindrical, 3=Spherical

Base 7 1=Decimal, 2=Hex, 3=Binary

Unit system 8 1=SI, 2=Eng/US

TI-Nspire™ CAS Reference Guide 111

shift()
Catalog >

shift(Integer1[,#ofShifts])  integer

Shifts the bits in a binary integer. You can enter Integer1 in any
number base; it is converted automatically to a signed, 64-bit binary
form. If the magnitude of Integer1 is too large for this form, a
symmetric modulo operation brings it within the range. For more
information, see 4Base2, page 14.

If #ofShifts is positive, the shift is to the left. If #ofShifts is negative,
the shift is to the right. The default is L1 (shift right one bit).

In a right shift, the rightmost bit is dropped and 0 or 1 is inserted to
match the leftmost bit. In a left shift, the leftmost bit is dropped and 0
is inserted as the rightmost bit.

For example, in a right shift:

Each bit shifts right.

0b0000000000000111101011000011010

Inserts 0 if leftmost bit is 0,
or 1 if leftmost bit is 1.

produces:

0b00000000000000111101011000011010

The result is displayed according to the Base mode. Leading zeros are
not shown.

In Bin base mode:

In Hex base mode:

Important: To enter a binary or hexadecimal number, always
use the 0b or 0h prefix (zero, not the letter O).

shift(List1 [,#ofShifts])  list

Returns a copy of List1 shifted right or left by #ofShifts elements.
Does not alter List1.

If #ofShifts is positive, the shift is to the left. If #ofShifts is negative,
the shift is to the right. The default is L1 (shift right one element).

Elements introduced at the beginning or end of list by the shift are set
to the symbol “undef”.

In Dec base mode:

shift(String1 [,#ofShifts])  string

Returns a copy of String1 shifted right or left by #ofShifts characters.
Does not alter String1.

If #ofShifts is positive, the shift is to the left. If #ofShifts is negative,
the shift is to the right. The default is L1 (shift right one character).

Characters introduced at the beginning or end of string by the shift
are set to a space.

sign()
Catalog >

sign(Expr1)  expression
sign(List1)  list
sign(Matrix1)  matrix

For real and complex Expr1, returns Expr1/abs(Expr1) when
Expr1ƒ 0.

Returns 1 if Expr1 is positive.

Returns L1 if Expr1 is negative.
sign(0) returns „1 if the complex format mode is Real; otherwise, it
returns itself.

sign(0) represents the unit circle in the complex domain.

For a list or matrix, returns the signs of all the elements.

If complex format mode is Real:

112 TI-Nspire™ CAS Reference Guide

simult()
Catalog >

simult(coeffMatrix, constVector[, Tol])  matrix

Returns a column vector that contains the solutions to a system of
linear equations.

Note: See also linSolve(), page 67.

coeffMatrix must be a square matrix that contains the coefficients of
the equations.

constVector must have the same number of rows (same dimension)
as coeffMatrix and contain the constants.

Optionally, any matrix element is treated as zero if its absolute value
is less than Tol. This tolerance is used only if the matrix has floating-
point entries and does not contain any symbolic variables that have
not been assigned a value. Otherwise, Tol is ignored.

• If you set the Auto or Approximate mode to Approximate,
computations are done using floating-point arithmetic.

• If Tol is omitted or not used, the default tolerance is calculated
as:
5EL14 ·max(dim(coeffMatrix)) ·rowNorm(coeffMatrix)

Solve for x and y:
x + 2y = 1
3x + 4y = L1

The solution is x=L3 and y=2.

Solve:
ax + by = 1
cx + dy = 2

simult(coeffMatrix, constMatrix[, Tol])  matrix

Solves multiple systems of linear equations, where each system has
the same equation coefficients but different constants.

Each column in constMatrix must contain the constants for a system
of equations. Each column in the resulting matrix contains the
solution for the corresponding system.

Solve:
x + 2y = 1

3x + 4y = L1

x + 2y = 2
3x + 4y = L3

For the first system, x=L3 and y=2. For the second system, x=L7
and y=9/2.

4sin Catalog >

Expr 4sin

Note: You can insert this operator from the computer keyboard by
typing @>sin.

Represents Expr in terms of sine. This is a display conversion
operator. It can be used only at the end of the entry line.

4sin reduces all powers of
cos(...) modulo 1Nsin(...)^2

so that any remaining powers of sin(...) have exponents in the range
(0, 2). Thus, the result will be free of cos(...) if and only if cos(...)
occurs in the given expression only to even powers.

Note: This conversion operator is not supported in Degree or
Gradian Angle modes. Before using it, make sure that the Angle
mode is set to Radians and that Expr does not contain explicit
references to degree or gradian angles.

TI-Nspire™ CAS Reference Guide 113

sin() μ key

sin(Expr1)  expression
sin(List1)  list

sin(Expr1) returns the sine of the argument as an expression.

sin(List1) returns a list of the sines of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian
angle, according to the current angle mode. You can use ¡,G, or R to
override the angle mode setting temporarily.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

sin(squareMatrix1)  squareMatrix

Returns the matrix sine of squareMatrix1. This is not the same as
calculating the sine of each element. For information about the
calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode:

sin/() μ key

sin/(Expr1)  expression
sin/(List1)  list

sin/(Expr1) returns the angle whose sine is Expr1 as an expression.

sin/(List1) returns a list of the inverse sines of each element of
List1.

Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing
arcsin(...).

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

114 TI-Nspire™ CAS Reference Guide

sin/(squareMatrix1)  squareMatrix

Returns the matrix inverse sine of squareMatrix1. This is not the
same as calculating the inverse sine of each element. For information
about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode and Rectangular complex format mode:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

sinh()
Catalog >

sinh(Expr1)  expression
sinh(List1)  list

sinh (Expr1) returns the hyperbolic sine of the argument as an
expression.

sinh (List1) returns a list of the hyperbolic sines of each element of
List1.

sinh(squareMatrix1)  squareMatrix

Returns the matrix hyperbolic sine of squareMatrix1. This is not the
same as calculating the hyperbolic sine of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode:

sinh/() Catalog >

sinh/(Expr1)  expression
sinh/(List1)  list

sinh/(Expr1) returns the inverse hyperbolic sine of the argument as
an expression.

sinh/(List1) returns a list of the inverse hyperbolic sines of each
element of List1.

Note: You can insert this function from the keyboard by typing
arcsinh(...).

sinh/(squareMatrix1)  squareMatrix

Returns the matrix inverse hyperbolic sine of squareMatrix1. This is
not the same as calculating the inverse hyperbolic sine of each
element. For information about the calculation method, refer to
cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode:

sin/() μ key

TI-Nspire™ CAS Reference Guide 115

SinReg
Catalog >

SinReg X, Y [, [Iterations] ,[Period] [, Category, Include]]

Computes the sinusoidal regression on lists X and Y. A summary of
results is stored in the stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Iterations is a value that specifies the maximum number of times (1
through 16) a solution will be attempted. If omitted, 8 is used.
Typically, larger values result in better accuracy but longer execution
times, and vice versa.

Period specifies an estimated period. If omitted, the difference
between values in X should be equal and in sequential order. If you
specify Period, the differences between x values can be unequal.

Category is a list of category codes for the corresponding X and Y
data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

The output of SinReg is always in radians, regardless of the angle
mode setting.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.RegEqn Regression Equation: a·sin(bx+c)+d

stat.a, stat.b, stat.c,
stat.d

Regression coefficients

stat.Resid Residuals from the regression

stat.XReg List of data points in the modified X List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.YReg List of data points in the modified Y List actually used in the regression based on restrictions of Freq,
Category List, and Include Categories

stat.FreqReg List of frequencies corresponding to stat.XReg and stat.YReg

solve()
Catalog >

solve(Equation, Var)  Boolean expression
solve(Equation, Var=Guess)  Boolean expression
solve(Inequality, Var)  Boolean expression

Returns candidate real solutions of an equation or an inequality for
Var. The goal is to return candidates for all solutions. However, there
might be equations or inequalities for which the number of solutions
is infinite.

Solution candidates might not be real finite solutions for some
combinations of values for undefined variables.

116 TI-Nspire™ CAS Reference Guide

For the Auto setting of the Auto or Approximate mode, the goal
is to produce exact solutions when they are concise, and
supplemented by iterative searches with approximate arithmetic
when exact solutions are impractical.

Due to default cancellation of the greatest common divisor from the
numerator and denominator of ratios, solutions might be solutions
only in the limit from one or both sides.

For inequalities of types |, {, <, or >, explicit solutions are unlikely
unless the inequality is linear and contains only Var.

For the Exact mode, portions that cannot be solved are returned as an
implicit equation or inequality.

Use the constraint (“|”) operator to restrict the solution interval and/
or other variables that occur in the equation or inequality. When you
find a solution in one interval, you can use the inequality operators to
exclude that interval from subsequent searches.

In Radian angle mode:

false is returned when no real solutions are found. true is returned if
solve() can determine that any finite real value of Var satisfies the
equation or inequality.

Since solve() always returns a Boolean result, you can use “and,”
“or,” and “not” to combine results from solve() with each other or
with other Boolean expressions.

Solutions might contain a unique new undefined constant of the form
nj with j being an integer in the interval 1–255. Such variables
designate an arbitrary integer.

In Radian angle mode:

In Real mode, fractional powers having odd denominators denote
only the real branch. Otherwise, multiple branched expressions such
as fractional powers, logarithms, and inverse trigonometric functions
denote only the principal branch. Consequently, solve() produces
only solutions corresponding to that one real or principal branch.

Note: See also cSolve(), cZeros(), nSolve(), and zeros().

solve(Eqn1 and Eqn2 [and …], VarOrGuess1,

 VarOrGuess2 [, …])  Boolean expression

solve(SystemOfEqns, VarOrGuess1,

 VarOrGuess2 [, …])  Boolean expression

solve({Eqn1, Eqn2 [,...]} {VarOrGuess1, VarOrGuess2 [, …]})
 Boolean expression

Returns candidate real solutions to the simultaneous algebraic
equations, where each VarOrGuess specifies a variable that you
want to solve for.

You can separate the equations with the and operator, or you can
enter a SystemOfEqns using a template from the Catalog. The
number of VarOrGuess arguments must match the number of
equations. Optionally, you can specify an initial guess for a variable.
Each VarOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3.

solve()
Catalog >

TI-Nspire™ CAS Reference Guide 117

If all of the equations are polynomials and if you do NOT specify any
initial guesses, solve() uses the lexical Gröbner/Buchberger
elimination method to attempt to determine all real solutions.

For example, suppose you have a circle of radius r at the origin and
another circle of radius r centered where the first circle crosses the
positive x-axis. Use solve() to find the intersections.

As illustrated by r in the example to the right, simultaneous
polynomial equations can have extra variables that have no values,
but represent given numeric values that could be substituted later.

You can also (or instead) include solution variables that do not
appear in the equations. For example, you can include z as a solution
variable to extend the previous example to two parallel intersecting
cylinders of radius r.

The cylinder solutions illustrate how families of solutions might
contain arbitrary constants of the form ck, where k is an integer suffix
from 1 through 255.

For polynomial systems, computation time or memory exhaustion
may depend strongly on the order in which you list solution variables.
If your initial choice exhausts memory or your patience, try
rearranging the variables in the equations and/or varOrGuess list.

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

If you do not include any guesses and if any equation is non-
polynomial in any variable but all equations are linear in the solution
variables, solve() uses Gaussian elimination to attempt to determine
all real solutions.

If a system is neither polynomial in all of its variables nor linear in its
solution variables, solve() determines at most one solution using an
approximate iterative method. To do so, the number of solution
variables must equal the number of equations, and all other variables
in the equations must simplify to numbers.

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

Each solution variable starts at its guessed value if there is one;
otherwise, it starts at 0.0.

Use guesses to seek additional solutions one by one. For
convergence, a guess may have to be rather close to a solution.

solve()
Catalog >

118 TI-Nspire™ CAS Reference Guide

SortA
Catalog >

SortA List1[, List2] [, List3] ...
SortA Vector1[, Vector2] [, Vector3] ...

Sorts the elements of the first argument in ascending order.

If you include additional arguments, sorts the elements of each so
that their new positions match the new positions of the elements in
the first argument.

All arguments must be names of lists or vectors. All arguments must
have equal dimensions.

Empty (void) elements within the first argument move to the bottom.
For more information on empty elements, see page 162.

SortD
Catalog >

SortD List1[, List2] [, List3] ...
SortD Vector1[,Vector2] [,Vector3] ...

Identical to SortA, except SortD sorts the elements in descending
order.

Empty (void) elements within the first argument move to the bottom.
For more information on empty elements, see page 162.

TI-Nspire™ CAS Reference Guide 119

4Sphere Catalog >

Vector 4Sphere

Note: You can insert this operator from the computer keyboard by
typing @>Sphere.

Displays the row or column vector in spherical form [r ±q ±f].

Vector must be of dimension 3 and can be either a row or a column
vector.

Note: 4Sphere is a display-format instruction, not a conversion
function. You can use it only at the end of an entry line.

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

Press ·

sqrt()
Catalog >

sqrt(Expr1)  expression
sqrt(List1)  list

Returns the square root of the argument.

For a list, returns the square roots of all the elements in List1.
Note: See also Square root template, page 1.

X

Y

Z

(ρ ,θ ,φ)

θ

φ

ρ

120 TI-Nspire™ CAS Reference Guide

stat.results
Catalog >

stat.results

Displays results from a statistics calculation.

The results are displayed as a set of name-value pairs. The specific
names shown are dependent on the most recently evaluated statistics
function or command.

You can copy a name or value and paste it into other locations.

Note: Avoid defining variables that use the same names as those
used for statistical analysis. In some cases, an error condition could
occur. Variable names used for statistical analysis are listed in the
table below.

Note: Each time the Lists & Spreadsheet application calculates statistical results, it copies the “stat.” group variables to a “stat#.”
group, where # is a number that is incremented automatically. This lets you maintain previous results while performing multiple
calculations.

stat.a
stat.AdjR²
stat.b
stat.b0
stat.b1
stat.b2
stat.b3
stat.b4
stat.b5
stat.b6
stat.b7
stat.b8
stat.b9
stat.b10
stat.bList
stat.c²
stat.c
stat.CLower
stat.CLowerList
stat.CompList
stat.CompMatrix
stat.CookDist
stat.CUpper
stat.CUpperList
stat.d

stat.dfDenom
stat.dfBlock
stat.dfCol
stat.dfError
stat.dfInteract
stat.dfReg
stat.dfNumer
stat.dfRow
stat.DW
stat.e
stat.ExpMatrix
stat.F
stat.FBlock
stat.Fcol
stat.FInteract
stat.FreqReg
stat.Frow
stat.Leverage
stat.LowerPred
stat.LowerVal
stat.m
stat.MaxX
stat.MaxY
stat.ME
stat.MedianX

stat.MedianY
stat.MEPred
stat.MinX
stat.MinY
stat.MS
stat.MSBlock
stat.MSCol
stat.MSError
stat.MSInteract
stat.MSReg
stat.MSRow
stat.n

stat.Ç
stat.Ç1
stat.Ç2
stat.ÇDiff
stat.PList
stat.PVal
stat.PValBlock
stat.PValCol
stat.PValInteract
stat.PValRow
stat.Q1X
stat.Q1Y

stat.Q3X
stat.Q3Y
stat.r
stat.r²
stat.RegEqn
stat.Resid
stat.ResidTrans
stat.sx
stat.sy
stat.sx1
stat.sx2
stat.Gx
stat.Gx²
stat.Gxy
stat.Gy
stat.Gy²
stat.s
stat.SE
stat.SEList
stat.SEPred
stat.sResid
stat.SEslope
stat.sp
stat.SS

stat.SSBlock
stat.SSCol
stat.SSX
stat.SSY
stat.SSError
stat.SSInteract
stat.SSReg
stat.SSRow
stat.tList
stat.UpperPred
stat.UpperVal
stat.v
stat.v1
stat.v2
stat.vDiff
stat.vList
stat.XReg
stat.XVal
stat.XValList
stat.w

stat.y

stat.yList
stat.YReg

TI-Nspire™ CAS Reference Guide 121

stat.values
Catalog >

stat.values

Displays a matrix of the values calculated for the most recently
evaluated statistics function or command.

Unlike stat.results, stat.values omits the names associated with
the values.

You can copy a value and paste it into other locations.

See the stat.results example.

stDevPop()
Catalog >

stDevPop(List[, freqList])  expression

Returns the population standard deviation of the elements in List.

Each freqList element counts the number of consecutive occurrences
of the corresponding element in List.

Note: List must have at least two elements. Empty (void) elements
are ignored. For more information on empty elements, see page 162.

In Radian angle and auto modes:

stDevPop(Matrix1[, freqMatrix])  matrix

Returns a row vector of the population standard deviations of the
columns in Matrix1.

Each freqMatrix element counts the number of consecutive
occurrences of the corresponding element in Matrix1.

Note: Matrix1 must have at least two rows. Empty (void) elements
are ignored. For more information on empty elements, see page 162.

stDevSamp()
Catalog >

stDevSamp(List[, freqList])  expression

Returns the sample standard deviation of the elements in List.

Each freqList element counts the number of consecutive occurrences
of the corresponding element in List.

Note: List must have at least two elements. Empty (void) elements
are ignored. For more information on empty elements, see page 162.

122 TI-Nspire™ CAS Reference Guide

stDevSamp(Matrix1[, freqMatrix])  matrix

Returns a row vector of the sample standard deviations of the
columns in Matrix1.

Each freqMatrix element counts the number of consecutive
occurrences of the corresponding element in Matrix1.

Note: Matrix1 must have at least two rows. Empty (void) elements
are ignored. For more information on empty elements, see page 162.

Stop
Catalog >

Stop

Programming command: Terminates the program.

Stop is not allowed in functions.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Store See & (store), page 160.

string()
Catalog >

string(Expr)  string

Simplifies Expr and returns the result as a character string.

subMat()
Catalog >

subMat(Matrix1[, startRow] [, startCol] [, endRow] [, endCol])
 matrix

Returns the specified submatrix of Matrix1.

Defaults: startRow=1, startCol=1, endRow=last row, endCol=last
column.

Sum (Sigma) See G(), page 153.

stDevSamp()
Catalog >

TI-Nspire™ CAS Reference Guide 123

sum()
Catalog >

sum(List[, Start[, End]])  expression

Returns the sum of all elements in List.

Start and End are optional. They specify a range of elements.

Any void argument produces a void result. Empty (void) elements in
List are ignored. For more information on empty elements, see page
162.

sum(Matrix1[, Start[, End]])  matrix

Returns a row vector containing the sums of all elements in the
columns in Matrix1.

Start and End are optional. They specify a range of rows.

Any void argument produces a void result. Empty (void) elements in
Matrix1 are ignored. For more information on empty elements, see
page 162.

sumIf()
Catalog >

sumIf(List,Criteria[, SumList])  value

Returns the accumulated sum of all elements in List that meet the
specified Criteria. Optionally, you can specify an alternate list,
sumList, to supply the elements to accumulate.

List can be an expression, list, or matrix. SumList, if specified, must
have the same dimension(s) as List.

Criteria can be:

• A value, expression, or string. For example, 34 accumulates only
those elements in List that simplify to the value 34.

• A Boolean expression containing the symbol ? as a placeholder
for each element. For example, ?<10 accumulates only those
elements in List that are less than 10.

When a List element meets the Criteria, the element is added to the
accumulating sum. If you include sumList, the corresponding element
from sumList is added to the sum instead.

Within the Lists & Spreadsheet application, you can use a range of
cells in place of List and sumList.

Empty (void) elements are ignored. For more information on empty
elements, see page 162.

Note: See also countIf(), page 26.

sumSeq() See G(), page 153.

system()
Catalog >

system(Eqn1 [, Eqn2 [, Eqn3 [, ...]]])
system(Expr1 [, Expr2 [, Expr3 [, ...]]])

Returns a system of equations, formatted as a list. You can also
create a system by using a template.

Note: See also System of equations, page 3.

124 TI-Nspire™ CAS Reference Guide

T

T (transpose) Catalog >

Matrix1T  matrix

Returns the complex conjugate transpose of Matrix1.

Note: You can insert this operator from the computer keyboard by
typing @t.

tan() μ key

tan(Expr1)  expression
tan(List1)  list

tan(Expr1) returns the tangent of the argument as an expression.

tan(List1) returns a list of the tangents of all elements in List1.

Note: The argument is interpreted as a degree, gradian or radian
angle, according to the current angle mode. You can use ¡, G or R to
override the angle mode setting temporarily.

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

tan(squareMatrix1)  squareMatrix

Returns the matrix tangent of squareMatrix1. This is not the same as
calculating the tangent of each element. For information about the
calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode:

TI-Nspire™ CAS Reference Guide 125

tan/() μ key

tan/(Expr1)  expression
tan/(List1)  list

tan/(Expr1) returns the angle whose tangent is Expr1 as an
expression.

tan/(List1) returns a list of the inverse tangents of each element of
List1.

Note: The result is returned as a degree, gradian or radian angle,
according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing
arctan(...).

In Degree angle mode:

In Gradian angle mode:

In Radian angle mode:

tan/(squareMatrix1)  squareMatrix

Returns the matrix inverse tangent of squareMatrix1. This is not the
same as calculating the inverse tangent of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode:

tangentLine()
Catalog >

tangentLine(Expr1,Var,Point)  expression

tangentLine(Expr1,Var=Point)  expression

Returns the tangent line to the curve represented by Expr1 at the
point specified in Var=Point.

Make sure that the independent variable is not defined. For example,
If f1(x):=5 and x:=3, then tangentLine(f1(x),x,2) returns “false.”

tanh()
Catalog >

tanh(Expr1)  expression
tanh(List1)  list

tanh(Expr1) returns the hyperbolic tangent of the argument as an
expression.

tanh(List1) returns a list of the hyperbolic tangents of each element
of List1.

tanh(squareMatrix1)  squareMatrix

Returns the matrix hyperbolic tangent of squareMatrix1. This is not
the same as calculating the hyperbolic tangent of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode:

126 TI-Nspire™ CAS Reference Guide

tanh/() Catalog >

tanh/(Expr1)  expression
tanh/(List1)  list

tanh/(Expr1) returns the inverse hyperbolic tangent of the
argument as an expression.

tanh/(List1) returns a list of the inverse hyperbolic tangents of each
element of List1.

Note: You can insert this function from the keyboard by typing
arctanh(...).

In Rectangular complex format:

tanh/(squareMatrix1)  squareMatrix

Returns the matrix inverse hyperbolic tangent of squareMatrix1. This
is not the same as calculating the inverse hyperbolic tangent of each
element. For information about the calculation method, refer to
cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

In Radian angle mode and Rectangular complex format:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

taylor()
Catalog >

taylor(Expr1, Var, Order[, Point])  expression

Returns the requested Taylor polynomial. The polynomial includes
non-zero terms of integer degrees from zero through Order in (Var
minus Point). taylor() returns itself if there is no truncated power
series of this order, or if it would require negative or fractional
exponents. Use substitution and/or temporary multiplication by a
power of (Var minus Point) to determine more general power series.

Point defaults to zero and is the expansion point.

As illustrated by the last example to the right, the display routines
downstream of the result produced by taylor(...) might rearrange
terms so that the dominant term is not the leftmost one.

tCdf()
Catalog >

tCdf(lowBound,upBound,df)  number if lowBound and
upBound are numbers, list if lowBound and upBound are lists

Computes the Student-t distribution probability between lowBound
and upBound for the specified degrees of freedom df.

For P(X { upBound), set lowBound = .ˆ.

TI-Nspire™ CAS Reference Guide 127

tCollect()
Catalog >

tCollect(Expr1)  expression

Returns an expression in which products and integer powers of sines
and cosines are converted to a linear combination of sines and
cosines of multiple angles, angle sums, and angle differences. The
transformation converts trigonometric polynomials into a linear
combination of their harmonics.

Sometimes tCollect() will accomplish your goals when the default
trigonometric simplification does not. tCollect() tends to reverse
transformations done by tExpand(). Sometimes applying tExpand()
to a result from tCollect(), or vice versa, in two separate steps
simplifies an expression.

tExpand()
Catalog >

tExpand(Expr1)  expression

Returns an expression in which sines and cosines of integer-multiple
angles, angle sums, and angle differences are expanded. Because of
the identity (sin(x))2+(cos(x))2=1, there are many possible equivalent
results. Consequently, a result might differ from a result shown in
other publications.

Sometimes tExpand() will accomplish your goals when the default
trigonometric simplification does not. tExpand() tends to reverse
transformations done by tCollect(). Sometimes applying tCollect()
to a result from tExpand(), or vice versa, in two separate steps
simplifies an expression.

Note: Degree-mode scaling by p/180 interferes with the ability of
tExpand() to recognize expandable forms. For best results,
tExpand() should be used in Radian mode.

Text
Catalog >

Text promptString [, DispFlag]

Programming command: Pauses the program and displays the
character string promptString in a dialog box.

When the user selects OK, program execution continues.

The optional flag argument can be any expression.

• If DispFlag is omitted or evaluates to 1, the text message is
added to the Calculator history.

• If DispFlag evaluates to 0, the text message is not added to the
history.

If the program needs a typed response from the user, refer to
Request, page 101, or RequestStr, page 102.

Note: You can use this command within a user-defined program but
not within a function.

Define a program that pauses to display each of five random
numbers in a dialog box.
Within the Prgm...EndPrgm template, complete each line by

pressing @ instead of ·. On the computer keyboard,
hold down Alt and press Enter.

Define text_demo()=Prgm
For i,1,5

strinfo:=”Random number “ & string(rand(i))
Text strinfo

EndFor
EndPrgm

Run the program:
text_demo()

Sample of one dialog box:

Then See If, page 57.

128 TI-Nspire™ CAS Reference Guide

tInterval
Catalog >

tInterval List[,Freq[,CLevel]]

(Data list input)

tInterval v,sx,n[,CLevel]

(Summary stats input)

Computes a t confidence interval. A summary of results is stored in
the stat.results variable. (See page 120.)

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.CLower, stat.CUpper Confidence interval for an unknown population mean

stat.x Sample mean of the data sequence from the normal random distribution

stat.ME Margin of error

stat.df Degrees of freedom

stat.sx Sample standard deviation

stat.n Length of the data sequence with sample mean

tInterval_2Samp
Catalog >

tInterval_2Samp
List1,List2[,Freq1[,Freq2[,CLevel[,Pooled]]]]

(Data list input)

tInterval_2Samp v1,sx1,n1,v2,sx2,n2[,CLevel[,Pooled]]

(Summary stats input)

Computes a two-sample t confidence interval. A summary of results is
stored in the stat.results variable. (See page 120.)

Pooled=1 pools variances; Pooled=0 does not pool variances.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.x1-x2 Sample means of the data sequences from the normal random distribution

stat.ME Margin of error

stat.df Degrees of freedom

stat.x1, stat.x2 Sample means of the data sequences from the normal random distribution

stat.sx1, stat.sx2 Sample standard deviations for List 1 and List 2

stat.n1, stat.n2 Number of samples in data sequences

stat.sp The pooled standard deviation. Calculated when Pooled = YES

TI-Nspire™ CAS Reference Guide 129

tmpCnv()
Catalog >

tmpCnv(Expr_¡tempUnit, _¡tempUnit2)

 expression _¡tempUnit2

Converts a temperature value specified by Expr from one unit to
another. Valid temperature units are:

_¡C Celsius

_¡F Fahrenheit

_¡K Kelvin

_¡R Rankine

To type ¡, select it from the Catalog symbols.

to type _ , press /_.

For example, 100_¡C converts to 212_¡F.

To convert a temperature range, use @tmpCnv() instead.

Note: You can use the Catalog to select temperature units.

@tmpCnv()
Catalog >

@tmpCnv(Expr_¡tempUnit, _¡tempUnit2)

 expression _¡tempUnit2

Note: You can insert this function from the keyboard by typing
deltaTmpCnv(...).

Converts a temperature range (the difference between two
temperature values) specified by Expr from one unit to another. Valid
temperature units are:

_¡C Celsius
_¡F Fahrenheit
_¡K Kelvin
_¡R Rankine

To enter ¡, select it from the Symbol Palette or type @d.

To type _ , press /_.

1_¡C and 1_¡K have the same magnitude, as do 1_¡F and 1_¡R.
However, 1_¡C is 9/5 as large as 1_¡F.

For example, a 100_¡C range (from 0_¡C to 100_¡C) is equivalent to
a 180_¡F range.

To convert a particular temperature value instead of a range, use
tmpCnv().

Note: You can use the Catalog to select temperature units.

tPdf()
Catalog >

tPdf(XVal,df)  number if XVal is a number, list if XVal is a
list

Computes the probability density function (pdf) for the Student-t
distribution at a specified x value with specified degrees of freedom
df.

130 TI-Nspire™ CAS Reference Guide

trace()
Catalog >

trace(squareMatrix)  expression

Returns the trace (sum of all the elements on the main diagonal) of
squareMatrix.

Try Catalog >

Try
 block1
Else
 block2
EndTry

Executes block1 unless an error occurs. Program execution transfers
to block2 if an error occurs in block1. System variable errCode
contains the error code to allow the program to perform error
recovery. For a list of error codes, see “Error codes and
messages,” page 168.

block1 and block2 can be either a single statement or a series of
statements separated with the “:” character.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Example 2

To see the commands Try, ClrErr, and PassErr in operation, enter
the eigenvals() program shown at the right. Run the program by
executing each of the following expressions.

Note: See also ClrErr, page 19, and PassErr, page 88.

Define eigenvals(a,b)=Prgm
© Program eigenvals(A,B) displays eigenvalues of A·B
Try

Disp "A= ",a
Disp "B= ",b
Disp " "
Disp "Eigenvalues of A·B are:",eigVl(a*b)

Else
If errCode=230 Then

Disp "Error: Product of A·B must be a square matrix"
ClrErr

Else
PassErr

EndIf
EndTry
EndPrgm

TI-Nspire™ CAS Reference Guide 131

tTest
Catalog >

tTest m0,List[,Freq[,Hypoth]]

(Data list input)

tTest m0,x,sx,n,[Hypoth]

(Summary stats input)

Performs a hypothesis test for a single unknown population mean m
when the population standard deviation s is unknown. A summary of
results is stored in the stat.results variable. (See page 120.)

Test H0: m = m0, against one of the following:

For Ha: m < m0, set Hypoth<0
For Ha: m ƒ m0 (default), set Hypoth=0
For Ha: m > m0, set Hypoth>0

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.t (x N m0) / (stdev / sqrt(n))

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom

stat.x Sample mean of the data sequence in List

stat.sx Sample standard deviation of the data sequence

stat.n Size of the sample

tTest_2Samp
Catalog >

tTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth[,Pooled]]]]

(Data list input)

tTest_2Samp v1,sx1,n1,v2,sx2,n2[,Hypoth[,Pooled]]

(Summary stats input)

Computes a two-sample t test. A summary of results is stored in the
stat.results variable. (See page 120.)

Test H0: m1 = m2, against one of the following:

For Ha: m1< m2, set Hypoth<0
For Ha: m1ƒ m2 (default), set Hypoth=0
For Ha: m1> m2, set Hypoth>0

Pooled=1 pools variances
Pooled=0 does not pool variances

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.t Standard normal value computed for the difference of means

132 TI-Nspire™ CAS Reference Guide

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.df Degrees of freedom for the t-statistic

stat.x1, stat.x2 Sample means of the data sequences in List 1 and List 2

stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List 1 and List 2

stat.n1, stat.n2 Size of the samples

stat.sp The pooled standard deviation. Calculated when Pooled=1.

tvmFV()
Catalog >

tvmFV(N,I,PV,Pmt,[PpY],[CpY],[PmtAt])  value

Financial function that calculates the future value of money.

Note: Arguments used in the TVM functions are described in the
table of TVM arguments, page 132. See also amortTbl(), page 7.

tvmI()
Catalog >

tvmI(N,PV,Pmt,FV,[PpY],[CpY],[PmtAt])  value

Financial function that calculates the interest rate per year.

Note: Arguments used in the TVM functions are described in the
table of TVM arguments, page 132. See also amortTbl(), page 7.

tvmN()
Catalog >

tvmN(I,PV,Pmt,FV,[PpY],[CpY],[PmtAt])  value

Financial function that calculates the number of payment periods.

Note: Arguments used in the TVM functions are described in the
table of TVM arguments, page 132. See also amortTbl(), page 7.

tvmPmt()
Catalog >

tvmPmt(N,I,PV,FV,[PpY],[CpY],[PmtAt])  value

Financial function that calculates the amount of each payment.

Note: Arguments used in the TVM functions are described in the
table of TVM arguments, page 132. See also amortTbl(), page 7.

tvmPV()
Catalog >

tvmPV(N,I,Pmt,FV,[PpY],[CpY],[PmtAt])  value

Financial function that calculates the present value.

Note: Arguments used in the TVM functions are described in the
table of TVM arguments, page 132. See also amortTbl(), page 7.

TVM
argument*

Description Data type

N Number of payment periods real number

I Annual interest rate real number

Output variable Description

TI-Nspire™ CAS Reference Guide 133

* These time-value-of-money argument names are similar to the TVM variable names (such as tvm.pv and tvm.pmt) that are used
by the Calculator application’s finance solver. Financial functions, however, do not store their argument values or results to the TVM
variables.

PV Present value real number

Pmt Payment amount real number

FV Future value real number

PpY Payments per year, default=1 integer > 0

CpY Compounding periods per year, default=1 integer > 0

PmtAt Payment due at the end or beginning of each period, default=end integer (0=end,
1=beginning)

TwoVar
Catalog >

TwoVar X, Y[, [Freq] [, Category, Include]]

Calculates the TwoVar statistics. A summary of results is stored in the
stat.results variable. (See page 120.)

All the lists must have equal dimension except for Include.

X and Y are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq
specifies the frequency of occurrence for each corresponding X and Y
data point. The default value is 1. All elements must be integers | 0.

Category is a list of numeric category codes for the corresponding X
and Y data.

Include is a list of one or more of the category codes. Only those data
items whose category code is included in this list are included in the
calculation.

An empty (void) element in any of the lists X, Freq, or Category
results in a void for the corresponding element of all those lists. An
empty element in any of the lists X1 through X20 results in a void for
the corresponding element of all those lists. For more information on
empty elements, see page 162.

Output variable Description

stat.v Mean of x values

stat.Gx Sum of x values

stat.Gx2 Sum of x2 values

stat.sx Sample standard deviation of x

stat.sx Population standard deviation of x

stat.n Number of data points

stat.w Mean of y values

stat.Gy Sum of y values

stat.Gy2 Sum of y2 values

stat.sy Sample standard deviation of y

TVM
argument*

Description Data type

134 TI-Nspire™ CAS Reference Guide

U

stat.sy Population standard deviation of y

stat.Gxy Sum of x·y values

stat.r Correlation coefficient

stat.MinX Minimum of x values

stat.Q1X 1st Quartile of x

stat.MedianX Median of x

stat.Q3X 3rd Quartile of x

stat.MaxX Maximum of x values

stat.MinY Minimum of y values

stat.Q1Y 1st Quartile of y

stat.MedY Median of y

stat.Q3Y 3rd Quartile of y

stat.MaxY Maximum of y values

stat.G(x-v)2 Sum of squares of deviations from the mean of x

stat.G(y-w)2 Sum of squares of deviations from the mean of y

unitV()
Catalog >

unitV(Vector1)  vector

Returns either a row- or column-unit vector, depending on the form of
Vector1.

Vector1 must be either a single-row matrix or a single-column
matrix.

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

Output variable Description

TI-Nspire™ CAS Reference Guide 135

V

unLock
Catalog >

unLock Var1[, Var2] [, Var3] ...
unLock Var.

Unlocks the specified variables or variable group. Locked variables
cannot be modified or deleted.

See Lock, page 70, and getLockInfo(), page 53.

varPop()
Catalog >

varPop(List[, freqList])  expression

Returns the population variance of List.

Each freqList element counts the number of consecutive occurrences
of the corresponding element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that element is ignored,
and the corresponding element in the other list is also ignored. For
more information on empty elements, see page 162.

varSamp()
Catalog >

varSamp(List[, freqList])  expression

Returns the sample variance of List.

Each freqList element counts the number of consecutive occurrences
of the corresponding element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that element is ignored,
and the corresponding element in the other list is also ignored. For
more information on empty elements, see page 162.

varSamp(Matrix1[, freqMatrix])  matrix

Returns a row vector containing the sample variance of each column
in Matrix1.

Each freqMatrix element counts the number of consecutive
occurrences of the corresponding element in Matrix1.

If an element in either matrix is empty (void), that element is ignored,
and the corresponding element in the other matrix is also ignored. For
more information on empty elements, see page 162.

Note: Matrix1 must contain at least two rows.

136 TI-Nspire™ CAS Reference Guide

W

warnCodes()
Catalog >

warnCodes(Expr1, StatusVar)  expression

Evaluates expression Expr1, returns the result, and stores the codes
of any generated warnings in the StatusVar list variable. If no
warnings are generated, this function assigns StatusVar an empty
list.

Expr1 can be any valid TI-Nspire™ or TI-Nspire™ CAS math
expression. You cannot use a command or assignment as Expr1.

StatusVar must be a valid variable name.

For a list of warning codes and associated messages, see page 174.

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

when()
Catalog >

when(Condition, trueResult [, falseResult][, unknownResult])

 expression

Returns trueResult, falseResult, or unknownResult, depending on
whether Condition is true, false, or unknown. Returns the input if
there are too few arguments to specify the appropriate result.

Omit both falseResult and unknownResult to make an expression
defined only in the region where Condition is true.

Use an undef falseResult to define an expression that graphs only
on an interval.

when() is helpful for defining recursive functions.

While
Catalog >

While Condition
Block

EndWhile

Executes the statements in Block as long as Condition is true.

Block can be either a single statement or a sequence of statements
separated with the “:” character.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

TI-Nspire™ CAS Reference Guide 137

X

Z

xor
Catalog >

BooleanExpr1 xor BooleanExpr2 returns Boolean expression
BooleanList1 xor BooleanList2 returns Boolean list
BooleanMatrix1 xor BooleanMatrix2 returns Boolean matrix

Returns true if BooleanExpr1 is true and BooleanExpr2 is false, or
vice versa.

Returns false if both arguments are true or if both are false. Returns a
simplified Boolean expression if either of the arguments cannot be
resolved to true or false.

Note: See or, page 87.

Integer1 xor Integer2  integer

Compares two real integers bit-by-bit using an xor operation.
Internally, both integers are converted to signed, 64-bit binary
numbers. When corresponding bits are compared, the result is 1 if
either bit (but not both) is 1; the result is 0 if both bits are 0 or both
bits are 1. The returned value represents the bit results, and is
displayed according to the Base mode.

You can enter the integers in any number base. For a binary or
hexadecimal entry, you must use the 0b or 0h prefix, respectively.
Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit
binary form, a symmetric modulo operation is used to bring the value
into the appropriate range. For more information, see 4Base2,
page 14.

Note: See or, page 87.

In Hex base mode:
Important: Zero, not the letter O.

In Bin base mode:

Note: A binary entry can have up to 64 digits (not counting the
0b prefix). A hexadecimal entry can have up to 16 digits.

zeros()
Catalog >

zeros(Expr, Var)  list

zeros(Expr, Var=Guess)  list

Returns a list of candidate real values of Var that make Expr=0.
zeros() does this by computing exp4list(solve(Expr=0,Var),Var).

For some purposes, the result form for zeros() is more convenient
than that of solve(). However, the result form of zeros() cannot
express implicit solutions, solutions that require inequalities, or
solutions that do not involve Var.

Note: See also cSolve(), cZeros(), and solve().

138 TI-Nspire™ CAS Reference Guide

zeros({Expr1, Expr2},

{VarOrGuess1, VarOrGuess2 [, …]})  matrix

Returns candidate real zeros of the simultaneous algebraic
expressions, where each VarOrGuess specifies an unknown whose
value you seek.

Optionally, you can specify an initial guess for a variable. Each
VarOrGuess must have the form:

variable
– or –
variable = real or non-real number

For example, x is valid and so is x=3.

If all of the expressions are polynomials and if you do NOT specify any
initial guesses, zeros() uses the lexical Gröbner/Buchberger
elimination method to attempt to determine all real zeros.

For example, suppose you have a circle of radius r at the origin and
another circle of radius r centered where the first circle crosses the
positive x-axis. Use zeros() to find the intersections.

As illustrated by r in the example to the right, simultaneous
polynomial expressions can have extra variables that have no values,
but represent given numeric values that could be substituted later.

Each row of the resulting matrix represents an alternate zero, with
the components ordered the same as the varOrGuess list. To extract
a row, index the matrix by [row].

Extract row 2:

You can also (or instead) include unknowns that do not appear in the
expressions. For example, you can include z as an unknown to extend
the previous example to two parallel intersecting cylinders of radius r.
The cylinder zeros illustrate how families of zeros might contain
arbitrary constants in the form ck, where k is an integer suffix from 1
through 255.

For polynomial systems, computation time or memory exhaustion
may depend strongly on the order in which you list unknowns. If your
initial choice exhausts memory or your patience, try rearranging the
variables in the expressions and/or varOrGuess list.

If you do not include any guesses and if any expression is non-
polynomial in any variable but all expressions are linear in the
unknowns, zeros() uses Gaussian elimination to attempt to
determine all real zeros.

zeros()
Catalog >

TI-Nspire™ CAS Reference Guide 139

If a system is neither polynomial in all of its variables nor linear in its
unknowns, zeros() determines at most one zero using an
approximate iterative method. To do so, the number of unknowns
must equal the number of expressions, and all other variables in the
expressions must simplify to numbers.

Each unknown starts at its guessed value if there is one; otherwise, it
starts at 0.0.

Use guesses to seek additional zeros one by one. For convergence, a
guess may have to be rather close to a zero.

zInterval
Catalog >

zInterval s,List[,Freq[,CLevel]]

(Data list input)

zInterval s,v,n [,CLevel]

(Summary stats input)

Computes a z confidence interval. A summary of results is stored in
the stat.results variable. (See page 120.)

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.CLower, stat.CUpper Confidence interval for an unknown population mean

stat.x Sample mean of the data sequence from the normal random distribution

stat.ME Margin of error

stat.sx Sample standard deviation

stat.n Length of the data sequence with sample mean

stat.s Known population standard deviation for data sequence List

zInterval_1Prop
Catalog >

zInterval_1Prop x,n [,CLevel]

Computes a one-proportion z confidence interval. A summary of
results is stored in the stat.results variable. (See page 120.)

x is a non-negative integer.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.Ç The calculated proportion of successes

stat.ME Margin of error

zeros()
Catalog >

140 TI-Nspire™ CAS Reference Guide

stat.n Number of samples in data sequence

zInterval_2Prop
Catalog >

zInterval_2Prop x1,n1,x2,n2[,CLevel]

Computes a two-proportion z confidence interval. A summary of
results is stored in the stat.results variable. (See page 120.)

x1 and x2 are non-negative integers.

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.Ç Diff The calculated difference between proportions

stat.ME Margin of error

stat.Ç1 First sample proportion estimate

stat.Ç2 Second sample proportion estimate

stat.n1 Sample size in data sequence one

stat.n2 Sample size in data sequence two

zInterval_2Samp
Catalog >

zInterval_2Samp s1,s2 ,List1,List2[,Freq1[,Freq2,[CLevel]]]

(Data list input)

zInterval_2Samp s1,s2,v1,n1,v2,n2[,CLevel]

(Summary stats input)

Computes a two-sample z confidence interval. A summary of results is
stored in the stat.results variable. (See page 120.)

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.CLower, stat.CUpper Confidence interval containing confidence level probability of distribution

stat.x1-x2 Sample means of the data sequences from the normal random distribution

stat.ME Margin of error

stat.x1, stat.x2 Sample means of the data sequences from the normal random distribution

stat.sx1, stat.sx2 Sample standard deviations for List 1 and List 2

stat.n1, stat.n2 Number of samples in data sequences

stat.r1, stat.r2 Known population standard deviations for data sequence List 1 and List 2

Output variable Description

TI-Nspire™ CAS Reference Guide 141

zTest
Catalog >

zTest m0,s,List,[Freq[,Hypoth]]

(Data list input)

zTest m0,s,v,n[,Hypoth]

(Summary stats input)

Performs a z test with frequency freqlist. A summary of results is
stored in the stat.results variable. (See page 120.)

Test H0: m = m0, against one of the following:

For Ha: m < m0, set Hypoth<0
For Ha: m ƒ m0 (default), set Hypoth=0
For Ha: m > m0, set Hypoth>0

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.z (x N m0) / (s / sqrt(n))

stat.P Value Least probability at which the null hypothesis can be rejected

stat.x Sample mean of the data sequence in List

stat.sx Sample standard deviation of the data sequence. Only returned for Data input.

stat.n Size of the sample

zTest_1Prop
Catalog >

zTest_1Prop p0,x,n[,Hypoth]

Computes a one-proportion z test. A summary of results is stored in
the stat.results variable. (See page 120.)

x is a non-negative integer.

Test H0: p = p0 against one of the following:

For Ha: p > p0, set Hypoth>0
For Ha: p ƒ p0 (default), set Hypoth=0
For Ha: p < p0, set Hypoth<0

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.p0 Hypothesized population proportion

stat.z Standard normal value computed for the proportion

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.Ç Estimated sample proportion

stat.n Size of the sample

142 TI-Nspire™ CAS Reference Guide

zTest_2Prop
Catalog >

zTest_2Prop x1,n1,x2,n2[,Hypoth]

Computes a two-proportion z test. A summary of results is stored in
the stat.results variable. (See page 120.)

x1 and x2 are non-negative integers.

Test H0: p1 = p2, against one of the following:

For Ha: p1 > p2, set Hypoth>0
For Ha: p1 ƒ p2 (default), set Hypoth=0
For Ha: p < p0, set Hypoth<0

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.z Standard normal value computed for the difference of proportions

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.Ç1 First sample proportion estimate

stat.Ç2 Second sample proportion estimate

stat.Ç Pooled sample proportion estimate

stat.n1, stat.n2 Number of samples taken in trials 1 and 2

zTest_2Samp
Catalog >

zTest_2Samp s1,s2 ,List1,List2[,Freq1[,Freq2[,Hypoth]]]

(Data list input)

zTest_2Samp s1,s2,v1,n1,v2,n2[,Hypoth]

(Summary stats input)

Computes a two-sample z test. A summary of results is stored in the
stat.results variable. (See page 120.)

Test H0: m1 = m2, against one of the following:

For Ha: m1 < m2, set Hypoth<0
For Ha: m1 ƒ m2 (default), set Hypoth=0
For Ha: m1 > m2, Hypoth>0

For information on the effect of empty elements in a list, see “Empty
(Void) Elements” on page 162.

Output variable Description

stat.z Standard normal value computed for the difference of means

stat.PVal Smallest level of significance at which the null hypothesis can be rejected

stat.x1, stat.x2 Sample means of the data sequences in List1 and List2

stat.sx1, stat.sx2 Sample standard deviations of the data sequences in List1 and List2

stat.n1, stat.n2 Size of the samples

TI-Nspire™ CAS Reference Guide 143

Symbols

+ (add) + key

Expr1 + Expr2  expression

Returns the sum of the two arguments.

List1 + List2  list
Matrix1 + Matrix2  matrix

Returns a list (or matrix) containing the sums of corresponding
elements in List1 and List2 (or Matrix1 and Matrix2).

Dimensions of the arguments must be equal.

Expr + List1  list
List1 + Expr  list

Returns a list containing the sums of Expr and each element in List1.

Expr + Matrix1  matrix
Matrix1 + Expr  matrix

Returns a matrix with Expr added to each element on the diagonal of
Matrix1. Matrix1 must be square.

Note: Use .+ (dot plus) to add an expression to each element.

N(subtract) - key

Expr1 N Expr2  expression

Returns Expr1 minus Expr2.

List1 N List2  list

Matrix1 N Matrix2  matrix

Subtracts each element in List2 (or Matrix2) from the corresponding
element in List1 (or Matrix1), and returns the results.

Dimensions of the arguments must be equal.

Expr N List1  list

List1 N Expr  list

Subtracts each List1 element from Expr or subtracts Expr from each
List1 element, and returns a list of the results.

144 TI-Nspire™ CAS Reference Guide

Expr N Matrix1  matrix

Matrix1 N Expr  matrix

Expr N Matrix1 returns a matrix of Expr times the identity matrix
minus Matrix1. Matrix1 must be square.

Matrix1 N Expr returns a matrix of Expr times the identity matrix
subtracted from Matrix1. Matrix1 must be square.

Note: Use .N (dot minus) to subtract an expression from each
element.

·(multiply) r key

Expr1 ·Expr2  expression

Returns the product of the two arguments.

List1·List2  list

Returns a list containing the products of the corresponding elements
in List1 and List2.

Dimensions of the lists must be equal.

Matrix1 ·Matrix2  matrix

Returns the matrix product of Matrix1 and Matrix2.

The number of columns in Matrix1 must equal the number of rows in
Matrix2.

Expr ·List1  list

List1 ·Expr  list

Returns a list containing the products of Expr and each element in
List1.

Expr ·Matrix1  matrix

Matrix1 ·Expr  matrix

Returns a matrix containing the products of Expr and each element in
Matrix1.

Note: Use .·(dot multiply) to multiply an expression by each
element.

à (divide)
p key

Expr1 à Expr2  expression

Returns the quotient of Expr1 divided by Expr2.

Note: See also Fraction template, page 1.

N(subtract) - key

TI-Nspire™ CAS Reference Guide 145

List1 à List2  list

Returns a list containing the quotients of List1 divided by List2.
Dimensions of the lists must be equal.

Expr à List1  list

List1 à Expr  list

Returns a list containing the quotients of Expr divided by List1

or List1 divided by Expr.

Matrix1 à Expr  matrix

Returns a matrix containing the quotients of Matrix1àExpr.
Note: Use . / (dot divide) to divide an expression by each element.

^ (power) l key

Expr1 ^ Expr2  expression
List1 ^ List2  list

Returns the first argument raised to the power of the second
argument.

Note: See also Exponent template, page 1.

For a list, returns the elements in List1 raised to the power of the
corresponding elements in List2.

In the real domain, fractional powers that have reduced exponents
with odd denominators use the real branch versus the principal
branch for complex mode.

Expr ^ List1  list

Returns Expr raised to the power of the elements in List1.

List1 ^ Expr  list

Returns the elements in List1 raised to the power of Expr.

squareMatrix1 ^ integer  matrix

Returns squareMatrix1 raised to the integer power.

squareMatrix1 must be a square matrix.

If integer = L1, computes the inverse matrix.
If integer < L1, computes the inverse matrix to an appropriate
positive power.

à (divide)
p key

146 TI-Nspire™ CAS Reference Guide

x2 (square) q key

Expr12  expression
Returns the square of the argument.

List12  list

Returns a list containing the squares of the elements in List1.

squareMatrix12  matrix

Returns the matrix square of squareMatrix1. This is not the same as
calculating the square of each element. Use .^2 to calculate the
square of each element.

.+ (dot add) ^+ keys

Matrix1 .+ Matrix2  matrix
Expr .+ Matrix1  matrix

Matrix1 .+ Matrix2 returns a matrix that is the sum of each pair of
corresponding elements in Matrix1 and Matrix2.

Expr .+ Matrix1 returns a matrix that is the sum of Expr and each
element in Matrix1.

.. (dot subt.) ^- keys

Matrix1 .N Matrix2  matrix

Expr .NMatrix1  matrix

Matrix1 .NMatrix2 returns a matrix that is the difference between
each pair of corresponding elements in Matrix1 and Matrix2.

Expr .NMatrix1 returns a matrix that is the difference of Expr and

each element in Matrix1.

.·(dot mult.) ^r keys

Matrix1 .· Matrix2  matrix

Expr .·Matrix1  matrix

Matrix1 .· Matrix2 returns a matrix that is the product of each pair
of corresponding elements in Matrix1 and Matrix2.

Expr .· Matrix1 returns a matrix containing the products of Expr
and each element in Matrix1.

TI-Nspire™ CAS Reference Guide 147

. / (dot divide) ^p keys

Matrix1 . / Matrix2  matrix

Expr . / Matrix1  matrix

Matrix1 ./ Matrix2 returns a matrix that is the quotient of each pair
of corresponding elements in Matrix1 and Matrix2.

Expr ./ Matrix1 returns a matrix that is the quotient of Expr and
each element in Matrix1.

.^ (dot power) ^l keys

Matrix1 .^ Matrix2  matrix

Expr . ^ Matrix1  matrix

Matrix1 .^ Matrix2 returns a matrix where each element in Matrix2
is the exponent for the corresponding element in Matrix1.

Expr .^ Matrix1 returns a matrix where each element in Matrix1 is
the exponent for Expr.

L(negate) v key

LExpr1  expression
LLList1  list
LMatrix1  matrix

Returns the negation of the argument.

For a list or matrix, returns all the elements negated.

If the argument is a binary or hexadecimal integer, the negation gives
the two’s complement.

In Bin base mode:

To see the entire result, press £ and then use ¡ and ¢ to
move the cursor.

% (percent) /k keys

Expr1 %  expression
List1 %  list
Matrix1 %  matrix

Returns

For a list or matrix, returns a list or matrix with each element divided
by 100.

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

Important: Zero, not the letter O

148 TI-Nspire™ CAS Reference Guide

= (equal) = key

Expr1 = Expr2  Boolean expression

List1 = List2  Boolean list

Matrix1 = Matrix2  Boolean matrix

Returns true if Expr1 is determined to be equal to Expr2.

Returns false if Expr1 is determined to not be equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

Example function that uses math test symbols: =, ƒ, <, {, >, |

Result of graphing g(x)

ƒ (not equal) /= keys

Expr1 ƒ Expr2  Boolean expression

List1 ƒ List2  Boolean list

Matrix1 ƒ Matrix2  Boolean matrix

Returns true if Expr1 is determined to be not equal to Expr2.

Returns false if Expr1 is determined to be equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing /=

See “=” (equal) example.

< (less than) /= keys

Expr1 < Expr2  Boolean expression

List1 < List2  Boolean list

Matrix1 < Matrix2  Boolean matrix

Returns true if Expr1 is determined to be less than Expr2.

Returns false if Expr1 is determined to be greater than or equal to
Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

See “=” (equal) example.

TI-Nspire™ CAS Reference Guide 149

{ (less or equal) /= keys

Expr1 { Expr2  Boolean expression

List1 { List2  Boolean list

Matrix1 { Matrix2  Boolean matrix

Returns true if Expr1 is determined to be less than or equal to Expr2.

Returns false if Expr1 is determined to be greater than Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing <=

See “=” (equal) example.

> (greater than) /= keys

Expr1 > Expr2  Boolean expression

List1 > List2  Boolean list

Matrix1 > Matrix2  Boolean matrix

Returns true if Expr1 is determined to be greater than Expr2.

Returns false if Expr1 is determined to be less than or equal to
Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

See “=” (equal) example.

| (greater or equal) /= keys

Expr1 | Expr2  Boolean expression

List1 | List2  Boolean list

Matrix1 | Matrix2  Boolean matrix

Returns true if Expr1 is determined to be greater than or equal to
Expr2.

Returns false if Expr1 is determined to be less than Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing >=

See “=” (equal) example.

 (logical implication) /= keys

BooleanExpr1  BooleanExpr2 returns Boolean expression
BooleanList1  BooleanList2 returns Boolean list
BooleanMatrix1  BooleanMatrix2 returns Boolean matrix
Integer1  Integer2 returns Integer

Evaluates the expression not <argument1> or <argument2> and
returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing =>

150 TI-Nspire™ CAS Reference Guide

⇔ (logical double implication, XNOR) /= keys

BooleanExpr1 ⇔ BooleanExpr2 returns Boolean expression
BooleanList1 ⇔ BooleanList2 returns Boolean list
BooleanMatrix1 ⇔ BooleanMatrix2 returns Boolean matrix
Integer1 ⇔ Integer2 returns Integer

Returns the negation of an XOR Boolean operation on the two
arguments. Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing <=>

! (factorial) º key

Expr1!  expression
List1!  list
Matrix1!  matrix

Returns the factorial of the argument.

For a list or matrix, returns a list or matrix of factorials of the
elements.

& (append) /k keys

String1 & String2  string

Returns a text string that is String2 appended to String1.

d() (derivative)
Catalog >

d(Expr1, Var[, Order])  expression

d(List1, Var[, Order])  list

d(Matrix1,Var[, Order])  matrix

Returns the first derivative of the first argument with respect to
variable Var.

Order, if included, must be an integer. If the order is less than zero,
the result will be an anti-derivative.

Note: You can insert this function from the keyboard by typing
derivative(...).

d() does not follow the normal evaluation mechanism of fully
simplifying its arguments and then applying the function definition to
these fully simplified arguments. Instead, d() performs the following
steps:

1. Simplify the second argument only to the extent that it does not
lead to a non-variable.

2. Simplify the first argument only to the extent that it does recall
any stored value for the variable determined by step 1.

3. Determine the symbolic derivative of the result of step 2 with
respect to the variable from step 1.

If the variable from step 1 has a stored value or a value specified by
the constraint (“|”) operator, substitute that value into the result from
step 3.

Note: See also First derivative, page 5;
Second derivative, page 5; or Nth derivative, page 5.

TI-Nspire™ CAS Reference Guide 151

‰() (integral) Catalog >

‰(Expr1, Var[, Lower, Upper])  expression

‰(Expr1, Var[, Constant])  expression

Returns the integral of Expr1 with respect to the variable Var from
Lower to Upper.

Note: See also Definite or Indefinite integral template, page
5.

Note: You can insert this function from the keyboard by typing
integral(...).

If Lower and Upper are omitted, returns an anti-derivative. A
symbolic constant of integration is omitted unless you provide the
Constant argument.

Equally valid anti-derivatives might differ by a numeric constant. Such
a constant might be disguised—particularly when an anti-derivative
contains logarithms or inverse trigonometric functions. Moreover,
piecewise constant expressions are sometimes added to make an
anti-derivative valid over a larger interval than the usual formula.

‰() returns itself for pieces of Expr1 that it cannot determine as an
explicit finite combination of its built-in functions and operators.

When you provide Lower and Upper, an attempt is made to locate
any discontinuities or discontinuous derivatives in the interval Lower
< Var < Upper and to subdivide the interval at those places.

For the Auto setting of the Auto or Approximate mode,
numerical integration is used where applicable when an anti-
derivative or a limit cannot be determined.

For the Approximate setting, numerical integration is tried first, if
applicable. Anti-derivatives are sought only where such numerical
integration is inapplicable or fails.

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

‰() can be nested to do multiple integrals. Integration limits can
depend on integration variables outside them.

Note: See also nInt(), page 82.

152 TI-Nspire™ CAS Reference Guide

‡() (square root) /q keys

‡ (Expr1)  expression
‡ (List1)  list

Returns the square root of the argument.

For a list, returns the square roots of all the elements in List1.
Note: You can insert this function from the keyboard by typing
sqrt(...)

Note: See also Square root template, page 1.

Π() (prodSeq) Catalog >

Π(Expr1, Var, Low, High)  expression

Note: You can insert this function from the keyboard by typing
prodSeq(...).

Evaluates Expr1 for each value of Var from Low to High, and returns
the product of the results.

Note: See also Product template (Π), page 4.

Π(Expr1, Var, Low, LowN1)  1

Π(Expr1, Var, Low, High)
 1/Π(Expr1, Var, High+1, LowN1) if High < LowN1

The product formulas used are derived from the following reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: A Foundation for Computer Science. Reading,
Massachusetts: Addison-Wesley, 1994.

TI-Nspire™ CAS Reference Guide 153

G() (sumSeq) Catalog >

G(Expr1, Var, Low, High)  expression

Note: You can insert this function from the keyboard by typing
sumSeq(...).

Evaluates Expr1 for each value of Var from Low to High, and returns
the sum of the results.

Note: See also Sum template, page 4.

G(Expr1, Var, Low, LowN1)  0

G(Expr1, Var, Low, High)
 MG(Expr1, Var, High+1, LowN1) if High < LowN1

The summation formulas used are derived from the following
reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete
Mathematics: A Foundation for Computer Science. Reading,
Massachusetts: Addison-Wesley, 1994.

154 TI-Nspire™ CAS Reference Guide

GInt() Catalog >

GInt(NPmt1, NPmt2, N, I, PV ,[Pmt], [FV], [PpY], [CpY],
[PmtAt], [roundValue])  value

GInt(NPmt1,NPmt2,amortTable)  value

Amortization function that calculates the sum of the interest during a
specified range of payments.

NPmt1 and NPmt2 define the start and end boundaries of the
payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 132.

• If you omit Pmt, it defaults to
Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt are the same as for the

TVM functions.

roundValue specifies the number of decimal places for rounding.
Default=2.

GInt(NPmt1,NPmt2,amortTable) calculates the sum of the interest
based on amortization table amortTable. The amortTable argument
must be a matrix in the form described under amortTbl(), page 7.

Note: See also GPrn(), below, and Bal(), page 13.

GPrn() Catalog >

GPrn(NPmt1, NPmt2, N, I, PV, [Pmt], [FV], [PpY], [CpY],
[PmtAt], [roundValue])  value

GPrn(NPmt1,NPmt2,amortTable)  value

Amortization function that calculates the sum of the principal during
a specified range of payments.

NPmt1 and NPmt2 define the start and end boundaries of the
payment range.

N, I, PV, Pmt, FV, PpY, CpY, and PmtAt are described in the table
of TVM arguments, page 132.

• If you omit Pmt, it defaults to
Pmt=tvmPmt(N,I,PV,FV,PpY,CpY,PmtAt).

• If you omit FV, it defaults to FV=0.
• The defaults for PpY, CpY, and PmtAt are the same as for the

TVM functions.

roundValue specifies the number of decimal places for rounding.
Default=2.

GPrn(NPmt1,NPmt2,amortTable) calculates the sum of the
principal paid based on amortization table amortTable. The
amortTable argument must be a matrix in the form described under
amortTbl(), page 7.

Note: See also GInt(), above, and Bal(), page 13.

TI-Nspire™ CAS Reference Guide 155

(indirection) /k keys

varNameString

Refers to the variable whose name is varNameString. This lets you
use strings to create variable names from within a function. Creates or refers to the variable xyz .

Returns the value of the variable (r) whose name is stored in
variable s1.

E (scientific notation) i key

mantissaEexponent

Enters a number in scientific notation. The number is interpreted as
mantissa × 10exponent.

Hint: If you want to enter a power of 10 without causing a decimal
value result, use 10^integer.

Note: You can insert this operator from the computer keyboard by
typing @E. for example, type 2.3@E4 to enter 2.3E4.

g (gradian) ¹ key

Expr1g  expression

List1g  list

Matrix1g  matrix

This function gives you a way to specify a gradian angle while in the
Degree or Radian mode.

In Radian angle mode, multiplies Expr1 by p/200.

In Degree angle mode, multiplies Expr1 by g/100.

In Gradian mode, returns Expr1 unchanged.

Note: You can insert this symbol from the computer keyboard by
typing @g.

In Degree, Gradian or Radian mode:

R(radian) ¹ key

Expr1R  expression
List1R  list
Matrix1R  matrix

This function gives you a way to specify a radian angle while in
Degree or Gradian mode.

In Degree angle mode, multiplies the argument by 180/p.

In Radian angle mode, returns the argument unchanged.

In Gradian mode, multiplies the argument by 200/p.

Hint: Use R if you want to force radians in a function definition
regardless of the mode that prevails when the function is used.

Note: You can insert this symbol from the computer keyboard by
typing @r.

In Degree, Gradian or Radian angle mode:

156 TI-Nspire™ CAS Reference Guide

¡ (degree) ¹ key

Expr1¡  expression
List1¡  list
Matrix1¡  matrix

This function gives you a way to specify a degree angle while in
Gradian or Radian mode.

In Radian angle mode, multiplies the argument by p/180.

In Degree angle mode, returns the argument unchanged.

In Gradian angle mode, multiplies the argument by 10/9.

Note: You can insert this symbol from the computer keyboard by
typing @d.

In Degree, Gradian or Radian angle mode:

In Radian angle mode:

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

¡, ', '' (degree/minute/second) /k keys

dd¡mm'ss.ss''  expression

dd A positive or negative number

mm A non-negative number

ss.ss A non-negative number

Returns dd+(mm/60)+(ss.ss/3600).

This base-60 entry format lets you:

• Enter an angle in degrees/minutes/seconds without regard to the
current angle mode.

• Enter time as hours/minutes/seconds.

Note: Follow ss.ss with two apostrophes (''), not a quote symbol (").

In Degree angle mode:

± (angle) /k keys

[Radius,±q_Angle]  vector
(polar input)

[Radius,±q_Angle,Z_Coordinate]  vector
(cylindrical input)

[Radius,±q_Angle,±q_Angle]  vector
(spherical input)

Returns coordinates as a vector depending on the Vector Format
mode setting: rectangular, cylindrical, or spherical.

Note: You can insert this symbol from the computer keyboard by
typing @<.

In Radian mode and vector format set to:
rectangular

cylindrical

spherical

TI-Nspire™ CAS Reference Guide 157

(Magnitude ± Angle)  complexValue
(polar input)

Enters a complex value in (r±q) polar form. The Angle is interpreted
according to the current Angle mode setting.

In Radian angle mode and Rectangular complex format:

Press Ctrl+Enter /· (Macintosh®: “+Enter) to
evaluate:

' (prime) º key

variable '
variable ''

Enters a prime symbol in a differential equation. A single prime
symbol denotes a 1st-order differential equation, two prime symbols
denote a 2nd-order, and so on.

_ (underscore as an empty element) See “Empty (Void) Elements” , page 162.

_ (underscore as unit designator) /_ keys

Expr_Unit

Designates the units for an Expr. All unit names must begin with an
underscore.

You can use pre-defined units or create your own units. For a list of
pre-defined units, open the Catalog and display the Unit Conversions
tab. You can select unit names from the Catalog or type the unit
names directly.

Note: You can find the conversion symbol, 4, in the Catalog.

Click , and then click Math Operators.

Variable_

When Variable has no value, it is treated as though it represents a
complex number. By default, without the _ , the variable is treated as
real.

If Variable has a value, the _ is ignored and Variable retains its
original data type.

Note: You can store a complex number to a variable without
using _ . However, for best results in calculations such as cSolve()
and cZeros(), the _ is recommended.

Assuming z is undefined:

± (angle) /k keys

158 TI-Nspire™ CAS Reference Guide

4 (convert) /k keys

Expr_Unit1 4 _Unit2  Expr_Unit2

Converts an expression from one unit to another.

The _ underscore character designates the units. The units must be in
the same category, such as Length or Area.

For a list of pre-defined units, open the Catalog and display the Unit
Conversions tab:

• You can select a unit name from the list.
• You can select the conversion operator, 4, from the top of the list.

You can also type unit names manually. To type “_” when typing unit

names on the handheld, press /_.

Note: To convert temperature units, use tmpCnv() and
@tmpCnv(). The 4 conversion operator does not handle temperature
units.

10^()
Catalog >

10^ (Expr1)  expression
10^ (List1)  list

Returns 10 raised to the power of the argument.

For a list, returns 10 raised to the power of the elements in List1.

10^(squareMatrix1)  squareMatrix

Returns 10 raised to the power of squareMatrix1. This is not the
same as calculating 10 raised to the power of each element. For
information about the calculation method, refer to cos().

squareMatrix1 must be diagonalizable. The result always contains
floating-point numbers.

^/(reciprocal) Catalog >

Expr1 ^/  expression
List1 ^/  list

Returns the reciprocal of the argument.

For a list, returns the reciprocals of the elements in List1.

squareMatrix1 ^/  squareMatrix

Returns the inverse of squareMatrix1.

squareMatrix1 must be a non-singular square matrix.

TI-Nspire™ CAS Reference Guide 159

| (constraint operator) /k keys

Expr | BooleanExpr1 [and BooleanExpr2]...
Expr | BooleanExpr1 [or BooleanExpr2]...

The constraint (“|”) symbol serves as a binary operator. The operand
to the left of | is an expression. The operand to the right of | specifies
one or more relations that are intended to affect the simplification of
the expression. Multiple relations after | must be joined by logical
“and” or “or” operators.

The constraint operator provides three basic types of functionality:

• Substitutions
• Interval constraints
• Exclusions

Substitutions are in the form of an equality, such as x=3 or y=sin(x).
To be most effective, the left side should be a simple variable. Expr |
Variable = value will substitute value for every occurrence of
Variable in Expr.

Interval constraints take the form of one or more inequalities joined
by logical “and” or “or” operators. Interval constraints also permit
simplification that otherwise might be invalid or not computable.

Exclusions use the “not equals” (/= or ƒ) relational operator to
exclude a specific value from consideration. They are used primarily to
exclude an exact solution when using cSolve(), cZeros(), fMax(),
fMin(), solve(), zeros(), and so on.

160 TI-Nspire™ CAS Reference Guide

& (store) /h key

Expr & Var
List & Var
Matrix & Var
Expr & Function(Param1,...)
List & Function(Param1,...)
Matrix & Function(Param1,...)

If the variable Var does not exist, creates it and initializes it to Expr,
List, or Matrix.

If the variable Var already exists and is not locked or protected,
replaces its contents with Expr, List, or Matrix.

Hint: If you plan to do symbolic computations using undefined
variables, avoid storing anything into commonly used, one-letter
variables such as a, b, c, x, y, z, and so on.

Note: You can insert this operator from the keyboard by typing =:
as a shortcut. For example, type pi/4 =: myvar.

:= (assign) /t keys

Var := Expr
Var := List
Var := Matrix
Function(Param1,...) := Expr
Function(Param1,...) := List
Function(Param1,...) := Matrix

If variable Var does not exist, creates Var and initializes it to Expr,
List, or Matrix.

If Var already exists and is not locked or protected, replaces its
contents with Expr, List, or Matrix.

Hint: If you plan to do symbolic computations using undefined
variables, avoid storing anything into commonly used, one-letter
variables such as a, b, c, x, y, z, and so on.

© (comment) /k keys

© [text]

© processes text as a comment line, allowing you to annotate
functions and programs that you create.

© can be at the beginning or anywhere in the line. Everything to the
right of ©, to the end of the line, is the comment.

Note for entering the example: In the Calculator application

on the handheld, you can enter multi-line definitions by pressing @

instead of · at the end of each line. On the computer keyboard,
hold down Alt and press Enter.

TI-Nspire™ CAS Reference Guide 161

0b, 0h 0B keys, 0H keys

0b binaryNumber
0h hexadecimalNumber

Denotes a binary or hexadecimal number, respectively. To enter a
binary or hex number, you must enter the 0b or 0h prefix regardless of
the Base mode. Without a prefix, a number is treated as decimal
(base 10).

Results are displayed according to the Base mode.

In Dec base mode:

In Bin base mode:

In Hex base mode:

162 TI-Nspire™ CAS Reference Guide

Empty (Void) Elements
When analyzing real-world data, you might not always have a complete data set.
TI-Nspire™ CAS Software allows empty, or void, data elements so you can proceed with the
nearly complete data rather than having to start over or discard the incomplete cases.

You can find an example of data involving empty elements in the Lists & Spreadsheet chapter,
under “Graphing spreadsheet data.”

The delVoid() function lets you remove empty elements from a list. The isVoid() function lets you
test for an empty element. For details, see delVoid(), page 35, and isVoid(), page 61.

Note: To enter an empty element manually in a math expression, type “_” or the keyword
void. The keyword void is automatically converted to a “_” symbol when the expression is
evaluated. To type “_” on the handheld, press /_.

Calculations involving void elements

The majority of calculations involving a void input will produce a void
result. See special cases below.

List arguments containing void elements

The following functions and commands ignore (skip) void elements
found in list arguments.

count, countIf, cumulativeSum, freqTable4list, frequency,
max, mean, median, product, stDevPop, stDevSamp, sum,
sumIf, varPop, and varSamp, as well as regression calculations,
OneVar, TwoVar, and FiveNumSummary statistics, confidence
intervals, and stat tests

SortA and SortD move all void elements within the first argument
to the bottom.

TI-Nspire™ CAS Reference Guide 163

In regressions, a void in an X or Y list introduces a void for the
corresponding element of the residual.

An omitted category in regressions introduces a void for the
corresponding element of the residual.

A frequency of 0 in regressions introduces a void for the
corresponding element of the residual.

List arguments containing void elements(continued)

164 TI-Nspire™ CAS Reference Guide

Shortcuts for Entering Math Expressions
Shortcuts let you enter elements of math expressions by typing instead of using the Catalog or
Symbol Palette. For example, to enter the expression ‡6, you can type sqrt(6) on the entry line.
When you press ·, the expression sqrt(6) is changed to ‡6. Some shortrcuts are useful from
both the handheld and the computer keyboard. Others are useful primarily from the computer
keyboard.

From the Handheld or Computer Keyboard

From the Computer Keyboard

To enter this: Type this shortcut:

p pi

q theta

ˆ infinity

{ <=

| >=

ƒ /=

 (logical implication) =>

⇔ (logical double
implication, XNOR)

<=>

& (store operator) =:

| | (absolute value) abs(...)

‡() sqrt(...)

d() derivative(...)

‰() integral(...)

G() (Sum template) sumSeq(...)

Π() (Product template) prodSeq(...)

sin/(), cos/(), ... arcsin(...), arccos(...), ...

@List() deltaList(...)

@tmpCnv() deltaTmpCnv(...)

To enter this: Type this shortcut:

c1, c2, ... (constants) @c1, @c2, ...

n1, n2, ... (integer constants) @n1, @n2, ...

i (imaginary constant) @i

TI-Nspire™ CAS Reference Guide 165

e (natural log base e) @e

E (scientific notation) @E

T (transpose) @t

R (radians) @r

¡ (degrees) @d

g (gradians) @g

± (angle) @<

4 (conversion) @>

4Decimal, 4approxFraction(), and
so on.

@>Decimal, @>approxFraction(), and so on.

To enter this: Type this shortcut:

166 TI-Nspire™ CAS Reference Guide

EOS™ (Equation Operating System) Hierarchy
This section describes the Equation Operating System (EOS™) that is used by the
TI-Nspire™ CAS math and science learning technology. Numbers, variables, and functions are
entered in a simple, straightforward sequence. EOS™ software evaluates expressions and
equations using parenthetical grouping and according to the priorities described below.

Order of Evaluation

Parentheses, Brackets, and Braces

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For example,
in the expression 4(1+2), EOS™ software first evaluates the portion of the expression inside the
parentheses, 1+2, and then multiplies the result, 3, by 4.

The number of opening and closing parentheses, brackets, and braces must be the same within
an expression or equation. If not, an error message is displayed that indicates the missing
element. For example, (1+2)/(3+4 will display the error message “Missing).”

Level Operator

1 Parentheses (), brackets [], braces { }

2 Indirection (#)

3 Function calls

4 Post operators: degrees-minutes-seconds (¡,',"), factorial (!), percentage (%), radian

(R), subscript ([]), transpose (T)

5 Exponentiation, power operator (^)

6 Negation (L)

7 String concatenation (&)

8 Multiplication (†), division (/)

9 Addition (+), subtraction (-)

10 Equality relations: equal (=), not equal (ƒ or /=),
less than (<), less than or equal ({ or <=), greater than (>), greater than or equal
(| or >=)

11 Logical not

12 Logical and

13 Logical or

14 xor, nor, nand

15 Logical implication ()

16 Logical double implication, XNOR (⇔)

17 Constraint operator (“|”)

18 Store (&)

TI-Nspire™ CAS Reference Guide 167

Note: Because the TI-Nspire™ CAS software allows you to define your own functions, a
variable name followed by an expression in parentheses is considered a “function call” instead
of implied multiplication. For example a(b+c) is the function a evaluated by b+c. To multiply
the expression b+c by the variable a, use explicit multiplication: a∗(b+c).

Indirection

The indirection operator (#) converts a string to a variable or function name. For example,
#(“x”&”y”&”z”) creates the variable name xyz. Indirection also allows the creation and
modification of variables from inside a program. For example, if 10&r and “r”&s1, then #s1=10.

Post Operators

Post operators are operators that come directly after an argument, such as 5!, 25%, or 60¡15'
45". Arguments followed by a post operator are evaluated at the fourth priority level. For
example, in the expression 4^3!, 3! is evaluated first. The result, 6, then becomes the exponent
of 4 to yield 4096.

Exponentiation

Exponentiation (^) and element-by-element exponentiation (.^) are evaluated from right to
left. For example, the expression 2^3^2 is evaluated the same as 2^(3^2) to produce 512. This
is different from (2^3)^2, which is 64.

Negation

To enter a negative number, press v followed by the number. Post operations and

exponentiation are performed before negation. For example, the result of Lx2 is a negative
number, and L92 = L81. Use parentheses to square a negative number such as (L9)2 to produce
81.

Constraint (“|”)

The argument following the constraint (“|”) operator provides a set of constraints that affect
the evaluation of the argument preceding the operator.

168 TI-Nspire™ CAS Reference Guide

Error Codes and Messages
When an error occurs, its code is assigned to variable errCode. User-defined programs and
functions can examine errCode to determine the cause of an error. For an example of using
errCode, See Example 2 under the Try command, page 130.

Note: Some error conditions apply only to TI-Nspire™ CAS products, and some apply only to
TI-Nspire™ products.

Error code Description

10 A function did not return a value

20 A test did not resolve to TRUE or FALSE.
Generally, undefined variables cannot be compared. For example, the test If a<b will cause this error if either a or
b is undefined when the If statement is executed.

30 Argument cannot be a folder name.

40 Argument error

50 Argument mismatch
Two or more arguments must be of the same type.

60 Argument must be a Boolean expression or integer

70 Argument must be a decimal number

90 Argument must be a list

100 Argument must be a matrix

130 Argument must be a string

140 Argument must be a variable name.
Make sure that the name:
• does not begin with a digit
• does not contain spaces or special characters
• does not use underscore or period in invalid manner
• does not exceed the length limitations
See the Calculator section in the documentation for more details.

160 Argument must be an expression

165 Batteries too low for sending or receiving
Install new batteries before sending or receiving.

170 Bound
The lower bound must be less than the upper bound to define the search interval.

180 Break

The d or c key was pressed during a long calculation or during program execution.

190 Circular definition
This message is displayed to avoid running out of memory during infinite replacement of variable values during
simplification. For example, a+1->a, where a is an undefined variable, will cause this error.

200 Constraint expression invalid
For example, solve(3x^2-4=0,x) | x<0 or x>5 would produce this error message because the constraint is
separated by “or” instead of “and.”

210 Invalid Data type
An argument is of the wrong data type.

220 Dependent limit

TI-Nspire™ CAS Reference Guide 169

230 Dimension
A list or matrix index is not valid. For example, if the list {1,2,3,4} is stored in L1, then L1[5] is a dimension error
because L1 only contains four elements.

235 Dimension Error. Not enough elements in the lists.

240 Dimension mismatch
Two or more arguments must be of the same dimension. For example, [1,2]+[1,2,3] is a dimension mismatch
because the matrices contain a different number of elements.

250 Divide by zero

260 Domain error
An argument must be in a specified domain. For example, rand(0) is not valid.

270 Duplicate variable name

280 Else and ElseIf invalid outside of If...EndIf block

290 EndTry is missing the matching Else statement

295 Excessive iteration

300 Expected 2 or 3-element list or matrix

310 The first argument of nSolve must be an equation in a single variable. It cannot contain a non-valued variable
other than the variable of interest.

320 First argument of solve or cSolve must be an equation or inequality
For example, solve(3x^2-4,x) is invalid because the first argument is not an equation.

345 Inconsistent units

350 Index out of range

360 Indirection string is not a valid variable name

380 Undefined Ans
Either the previous calculation did not create Ans, or no previous calculation was entered.

390 Invalid assignment

400 Invalid assignment value

410 Invalid command

430 Invalid for the current mode settings

435 Invalid guess

440 Invalid implied multiply
For example, x(x+1) is invalid; whereas, x*(x+1) is the correct syntax. This is to avoid confusion between implied
multiplication and function calls.

450 Invalid in a function or current expression
Only certain commands are valid in a user-defined function.

490 Invalid in Try..EndTry block

510 Invalid list or matrix

550 Invalid outside function or program
A number of commands are not valid outside a function or program. For example, Local cannot be used unless it
is in a function or program.

560 Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks
For example, the Exit command is valid only inside these loop blocks.

565 Invalid outside program

Error code Description

170 TI-Nspire™ CAS Reference Guide

570 Invalid pathname
For example, \var is invalid.

575 Invalid polar complex

580 Invalid program reference
Programs cannot be referenced within functions or expressions such as 1+p(x) where p is a program.

600 Invalid table

605 Invalid use of units

610 Invalid variable name in a Local statement

620 Invalid variable or function name

630 Invalid variable reference

640 Invalid vector syntax

650 Link transmission
A transmission between two units was not completed. Verify that the connecting cable is connected firmly to both
ends.

665 Matrix not diagonalizable

670 Low Memory
1. Delete some data in this document
2. Save and close this document
If 1 and 2 fail, pull out and re-insert batteries

672 Resource exhaustion

673 Resource exhaustion

680 Missing (

690 Missing)

700 Missing “

710 Missing]

720 Missing }

730 Missing start or end of block syntax

740 Missing Then in the If..EndIf block

750 Name is not a function or program

765 No functions selected

780 No solution found

800 Non-real result
For example, if the software is in the Real setting, ‡(-1) is invalid.
To allow complex results, change the “Real or Complex” Mode Setting to RECTANGULAR or POLAR.

830 Overflow

850 Program not found
A program reference inside another program could not be found in the provided path during execution.

855 Rand type functions not allowed in graphing

860 Recursion too deep

Error code Description

TI-Nspire™ CAS Reference Guide 171

870 Reserved name or system variable

900 Argument error
Median-median model could not be applied to data set.

910 Syntax error

920 Text not found

930 Too few arguments
The function or command is missing one or more arguments.

940 Too many arguments
The expression or equation contains an excessive number of arguments and cannot be evaluated.

950 Too many subscripts

955 Too many undefined variables

960 Variable is not defined
No value is assigned to variable. Use one of the following commands:
• sto &
• :=
• Define
to assign values to variables.

965 Unlicensed OS

970 Variable in use so references or changes are not allowed

980 Variable is protected

990 Invalid variable name
Make sure that the name does not exceed the length limitations

1000 Window variables domain

1010 Zoom

1020 Internal error

1030 Protected memory violation

1040 Unsupported function. This function requires Computer Algebra System. Try TI-Nspire™ CAS.

1045 Unsupported operator. This operator requires Computer Algebra System. Try TI-Nspire™ CAS.

1050 Unsupported feature. This operator requires Computer Algebra System. Try TI-Nspire™ CAS.

1060 Input argument must be numeric. Only inputs containing numeric values are allowed.

1070 Trig function argument too big for accurate reduction

1080 Unsupported use of Ans.This application does not support Ans.

1090 Function is not defined. Use one of the following commands:
• Define
• :=
• sto &
to define a function.

1100 Non-real calculation
For example, if the software is in the Real setting, ‡(-1) is invalid.
To allow complex results, change the “Real or Complex” Mode Setting to RECTANGULAR or POLAR.

1110 Invalid bounds

1120 No sign change

Error code Description

172 TI-Nspire™ CAS Reference Guide

1130 Argument cannot be a list or matrix

1140 Argument error
The first argument must be a polynomial expression in the second argument. If the second argument is omitted,
the software attempts to select a default.

1150 Argument error
The first two arguments must be polynomial expressions in the third argument. If the third argument is omitted,
the software attempts to select a default.

1160 Invalid library pathname
A pathname must be in the form xxx\yyy, where:
• The xxx part can have 1 to 16 characters.
• The yyy part can have 1 to 15 characters.
See the Library section in the documentation for more details.

1170 Invalid use of library pathname
• A value cannot be assigned to a pathname using Define, :=, or sto &.
• A pathname cannot be declared as a Local variable or be used as a parameter in a function or program

definition.

1180 Invalid library variable name.
Make sure that the name:
• Does not contain a period
• Does not begin with an underscore
• Does not exceed 15 characters
See the Library section in the documentation for more details.

1190 Library document not found:
• Verify library is in the MyLib folder.
• Refresh Libraries.
See the Library section in the documentation for more details.

1200 Library variable not found:
• Verify library variable exists in the first problem in the library.
• Make sure library variable has been defined as LibPub or LibPriv.
• Refresh Libraries.
See the Library section in the documentation for more details.

1210 Invalid library shortcut name.
Make sure that the name:
• Does not contain a period
• Does not begin with an underscore
• Does not exceed 16 characters
• Is not a reserved name
See the Library section in the documentation for more details.

1220 Domain error:
The tangentLine and normalLine functions support real-valued functions only.

1230 Domain error.
Trigonometric conversion operators are not supported in Degree or Gradian angle modes.

1250 Argument Error
Use a system of linear equations.
Example of a system of two linear equations with variables x and y:
3x+7y=5
2y-5x=-1

1260 Argument Error:
The first argument of nfMin or nfMax must be an expression in a single variable. It cannot contain a non-valued
variable other than the variable of interest.

1270 Argument Error
Order of the derivative must be equal to 1 or 2.

1280 Argument Error
Use a polynomial in expanded form in one variable.

Error code Description

TI-Nspire™ CAS Reference Guide 173

1290 Argument Error
Use a polynomial in one variable.

1300 Argument Error
The coefficients of the polynomial must evaluate to numeric values.

1310 Argument error:
A function could not be evaluated for one or more of its arguments.

1380 Argument error:
Nested calls to domain() function are not allowed.

Error code Description

174

Warning Codes and Messages
You can use the warnCodes() function to store the codes of warnings generated by evaluating
an expression. This table lists each numeric warning code and its associated message. For an
example of storing warning codes, see warnCodes(), page 136.

Warning
code Message

10000 Operation might introduce false solutions.

10001 Differentiating an equation may produce a false equation.

10002 Questionable solution

10003 Questionable accuracy

10004 Operation might lose solutions.

10005 cSolve might specify more zeros.

10006 Solve may specify more zeros.

10007 More solutions may exist. Try specifying appropriate lower and upper bounds and/or a guess.
Examples using solve():
• solve(Equation, Var=Guess)|lowBound<Var<upBound
• solve(Equation, Var)|lowBound<Var<upBound
• solve(Equation, Var=Guess)

10008 Domain of the result might be smaller than the domain of the input.

10009 Domain of the result might be larger than the domain of the input.

10012 Non-real calculation

10013 ˆ^0 or undef^0 replaced by 1

10014 undef^0 replaced by 1

10015 1^ˆ or 1^undef replaced by 1

10016 1^undef replaced by 1

10017 Overflow replaced by ˆ or Lˆ

10018 Operation requires and returns 64 bit value.

10019 Resource exhaustion, simplification might be incomplete.

10020 Trig function argument too big for accurate reduction.

10021 Input contains an undefined parameter.
Result might not be valid for all possible parameter values.

10022 Specifying appropriate lower and upper bounds might produce a solution.

10023 Scalar has been multiplied by the identity matrix.

10024 Result obtained using approximate arithmetic.

10025 Equivalence cannot be verified in EXACT mode.

10026 Constraint might be ignored. Specify constraint in the form "\" 'Variable MathTestSymbol Constant' or a conjunct
of these forms, for example 'x<3 and x>-12'

Service and Support 175

Service and Support

Texas Instruments Support and Service

For U.S. and Canada:

For General Information

For Technical Support

For Product (Hardware) Service
Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin
Islands: Always contact Texas Instruments Customer Support before
returning a product for service.

For All Other Countries:
For general information

For more information about TI products and services, contact TI by e-mail
or visit the TI Internet address.

Home Page: education.ti.com

KnowledgeBase and
e-mail inquiries:

education.ti.com/support

Phone: (800) TI-CARES / (800) 842-2737
For U.S., Canada, Mexico, Puerto Rico, and
Virgin Islands only

International
information:

education.ti.com/international

KnowledgeBase and
support by e-mail:

education.ti.com/support

Phone
(not toll-free):

(972) 917-8324

E-mail inquiries: ti-cares@ti.com

Home Page: education.ti.com

http://education.ti.com
http://education.ti.com/support
http://education.ti.com/support
http://education.ti.com/international
http://education.ti.com/support
http://education.ti.com/support
http://education.ti.com

176 Service and Support

Service and Warranty Information
For information about the length and terms of the warranty or about
product service, refer to the warranty statement enclosed with this
product or contact your local Texas Instruments retailer/distributor.

177

Index

Symbols
^, power 145
^/, reciprocal 158
_, unit designation 157
:=, assign 160
!, factorial 150
.^, dot power 147
.*, dot multiplication 146
.+, dot addition 146
.N, dot subtraction 146
.P, dot division 147
', minute notation 156
', prime 157
", second notation 156
{, less than or equal 149
©, comment 160
@list(), list difference 67
-, degree notation 156
-, degrees/minutes/seconds 156
4, convert units 158
â, integral 151
á, square root 152
, not equal 148

N, subtract 143
P, divide 144
Π, product 152
Σ(), sum 153
⇔, logical double implication 150
, logical implication 149, 164
*, multiply 144
&, append 150
&, store 160
#, indirection 155
#, indirection operator 167
%, percent 147
+, add 143
<, less than 148
=, equal 148
>, greater than 149
|, constraint operator 159
|, greater than or equal 149

Numerics
0b, binary indicator 161

0h, hexadecimal indicator 161
10^(), power of ten 158
2-sample F Test 51
4approxFraction() 11

A
abs(), absolute value 7
absolute value

template for 3
add, + 143
amortization table, amortTbl() 7, 13
amortTbl(), amortization table 7, 13
and, Boolean operator 7
angle, angle() 8
angle(), angle 8
ANOVA, one-way variance analysis 8
ANOVA2way, two-way variance

analysis 9
Ans, last answer 11
answer (last), Ans 11
append, & 150
approx(), approximate 11, 12
approximate, approx() 11, 12
approxRational() 11
arc length, arcLen() 12
arccos() 11
arccosh() 12
arccosine, cos/() 23
arccot() 12
arccoth() 12
arccsc() 12
arccsch() 12
arcLen(), arc length 12
arcsec() 12
arcsech() 12
arcsin() 12
arcsine, sin/() 113
arcsinh() 12
arctan() 12
arctangent, tan/() 125
arctanh() 12
arguments in TVM functions 132
augment(), augment/concatenate

12

178

augment/concatenate, augment()
12

average rate of change, avgRC() 13
avgRC(), average rate of change 13

B
4Base10, display as decimal integer

14
4Base16, display as hexadecimal 15
4Base2, display as binary 14
binary

display, 4Base2 14
indicator, 0b 161

binomCdf() 15
binomPdf() 15
Boolean operators

and 7
nand 80
nor 83
not 84
or 87
⇔ 150
xor 137
 149, 164

C
c22way 17
c2Cdf() 17
c2GOF 18
c2Pdf() 18
Cdf() 47
ceiling, ceiling() 15, 16, 26
ceiling(), ceiling 15
centralDiff() 16
cFactor(), complex factor 16
char(), character string 17
character string, char() 17
characters

numeric code, ord() 87
string, char() 17

charPoly() 17
clear

error, ClrErr 19
ClearAZ 18
ClrErr, clear error 19
colAugment 19

colDim(), matrix column dimension
19

colNorm(), matrix column norm 19
combinations, nCr() 81
comDenom(), common

denominator 19
comment, © 160
common denominator,

comDenom() 19
completeSquare(), complete square

20
complex

conjugate, conj() 21
factor, cFactor() 16
solve, cSolve() 28
zeros, cZeros() 31

conj(), complex conjugate 21
constant

in solve() 116
constants

in cSolve() 29
in cZeros() 32
in deSolve() 36
in solve() 117
in zeros() 138
shortcuts for 164

constraint operator "|" 159
constraint operator, order of

evaluation 166
construct matrix, constructMat() 21
constructMat(), construct matrix 21
convert

4Grad 56
4Rad 97
units 158

copy variable or function, CopyVar
21

correlation matrix, corrMat() 22
corrMat(), correlation matrix 22
4cos, display in terms of cosine 22
cos(), cosine 22
cos/, arccosine 23
cosh(), hyperbolic cosine 24
cosh/(), hyperbolic arccosine 24
cosine

display expression in terms of 22
cosine, cos() 22
cot(), cotangent 24

179

cot/(), arccotangent 25
cotangent, cot() 24
coth(), hyperbolic cotangent 25
coth/(), hyperbolic arccotangent 25
count days between dates, dbd() 33
count items in a list conditionally ,

countif() 26
count items in a list, count() 25
count(), count items in a list 25
countif(), conditionally count items

in a list 26
cPolyRoots() 26
cross product, crossP() 26
crossP(), cross product 26
csc(), cosecant 27
csc/(), inverse cosecant 27
csch(), hyperbolic cosecant 27
csch/(), inverse hyperbolic cosecant

27
cSolve(), complex solve 28
cubic regression, CubicReg 30
CubicReg, cubic regression 30
cumulative sum, cumulativeSum()

30
cumulativeSum(), cumulative sum

30
Cycle, cycle 31
cycle, Cycle 31
4Cylind, display as cylindrical vector

31
cylindrical vector display, 4Cylind 31
cZeros(), complex zeros 31

D
d (), first derivative 150
days between dates, dbd() 33
dbd(), days between dates 33
4DD, display as decimal angle 33
4Decimal, display result as decimal

33
decimal

angle display, 4DD 33
integer display, 4Base10 14

Define 34
Define LibPriv 34
Define LibPub 35
Define, define 34

define, Define 34
defining

private function or program 34
public function or program 35

definite integral
template for 5

degree notation, - 156
degree/minute/second display, 4DMS

38
degree/minute/second notation 156
delete

void elements from list 35
deleting

variable, DelVar 35
deltaList() 35
deltaTmpCnv() 35
DelVar, delete variable 35
delVoid(), remove void elements 35
denominator 19
derivative or nth derivative

template for 5
derivative() 35
derivatives

first derivative, d () 150
numeric derivative, nDeriv() 82
numeric derivative,

nDerivative() 81
deSolve(), solution 36
det(), matrix determinant 37
diag(), matrix diagonal 37
dim(), dimension 37
dimension, dim() 37
Disp, display data 38
display as

binary, 4Base2 14
cylindrical vector, 4Cylind 31
decimal angle, 4DD 33
decimal integer, 4Base10 14
degree/minute/second, 4DMS 38
hexadecimal, 4Base16 15
polar vector, 4Polar 89
rectangular vector, 4Rect 99
spherical vector, 4Sphere 119

display data, Disp 38
distribution functions

binomCdf() 15
binomPdf() 15
c22way() 17

180

c2Cdf() 17
c2GOF() 18
c2Pdf() 18
Invc2() 60
invNorm() 60
invt() 60
normCdf() 83
normPdf() 84
poissCdf() 88
poissPdf() 88
tCdf() 126
tPdf() 129

divide, P 144
4DMS, display as degree/minute/

second 38
domain function, domain() 38
domain(), domain function 38
dominant term, dominantTerm() 39
dominantTerm(), dominant term 39
dot

addition, .+ 146
division, .P 147
multiplication, .* 146
power, .^ 147
product, dotP() 39
subtraction, .N 146

dotP(), dot product 39

E
e exponent

template for 2
e to a power, e^() 40, 43
e^(), e to a power 40
e, display expression in terms of 43
E, exponent 155
eff), convert nominal to effective

rate 40
effective rate, eff() 40
eigenvalue, eigVl() 41
eigenvector, eigVc() 40
eigVc(), eigenvector 40
eigVl(), eigenvalue 41
else if, ElseIf 41
else, Else 57
ElseIf, else if 41
empty (void) elements 162
end

for, EndFor 49
function, EndFunc 52
if, EndIf 57
loop, EndLoop 73
program, EndPrgm 93
try, EndTry 130
while, EndWhile 136

end function, EndFunc 52
end if, EndIf 57
end loop, EndLoop 73
end while, EndWhile 136
EndTry, end try 130
EndWhile, end while 136
EOS (Equation Operating System)

166
equal, = 148
Equation Operating System (EOS)

166
error codes and messages 168
errors and troubleshooting

clear error, ClrErr 19
pass error, PassErr 88

euler(), Euler function 42
evaluate polynomial, polyEval() 90
evaluation, order of 166
exact, exact() 42
exact(), exact 42
exclusion with "|" operator 159
Exit, exit 43
exit, Exit 43
4exp, display in terms of e 43
exp(), e to a power 43
exp4list(), expression to list 44
expand, expand() 44
expand(), expand 44
exponent, E 155
exponential regession, ExpReg 45
exponents

template for 1
expr(), string to expression 45, 71
ExpReg, exponential regession 45
expressions

expression to list, exp4list() 44
string to expression, expr() 45,

71

181

F
factor, factor() 46
factor(), factor 46
factorial, ! 150
Fill, matrix fill 47
financial functions, tvmFV() 132
financial functions, tvmI() 132
financial functions, tvmN() 132
financial functions, tvmPmt() 132
financial functions, tvmPV() 132
first derivative

template for 5
FiveNumSummary 48
floor, floor() 48
floor(), floor 48
fMax(), function maximum 48
fMin(), function minimum 49
For 49
For, for 49
for, For 49
format string, format() 50
format(), format string 50
fpart(), function part 50
fractions

propFrac 94
template for 1

freqTable() 50
frequency() 51
Frobenius norm, norm() 83
Func, function 52
Func, program function 52
functions

maximum, fMax() 48
minimum, fMin() 49
part, fpart() 50
program function, Func 52
user-defined 34

functions and variables
copying 21

G
g, gradians 155
gcd(), greatest common divisor 52
geomCdf() 52
geomPdf() 53
get/return

denominator, getDenom() 53

number, getNum() 54
variables injformation,

getVarInfo() 53, 55
getDenom(), get/return

denominator 53
getLangInfo(), get/return language

information 53
getLockInfo(), tests lock status of

variable or variable group 53
getMode(), get mode settings 54
getNum(), get/return number 54
getType(), get type of variable 55
getVarInfo(), get/return variables

information 55
go to, Goto 56
Goto, go to 56
4, convert to gradian angle 56
gradian notation, g 155
greater than or equal, | 149
greater than, > 149
greatest common divisor, gcd() 52
groups, locking and unlocking 70,

135
groups, testing lock status 53

H
hexadecimal

display, 4Base16 15
indicator, 0h 161

hyperbolic
arccosine, cosh/() 24
arcsine, sinh/() 114
arctangent, tanh/() 126
cosine, cosh() 24
sine, sinh() 114
tangent, tanh() 125

I
identity matrix, identity() 56
identity(), identity matrix 56
If, if 57
if, If 57
ifFn() 58
imag(), imaginary part 58
imaginary part, imag() 58
ImpDif(), implicit derivative 58
implicit derivative, Impdif() 58

182

indefinite integral
template for 5

indirection operator (#) 167
indirection, # 155
Input, input 58
input, Input 58
inString(), within string 59
int(), integer 59
intDiv(), integer divide 59
integer divide, intDiv() 59
integer part, iPart() 61
integer, int() 59
integral, â 151
interpolate(), interpolate 60
Invc2() 60
inverse cumulative normal

distribution (invNorm() 60
inverse, ^/ 158
invF() 60
invNorm(), inverse cumulative

normal distribution) 60
invt() 60
iPart(), integer part 61
irr(), internal rate of return

internal rate of return, irr() 61
isPrime(), prime test 61
isVoid(), test for void 61

L
label, Lbl 62
language

get language information 53
Lbl, label 62
lcm, least common multiple 62
least common multiple, lcm 62
left, left() 62
left(), left 62
length of string 37
less than or equal, { 149
less than, 148
LibPriv 34
LibPub 35
library

create shortcuts to objects 63
libShortcut(), create shortcuts to

library objects 63
limit

lim() 63
limit() 63
template for 6

limit() or lim(), limit 63
linear regression, LinRegAx 64
linear regression, LinRegBx 64, 65
LinRegBx, linear regression 64
LinRegMx, linear regression 64
LinRegtIntervals, linear regression

65
LinRegtTest 66
linSolve() 67
list to matrix, list4mat() 68
list, conditionally count items in 26
list, count items in 25
list4mat(), list to matrix 68
lists

augment/concatenate,
augment() 12

cross product, crossP() 26
cumulative sum,

cumulativeSum() 30
difference, @list() 67
differences in a list, @list() 67
dot product, dotP() 39
empty elements in 162
expression to list, exp4list() 44
list to matrix, list4mat() 68
matrix to list, mat4list() 74
maximum, max() 75
mid-string, mid() 76
minimum, min() 77
new, newList() 81
product, product() 93
sort ascending, SortA 118
sort descending, SortD 118
summation, sum() 123

ln(), natural logarithm 68
LnReg, logarithmic regression 69
local variable, Local 70
local, Local 70
Local, local variable 70
Lock, lock variable or variable group

70
locking variables and variable

groups 70
Log

template for 2

183

logarithmic regression, LnReg 69
logarithms 68
logical double implication, ⇔ 150
logical implication,  149, 164
logistic regression, Logistic 72
logistic regression, LogisticD 72
Logistic, logistic regression 72
LogisticD, logistic regression 72
Loop, loop 73
loop, Loop 73
LU, matrix lower-upper

decomposition 74

M
mat4list(), matrix to list 74
matrices

augment/concatenate,
augment() 12

column dimension, colDim() 19
column norm, colNorm() 19
cumulative sum,

cumulativeSum() 30
determinant, det() 37
diagonal, diag() 37
dimension, dim() 37
dot addition, .+ 146
dot division, .P 147
dot multiplication, .* 146
dot power, .^ 147
dot subtraction, .N 146
eigenvalue, eigVl() 41
eigenvector, eigVc() 40
filling, Fill 47
identity, identity() 56
list to matrix, list4mat() 68
lower-upper decomposition, LU

74
matrix to list, mat4list() 74
maximum, max() 75
minimum, min() 77
new, newMat() 81
product, product() 93
QR factorization, QR 94
random, randMat() 98
reduced row echelon form,

rref() 105
row addition, rowAdd() 105

row dimension, rowDim() 105
row echelon form, ref() 100
row multiplication and addition,

mRowAdd() 78
row norm, rowNorm() 105
row operation, mRow() 78
row swap, rowSwap() 105
submatrix, subMat() 122, 123
summation, sum() 123
transpose, T 124

matrix (1 Q 2)
template for 4

matrix (2 Q 1)
template for 4

matrix (2 Q 2)
template for 3

matrix (m Q n)
template for 4

matrix to list, mat4list() 74
max(), maximum 75
maximum, max() 75
mean, mean() 75
mean(), mean 75
median, median() 75
median(), median 75
medium-medium line regression,

MedMed 76
MedMed, medium-medium line

regression 76
mid(), mid-string 76
mid-string, mid() 76
min(), minimum 77
minimum, min() 77
minute notation, ' 156
mirr(), modified internal rate of

return 77
mixed fractions, using propFrac(›

with 94
mod(), modulo 78
mode settings, getMode() 54
modes

setting, setMode() 110
modified internal rate of return,

mirr() 77
modulo, mod() 78
mRow(), matrix row operation 78
mRowAdd(), matrix row

multiplication and addition 78

184

Multiple linear regression t test 79
multiply, * 144
MultReg 78
MultRegIntervals() 79
MultRegTests() 79

N
nand, Boolean operator 80
natural logarithm, ln() 68
nCr(), combinations 81
nDerivative(), numeric derivative 81
negation, entering negative

numbers 167
net present value, npv() 85
new

list, newList() 81
matrix, newMat() 81

newList(), new list 81
newMat(), new matrix 81
nfMax(), numeric function

maximum 82
nfMin(), numeric function minimum

82
nInt(), numeric integral 82
nom), convert effective to nominal

rate 82
nominal rate, nom() 82
nor, Boolean operator 83
norm(), Frobenius norm 83
normal distribution probability,

normCdf() 83
normal line, normalLine() 83
normalLine() 83
normCdf() 83
normPdf() 84
not equal, 148
not, Boolean operator 84
nPr(), permutations 84
npv(), net present value 85
nSolve(), numeric solution 85
nth root

template for 1
numeric

derivative, nDeriv() 82
derivative, nDerivative() 81
integral, nInt() 82
solution, nSolve() 85

O
objects

create shortcuts to library 63
OneVar, one-variable statistics 86
one-variable statistics, OneVar 86
operators

order of evaluation 166
or (Boolean), or 87
or, Boolean operator 87
ord(), numeric character code 87

P
P4Rx(), rectangular x coordinate 87
P4Ry(), rectangular y coordinate 88
pass error, PassErr 88
PassErr, pass error 88
Pdf() 50
percent, % 147
permutations, nPr() 84
piecewise function (2-piece)

template for 2
piecewise function (N-piece)

template for 2
piecewise() 88
poissCdf() 88
poissPdf() 88
4Polar, display as polar vector 89
polar

coordinate, R4Pq() 97
coordinate, R4Pr() 97
vector display, 4Polar 89

polyCoef() 89
polyDegree() 90
polyEval(), evaluate polynomial 90
polyGcd() 90, 91
polynomials

evaluate, polyEval() 90
random, randPoly() 98

PolyRoots() 91
power of ten, 10^() 158
power regression, PowerReg 91, 92,

101, 102, 127
power, ^ 145
PowerReg, power regression 92
Prgm, define program 93
prime number test, isPrime() 61
prime, ' 157

185

probability densiy, normPdf() 84
prodSeq() 93
product (Π)

template for 4
product, Π() 152
product, product() 93
product(), product 93
programming

define program, Prgm 93
display data, Disp 38
pass error, PassErr 88

programs
defining private library 34
defining public library 35

programs and programming
clear error, ClrErr 19
display I/O screen, Disp 38
end program, EndPrgm 93
end try, EndTry 130
try, Try 130

proper fraction, propFrac 94
propFrac, proper fraction 94

Q
QR factorization, QR 94
QR, QR factorization 94
quadratic regression, QuadReg 95
QuadReg, quadratic regression 95
quartic regression, QuartReg 96
QuartReg, quartic regression 96

R
R, radian 155
R4Pq(), polar coordinate 97
R4Pr(), polar coordinate 97
4Rad, convert to radian angle 97
radian, R 155
rand(), random number 97
randBin, random number 98
randInt(), random integer 98
randMat(), random matrix 98
randNorm(), random norm 98
random

matrix, randMat() 98
norm, randNorm() 98
number seed, RandSeed 99
polynomial, randPoly() 98

random sample 98
randPoly(), random polynomial 98
randSamp() 98
RandSeed, random number seed 99
real, real() 99
real(), real 99
reciprocal, ^/ 158
4Rect, display as rectangular vector

99
rectangular x coordinate, P4Rx() 87
rectangular y coordinate, P4Ry() 88
rectangular-vector display, 4Rect 99
reduced row echelon form, rref()

105
ref(), row echelon form 100
regressions

cubic, CubicReg 30
exponential, ExpReg 45
linear regression, LinRegAx 64
linear regression, LinRegBx 64,

65
logarithmic, LnReg 69
Logistic 72
logistic, Logistic 72
medium-medium line, MedMed

76
MultReg 78
power regression, PowerReg 91,

92, 101, 102, 127
quadratic, QuadReg 95
quartic, QuartReg 96
sinusoidal, SinReg 115

remain(), remainder 100
remainder, remain() 100
remove

void elements from list 35
Request 101
RequestStr 102
result

display in terms of cosine 22
display in terms of e 43
display in terms of sine 112

result values, statistics 121
results, statistics 120
Return, return 102
return, Return 102
right, right() 20, 42, 60, 102, 103, 136
right(), right 102

186

rk23(), Runge Kutta function 103
rotate, rotate() 103, 104
rotate(), rotate 103, 104
round, round() 104
round(), round 104
row echelon form, ref() 100
rowAdd(), matrix row addition 105
rowDim(), matrix row dimension

105
rowNorm(), matrix row norm 105
rowSwap(), matrix row swap 105
rref(), reduced row echelon form

105

S
sec(), secant 106
sec/(), inverse secant 106
sech(), hyperbolic secant 106
sech/(), inverse hyperbolic secant

107
second derivative

template for 5
second notation, " 156
seq(), sequence 107
seqGen() 108
seqn() 108
sequence, seq() 107, 108
series, series() 109
series(), series 109
set

mode, setMode() 110
setMode(), set mode 110
settings, get current 54
shift, shift() 111
shift(), shift 111
sign, sign() 111
sign(), sign 111
simult(), simultaneous equations

112
simultaneous equations, simult()

112
4sin, display in terms of sine 112
sin(), sine 113
sin/(), arcsine 113
sine

display expression in terms of
112

sine, sin() 113
sinh(), hyperbolic sine 114
sinh/(), hyperbolic arcsine 114
SinReg, sinusoidal regression 115
ΣInt() 154
sinusoidal regression, SinReg 115
solution, deSolve() 36
solve, solve() 115
solve(), solve 115
SortA, sort ascending 118
SortD, sort descending 118
sorting

ascending, SortA 118
descending, SortD 118

4Sphere, display as spherical vector
119

spherical vector display, 4Sphere 119
ΣPrn() 154
sqrt(), square root 119
square root

template for 1
square root, ‡() 119, 152
standard deviation, stdDev() 121,

135
stat.results 120
stat.values 121
statistics

combinations, nCr() 81
factorial, ! 150
mean, mean() 75
median, median() 75
one-variable statistics, OneVar

86
permutations, nPr() 84
random norm, randNorm() 98
random number seed, RandSeed

99
standard deviation, stdDev()

121, 135
two-variable results, TwoVar 133
variance, variance() 135

stdDevPop(), population standard
deviation 121

stdDevSamp(), sample standard
deviation 121

Stop command 122
storing

symbol, & 160

187

string
dimension, dim() 37
length 37

string(), expression to string 122
strings

append, & 150
character code, ord() 87
character string, char() 17
expression to string, string() 122
format, format() 50
formatting 50
indirection, # 155
left, left() 62
mid-string, mid() 76
right, right() 20, 42, 60, 102, 103,

136
rotate, rotate() 103, 104
shift, shift() 111
string to expression, expr() 45,

71
using to create variable names

167
within, InString 59

student-t distribution probability,
tCdf() 126

student-t probability density, tPdf()
129

subMat(), submatrix 122, 123
submatrix, subMat() 122, 123
substitution with "|" operator 159
subtract, N 143
sum (G)

template for 4
sum of interest payments 154
sum of principal payments 154
sum, Σ() 153
sum(), summation 123
sumIf() 123
summation, sum() 123
sumSeq() 123
system of equations (2-equation)

template for 3
system of equations (N-equation)

template for 3

T
t test, tTest 131

T, transpose 124
tan(), tangent 124
tan/(), arctangent 125
tangent line, tangentLine() 125
tangent, tan() 124
tangentLine() 125
tanh(), hyperbolic tangent 125
tanh/(), hyperbolic arctangent 126
Taylor polynomial, taylor() 126
taylor(), Taylor polynomial 126
tCdf(), student-t distribution

probability 126
tCollect(), trigonometric collection

127
templates

absolute value 3
definite integral 5
derivative or nth derivative 5
e exponent 2
exponent 1
first derivative 5
fraction 1
indefinite integral 5
limit 6
Log 2
matrix (1 Q 2) 4
matrix (2 Q 1) 4
matrix (2 Q 2) 3
matrix (m Q n) 4
nth root 1
piecewise function (2-piece) 2
piecewise function (N-piece) 2
product (Π) 4
second derivative 5
square root 1
sum (G) 4
system of equations (2-equation)

3
system of equations (N-

equation) 3
test for void, isVoid() 61
Test_2S, 2-sample F test 51
tExpand(), trigonometric expansion

127
Text command 127
time value of money, Future Value

132
time value of money, Interest 132

188

time value of money, number of
payments 132

time value of money, payment
amount 132

time value of money, present value
132

tInterval_2Samp, two-sample t
confidence interval 128

tInterval, t confidence interval 128
4tmpCnv() 129
tmpCnv() 129
tPdf(), student-t probability density

129
trace() 130
transpose, T 124
trigonometric collection, tCollect()

127
trigonometric expansion, tExpand()

127
Try, error handling command 130
tTest_2Samp, two-sample t test 131
tTest, t test 131
TVM arguments 132
tvmFV() 132
tvmI() 132
tvmN() 132
tvmPmt() 132
tvmPV() 132
TwoVar, two-variable results 133
two-variable results, TwoVar 133

U
underscore, _ 157
unit vector, unitV() 134
units

convert 158
unitV(), unit vector 134
unLock, unlock variable or variable

group 135
unlocking variables and variable

groups 135
user-defined functions 34
user-defined functions and

programs 34, 35

V
variable

creating name from a character
string 167

variable and functions
copying 21

variables
clear all single-letter 18
delete, DelVar 35
local, Local 70

variables, locking and unlocking 53,
70, 135

variance, variance() 135
varPop() 135
varSamp(), sample variance 135
vectors

cross product, crossP() 26
cylindrical vector display, 4Cylind

31
dot product, dotP() 39
unit, unitV() 134

void elements 162
void elements, remove 35
void, test for 61

W
warnCodes(), Warning codes 136
warning codes and messages 174
when, when() 136
when(), when 136
While, while 136
while, While 136
with, | 159
within string, inString() 59

X
x2, square 146
XNOR 150
xor, Boolean exclusive or 137

Z
zeroes, zeroes() 137
zeroes(), zeroes 137
zInterval_1Prop, one-proportion z

confidence interval 139
zInterval_2Prop, two-proportion z

confidence interval 140

189

zInterval_2Samp, two-sample z
confidence interval 140

zInterval, z confidence interval 139
zTest 141
zTest_1Prop, one-proportion z test

141
zTest_2Prop, two-proportion z test

142
zTest_2Samp, two-sample z test 142

190

	Important Information
	Contents
	TI-Nspire™ CAS Reference Guide
	Expression Templates
	Alphabetical Listing
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Empty (Void) Elements
	Shortcuts for Entering Math Expressions
	EOS™ (Equation Operating System) Hierarchy
	Error Codes and Messages
	Warning Codes and Messages

	Service and Support
	Texas Instruments Support and Service
	Service and Warranty Information

	Index

