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Volume 1 of this book contains the basic topics: Graphics Calculators and Mathematics;
Getting Started; Coordinate Geometry; Inequalities and Linear Programming; Fitting Curves
to Data 1 – Calculator Functions; Population Modelling 1 – Exponential Growth; Financial
Mathematics 1 – Compound Interest; and Probability and Statistics 1 – Descriptive Statistics.
The Volume 1 Supplement contains extra activities for Coordinate Geometry and Probability
and Statistics 1.

Volume 2 of this book contains topics directly relevant to Calculus and its applications,
although the first chapter, Functions and their Graphs, is of more general relevance. The topics
in Volume 2 are: Functions and their Graphs; Graph and Calculus Operations; Numerical
Integration; Taylor Series; Differential Equations; Population Modelling 2 – Logistic and
Epidemic Models; and Multivariable Calculus.

The last chapter in Volume 2 gives a list of the programs cited in all volumes of the book,
and full information on copying and using these programs.

Volume 3 of this book contains more advanced topics, relevant to students and teachers of
Specialist Mathematics and first-year university Mathematics courses. The topics in Volume
3 are: Sequences and Series; Probability and Statistics 2 – Probability Distributions and
Hypothesis Testing; Matrices and Vectors; Population Modelling 3 – Matrix Models; Fitting
Curves to Data 2; Financial Mathematics 2 – TVM Calculations; Complex Numbers; and
Programming.

Calculator versions

Currently (early 2022), TI-84 calculators come in two versions: the TI-84Plus and the more
recent TI-84CE. The main difference is that the CE screen has much higher resolution. It also
has colour but I have done most of the screens in black and white to avoid the need for colour
printers or photocopiers. Calculations, screenshots and figures were done on a TI-84CE in
CLASSIC mode.

Some programs have had to be changed for the CE because of the different screen: I usually
append ‘CE’ to the program name to indicate this.

All the programs here are available at www.XXX.



1 INTRODUCTION

1 Introduction

This document contains twenty-eight labs used in a first-year university Mathematics course,
the first twenty-two of which require a TI-84/CE graphics calculator. Most of these labs
are also suitable as short projects for good students in senior secondary school. They cover
topics in Calculus, Linear Algebra, Vectors, Probability, Complex Numbers and introductory
Discrete Dynamics.

As well as a spread in topics, there is a spread in how the labs/projects are presented, from
the quite prescriptive with step-by-step instructions to less-well-defined problems in which
working out the question is as important as finding the answer.

Each lab/project is accompanied by an Instructors’ Guide containing solutions to the ques-
tions, together with suggestions on running the lab and the equations/techniques used.

Our students all had TI-84Plus programmable graphics calculators. The use of such calcula-
tors not only allows a broader range of approaches to problems — graphical and numerical
approaches are available — but also means that the problems can be more realistic in that the
numbers don’t have to come out ‘nicely’. Calculator screens are often used in the solutions
to show students (and instructors) what they should see on their calculator.

In some labs, a calculator program is used.1 These avoid the need for lengthy hand calculations
so students can explore the model they are using. The equations used in these programs and
instructions for their use are given in the Instructors’ Guide for each lab. Section 5 gives details
on copying and manipulating programs. The programs and instructions can be modified for
other graphics calculators or computers.

The labs here were run with groups of mostly four students over a double period (110 minutes
in total). Each group was required to hand in a lab report at the end of the lab period,
with each student in the group receiving the group mark. More details are provided in the
Lab Manual (which students received) in Section 4. Also discussed there are some benefits
of groupwork, which we talk about with the students, and the groupwork evaluation scheme.
These can be modified if the labs are run as projects.

Students need lots of time to do these problems properly, so they are particularly suited to
projects. The main aim is to get students to think about, discuss, formulate and solve some
problems as a group.

Some labs contain supplementary questions; these can be used as bonus questions for good
students, alternative questions to those in the lab/projects or as a basis for further short
projects for very good students.

A second aim is to get students to communicate mathematics well on paper. They need help
with this in the form of guidelines (see the Lab Manual), examples such as the Snow White lab
in the Lab Manual, and feedback, which they get from the mark they receive, the comments
of the marker and oral feedback in the following lab.

We did the Balloons, Submarines and Drag lab first, over two lab periods, as a good ice-
breaker both for the students and staff, and for initial guidance in writing up a lab. If you
use another lab first, consider incorporating in it the second part of the Balloons, Submarines
and Drag lab on writing up and the Snow White exercise.

1these programs are available from www.XXX
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1 INTRODUCTION

A comment on student approaches to the labs. We want our students to work as a group,
because we think that groupwork provides significant benefits. Students, particularly those
with an eye on the clock, are inclined to divide up the problems amongst the group members,
in the belief that they will finish sooner. To counter this, we require that the lab report be
written by only one person, the scribe, and in some labs we give them only one problem, e.g.
Labs 2.12 – 2.15 or give them the problems one at a time, as in Lab 2.7.

Finally a note on scenarios. Many of the labs incorporate some sort of scenario relevant to
the background and interests of the students (UNSW Canberra is located at the Australian
Defence Force Academy, hence the number of labs here with a military flavour). It should not
be too difficult to adapt the scenarios to your own environment. Having a relevant scenario
seems to help engage students in a problem (‘not just another Maths exercise’) and at least
provides a basis for some discussion, even if it is not directly related to the mathematics.
In some labs, we even ask the groups to provide an alternative scenario. This too helps the
students identify with the problem and has uncovered a wealth of creative talent.

Labs 2.1 – 2.16 are based on Calculus, ranging from basic derivatives and integrals to solution
of simple, first-order differential equations. Lab 2.1 requires a balance capable of measuring
to tenths of a gram.

Lab 2.17 requires a basic knowledge of the solution of (linear) simultaneous equations.

Lab 2.18 uses matrices at an advanced level (eigenvalues and eigenvectors).

Labs 2.19 and 2.20 require a knowledge of mean and variance — the notation could be
changed here to make it more accessible to secondary students. Notes covering the material
are available.

Lab 2.21 introduces difference equations but does not assume much, if any, previous knowl-
edge.

Lab 2.22 is a little more complicated than the others, as it involves coupled difference equa-
tions. However, the complications are mostly overcome by using calculator operations (se-
quence graphing) to plot the solutions.

Acknowledgements

Ruth Hubbard, ex Queensland University of Technology — for getting us started and some of
the labs.

Colin Pask — for Labs 2.17, 2.18 and 3.1 – 3.5.

David Rowland, now University of Queensland — for Trial of the Session (a novel setting for
Newton’s Law of Cooling), for his contributions to the groupwork section in the Lab Manual
and for lots of other good ideas.

Barbara Catchpole and Zlatko Jovanoski — as lab instructors over the years, they have con-
tributed something to all of these labs and much to many of them.

Leesa Sidhu — for the tennis lab.

Mark Collins — for the ideas and content for the two gambling labs.

All the others, some acknowledged, some undoubtedly not, whose ideas were an important
part of many of the labs.

Annabelle Boag — for LATEX typing, advice and many of the figures.
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2 LABS REQUIRING A TI-84/CE

2 Labs requiring a TI-84/CE

2.1 Balloons, Submarines and Drag

Based on A Balloon Experiment in the Classroom by T. Gruszka, The College Mathematics
Journal 25, 442–444 (1994). See also Modelling Air Resistance in the Classroom by A. Battye,
Teaching Mathematics and its Applications 10, 32–34 (1991).

Aims

• To carry out an experiment and compare the data with several theoretical models.

• To look at the process of mathematical modelling.

• To introduce some of the uses of your calculator.

• To introduce you to the benefits of groupwork.

Introduction

In this lab, we try to fit several mathematical models to experimental data. In constructing
a mathematical model, we usually start with a model based on simple assumptions and try
the model against the data. If the model does not explain the data, we build in greater and
greater complexity until, hopefully, we find a model that does explain the data. We would
then test this model against other data to try to confirm or reject the model.

Note that you are not required to solve any equations in this lab, just to read it carefully and
to put together all the information.

The Scenario

You have graduated from the Naval Academy and, in view of your excellent results in Math-
ematics Honours, have been invited to join the Higher Mathematics Corps.

The Navy has asked the Higher Maths Corps to help in the redesign of the shape of the new
Collins-class submarine to make it faster and quieter. There is a need to minimise the drag
exerted by the water on the submarine as it moves forward. Your knowledge of motion under
a drag force is restricted to some work on air resistance that you did in first-year Maths, so
you decide to go back to the basics you did there. Defence money for equipment is tight, so
you start with some balloons left over from your birthday, a 1m length of string and your
trusty TI-84 graphics calculator.

The Problem

You know that the drag force D acting on a body moving through air (or water) increases
as the velocity v increases, but when is the drag force important? By finding out how long
it takes a balloon to fall from several different heights and comparing your data with theory,
you should be able to find out whether drag is important for the balloon.

What do you predict?

3



2.1 Balloons, Submarines and Drag 2 LABS REQUIRING A TI-84/CE

The Experiment

You will write a full report in the second week of this lab. For the first week, the scribe should
keep a detailed log of what you did and your results. Don’t forget to record the units of all
quantities. Work as a group.

1. Collect your kit, consisting of a balloon and a 2m-long piece of string. Blow up your
balloon.

2. Drop the inflated balloon so that it falls a distance (s) of 2 m; record the time it takes
to fall this distance. Repeat this a few times and work out the average time. Call this
time T2.

Use the STOPWTCH/STPWCHCE program to time the balloon. Press prgm , then the

number against the program name to copy the name to the Home screen and enter to
execute it. Alternatively, highlight the program name with the cursor and press enter

twice.

Calibrate the timer first for at least 1 minute using your watch or phone.

3. Repeat Step 2 with the balloon falling a distance of 1 m. Call this average time of fall
T1.

4. Graph your 3 data points (t, s) = (0, 0) (why is this a data point? ), (T1, 1) and (T2, 2)
on a graph of s vs t on your calculator, as described below.

Entering and plotting data on a TI calculator

Entering: Press stat EDIT to display lists L1 – L3.2 If you have data in lists L1 and L2,
move the cursor to the heading, press clear and move the cursor down again. Store the
independent variable for our graph, time t, in L1

(
value enter

)
, the dependent variable,

distance fallen s, in L2 (figure below left).

Plotting: Press 2nd stat plot (top left key on the calculator). With enter , select

Plot1, On, scatter plot (the first one), set Xlist to L1 (on the 1 key), Ylist to L2 and
select the box for a marker (figure above right). On a CE, you can also choose the
colour of the marker.

Press zoom 9 (ZoomStat), which automatically sets a window and graphs the data.
If necessary, change the window so that the graph fills the screen.

2If lists L1 – L3 don’t appear, press stat 5 enter and try again.

4



2.1 Balloons, Submarines and Drag 2 LABS REQUIRING A TI-84/CE

To fit two of the models to your data, you will need to know the mass and volume of your
inflated balloon.

5. Weigh your inflated balloon on the balance (kg).

6. Estimate the volume of the balloon by assuming it to be an ellipsoid of revolution.

Use a ruler to estimate the radii a and b (m).
The volume of an ellipsoid of revolution is
4
3
πab2. Be careful not to confuse a and b.

Model 1 Gravity Only

Newton’s Second Law of Motion tells us that

mass × acceleration = sum of forces.

The force due to gravity is mg, where m is the mass of the inflated balloon, and acts in the
downwards direction.

We write acceleration as the first derivative of velocity with respect to time t and take velocity
as positive in the downwards direction. The differential equation (equation of motion) for the
velocity of the balloon according to the gravity-only model is then

m
dv

dt
= mg.

Take g=9.8 m/s2. Note units.

We can solve this differential equation (you don’t have to do this now 3) to find first v(t), the
velocity as a function of time, and then s(t), the distance fallen as a function of time, given
that the balloon is released from rest.4

s(t) =
1

2
gt2. (1)

Put Eq. (1) (our first model) into Y1 on your calculator: press y= and set5 Y1 = 4.9X2. Press

graph . Does this model fit the data? What do you conclude about the first model?

Model 2 Gravity + Buoyancy

When we weigh an inflated balloon, what we measure is
less than the actual weight, because the balloon actually
floats in the air. It experiences a buoyancy force B equal
to the weight of air displaced by the balloon and acting
upwards. The weight of the air displaced is ρVg, where
ρ (Greek rho) is the density of air and V is the volume
of the balloon.

3We would integrate both sides with respect to t to give the velocity v(t) and integrate again to give s(t),
not forgetting the two constants of integration.

4Initial velocity v(0) = 0; initial distance fallen s(0) = 0 — these initial values give the constants of
integration.

5The calculator always uses X as the independent variable in function graphs.
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2.1 Balloons, Submarines and Drag 2 LABS REQUIRING A TI-84/CE

The effective mass M , the value you read from the balance, is given by

M = m− ρV,

where m is the actual mass. At 20◦C, the density of air is approximately 1.204 kg/m3.

Knowing M , ρ and V , we can work out m, the actual mass of the inflated balloon, which we
need for our theoretical curves. Watch units — mks system recommended.

When we drop the balloon, according to this model there are two forces, gravity and buoyancy,
acting on the balloon, giving the equation of motion as

m
dv

dt
= mg − ρV g = Mg.

Again we can solve this differential equation by integrating twice to give the distance fallen
as

s(t) =
M

2m
gt2. (2)

Put Eq. (2) (our second model) into Y2 on your calculator: set Y2 = coefficient X2, where
coefficient is your numerical value for Mg/(2m).

Does this model fit the data? Is it a better model than the first model? What do you conclude
about the second model?

Model 3 Gravity + Buoyancy + Linear Drag

When we drop the balloon, apart from gravity and buoyancy, we also have drag (air resistance)
acting to slow the balloon down. We assume the drag force D to be proportional to v (called
linear drag), so that D=kv, where k is a constant which we have to find. The drag force acts
in the opposite direction to the velocity.

The total force acting on the balloon is mg− ρVg− kv. The
first term is the force due to gravity, the second term is the
buoyancy force and the third term is the drag force.

The equation of motion according to this model is therefore

m
dv

dt
= mg − ρVg − kv = Mg − kv,

where M is the effective mass of the inflated balloon.

We can solve this differential equation — find the velocity function v(t) and the distance-fallen
function s(t) — algebraically. Later on in the course you will actually do this calculation.
Here we just write down s(t), given that the balloon is released from rest:

s(t) =
Mg

k

(
t− m

k
(1−e−kt/m)

)
. (3)

Put Eq. (3) (our third model) into Y3 on your calculator.

Tip: To make plotting easier, let k be the letter K
(

alpha K
)

when you enter Eq. (3)

into Y3. Store a value for k in memory K using the sto key6 and graph the function.

6value sto alpha K enter .
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2.1 Balloons, Submarines and Drag 2 LABS REQUIRING A TI-84/CE

Repeat with different values for k.7 What should happen to the graph of Y3 as the drag
coefficient k gets closer and closer to 0? Use this to check your third model.

Does this model fit the data? Is it a better model than the first two models? What do you
conclude about the third model?

Before Writing Your Report

• Read through the section on writing lab reports in the Lab Manual (page 225).

• Complete, as a group, the Exercise in the Lab Manual (page 227). Hand this in with
your report.

Writing Your Report (a group activity)

Your report should describe in sentences (and maths where appropriate) what you did, what
you discovered and what you concluded. It should be possible for a fellow student who
hasn’t done the lab to follow your report without looking at this lab sheet. This
is what the person who marks the lab will be looking for regarding presentation.

A suitable format for your report is as follows.

• Introduction: outline the problem and reasons for doing it.

• Methods and Results: how you carried out each of your measurements, the data you
acquired and any subsequent processing and fitting of the data.

• Discussion: interpret your results and talk about any questions that arise or observa-
tions you have made.

• Conclusion: what you, the group, concluded as a result of your measurements, calcu-
lations and deliberations.

Supplementary Questions

Model 4 Gravity + Linear Drag

What if we leave out the buoyancy force? Can we explain our experimental results with just
gravity and linear drag?

Hint : If there is no buoyancy force, m=M , the measure mass of the balloon. Change Y3 to
plot this model curve.

Model 5 Gravity + Buoyancy + Quadratic Drag

Under some circumstances, the drag force is found to be proportional to the square of the
velocity, that is D=qv2, where q is the quadratic drag coefficient.

The equation of motion in this case is

m
dv

dt
= mg − ρV − qv2 = Mg − qv2,

where M is the effective mass of the inflated balloon.

7You may want to turn off Y1 and Y2 while experimenting with values of k. To turn off a function, press
y= , move the cursor over the appropriate = sign and press enter . The same process turns the function

back on again, giving a highlighted = sign. You can turn plots on/off in the same way.
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This equation can be solved algebraically to give

s(t) =
m

q
ln

(
cosh

(√
(Mgq)

m
t

))
. (4)

Plot this function as Y4 on your calculator8 and experiment to find the best value of the
quadratic drag coefficient q.

Is this a better model than Model 3?

Cartoon from The Canberra Times

8The hyperbolic cosine function is defined by cosh(x)= 1
2 (ex+e−x). You’ll find it in the catalog menu of

the TI-84/CE — press the C key, then scroll down to cosh. Press enter to select it. Then be careful with
brackets.

8



2.1 Balloons, Submarines and Drag 2 LABS REQUIRING A TI-84/CE

Instructors’ Guide

This lab is the first lab given to our students. It takes place over two 110-minute classes, with
the first class devoted to carrying out the experiments and graphing the data. In the second
class, students first read and discuss the two sample lab reports in the Lab Manual (Section
4) as an introduction to writing a lab report before writing up the balloon lab.

For the lab, you will need balloons, something (e.g. a 2m length of string) to measure 1 m and
2 m for each group and a balance that can measure masses around 2.0 g (from the Science
Department?). If you can’t source a balance, use a value of 2 g for the mass M of the inflated
balloon.

The lab is a good ‘icebreaker’, as students have to carry out the relatively simple experiments
together. There is also plenty of scope for questions, so the lab instructors soon become
involved.

The scenario is clearly set up for students at the Australian Defence Force Academy who are
all members of the Australian Defence Force. However, it should not be too difficult to adapt
the scenario to the local situation.

Solutions

The data generated may vary depending on the type of balloon and how much it is inflated.
Below is a summary of a set of data obtained by one of our lab groups. In our experience,
most of the numbers seem to come out roughly the same.

Timing the balloon falling from 1 m and 2 m is not an exact science, but with averaging over
a few trials, reasonable results can be obtained. In our example, the times were T1 = 1.2 s,
T2 =2.0 s. The STOPWTCH/STPWCHCE program for the TI-84/CE is available at www.XXX.
It is an easy way to provide stopwatches for every group without having to raid the Physics
Department.

The inflated balloon gave a reading of M = 2.0 g on an electronic balance; this is 0.002 kg.
The measured radii of the balloon were a= 13.5 cm or 0.135 m, and b= 9.75 cm or 0.0975 m,
giving a calculated volume of V = 5.38×10−3 m3 using the ellipsoid method. Be very careful
of units here.

The actual mass of the balloon m = M+ρV = 0.002 + 1.204× 5.38×10−3 = 0.0085 kg.

Putting these numbers into the three models and plotting distance fallen s versus time t and
the data points gives the figure below.

Clearly neither Model 1 nor Model 2 fits the data, so drag (air resistance) is important, as we
might expect. In Model 3, the drag parameter k was chosen to give the best fit to the data;
k=0.013 gave a good fit here.

We conclude that air resistance is important in modelling a falling balloon and that Model 3,
incorporating linear drag, provides a good fit to the experimental data.

9



2.1 Balloons, Submarines and Drag 2 LABS REQUIRING A TI-84/CE

The equation for s(t) for Model 4 is just that of Model 3, but with m=M , i.e.

s(t) =
Mg

k

(
t−M

k
(1−e−kt/M)

)
.

Plotting this with k= 0.0195 gives a reasonable fit to the data, not quite as good as that of
Model 3 but not significantly worse.

Model 5 with drag coefficient q=0.013 gives a very good fit to the data in this case.

The data allow us to determine that Models 1 and 2 (no drag) are not valid. However, the
data do not allow us to conclude that any of Models 3, 4 or 5 is significantly better than the
others, although in this case Model 5 gave the best fit, followed by Model 3 and then Model
4. More data, perhaps measured more accurately, are needed to decide which of Models 3, 4
or 5 is best. Perhaps you could try dropping the balloon from 2.5 m and/or 3 m as well.

10
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2.2 Understanding the Derivative

Based on a lab by Ruth Hubbard from the Queensland University of Technology.

Aims

• To show that the difference quotient, giving the average rate of change over a small
interval, is an approximation to the derivative, giving the instantaneous rate of change.

• To demonstrate that when a small section of most curves is magnified, the curve looks
like a straight line.

• To use the numerical derivative, nDeriv on a TI-84/CE, to calculate the symmetric
difference quotient, a better approximation to the derivative than the difference quotient.

Introduction

The idea of derivative is central to Calculus. The derivative of a function f at a particular
point

(
x, f(x)

)
can be thought of as the slope of the tangent to the curve at that point,9 as

the (instantaneous) rate of change of the function at that point or as the value f ′(x), where
f ′ is the function obtained by differentiating the original function f .

Only by the algebraic process of differentiation can we obtain the exact value of the deriva-
tive, and we can only carry out differentiation if we have a formula for the function. If we
do not have a formula (for example, if the function is given by a graph or a table) or if
we want to estimate the derivative at a point graphically or numerically, we can only find
an approximation to the derivative. This lab is devoted to methods of approximating the
derivative, numerically and graphically; to understanding the nature and accuracy of such
approximations; and, through such methods, to helping you gain a better understanding of
the derivative.

In this lab, you will estimate the derivative /instantaneous rate of change / slope of the tangent
of the function f(x)=xx at the point on the graph of f for which x=2.

Question 1 Using the difference quotient

The expression for the average rate of change of a function f over the interval from x to x+h
is the difference quotient

f(x+h)− f(x)

h
.

(a) Plot the function f(x) =xx in Y1 using window parameters [0, 3, 1]×[0, 6, 1]. Zoom in
several times near the point on the graph for which x= 2 until the graph looks like a
straight line

(
trace to X = 2 and Zoom 2 enter several times

)
.

Use trace to find the coordinates of two points on either end of this ‘line’ and hence
calculate the slope of the straight line through these two points. Zoom in again near the
point (2, 4) and repeat the calculation. Do this a third time. A table in your report —
zoom number vs slope — might be a good idea here. Based on the table values, what is
your best estimate for the derivative / instantaneous rate of change / slope of the tangent
of the function f(x)=xx at x = 2, and to how many significant digits is your answer
accurate?

9or we just say the slope of the curve at that point

11



2.2 Understanding the Derivative 2 LABS REQUIRING A TI-84/CE

(b) (i) On the graph of f provided (page 14), show how the difference quotient is repre-
sented. Relate this to what you measured in (a).

(ii) Use the difference quotient to estimate numerically the derivative of f at x = 2,
starting with h=0.1.

One way to do this is to evaluate
(
Y1(2+0.1)−Y1(2)

)
/0.1, then use the entry

key to recall the expression, change the value of h (in two places) and re-evaluate.10

Decrease h successively by a factor of 10 (h = 0.01, 0.001, 0.0001, etc) until your
difference-quotient approximation no longer changes in the fifth significant digit11

(after rounding).

In your report, draw up a table with a column for h, starting at 0.1, and a column
for the approximation to the the derivative using the difference quotient. Allow
space for a third column which you will need in Question 2.

Question 2 Using the symmetric difference quotient

The TI-84/CE has a built-in operation nDeriv to calculate the average rate of change of a
function f over the interval from x−h to x+h (compare with the difference quotient):

average rate of change =
f(x+h)− f(x−h)

(x+h)− (x−h)
=

f(x+h)− f(x−h)

2h
.

This expression, called the symmetric difference quotient, usually gives a more accurate ap-
proximation to the instantaneous rate of change at the point

(
x, f(x)

)
than does the difference

quotient (for the same h), because it is equal to the mean of the average rates of change on
either side of the point.

(a) On the graph on page 14, show how the symmetric difference quotient is represented.
Also show how the derivative or gradient, to which both the difference quotient and the
symmetric difference quotient are approximations, is represented.

(b) nDeriv takes four arguments: a function; the variable to differentiate with respect to (X
here); the value of this variable to estimate the derivative at; and a value for h.

Use nDeriv
(

math 8 ) to estimate the derivative of f(x)=xx at x=2, as follows.

• The function to use in nDeriv is Y1 or X∧X, and our starting value for h is 0.1.
Evaluate nDeriv(Y1, X, 2, 0.1) or nDeriv(X∧X, X, 2, 0.1).

• In the table you started in Question 1(b)(ii), add a column for the approximation
to the derivative using the symmetric difference quotient.

• Now decrease h successively by a factor of 10 until your approximation no longer
changes in the fifth significant digit. Again, entry after each calculation will

save retyping the nDeriv expression each time you change h. You don’t need to
put in the closing bracket.

10Y1 is vars Y-VARS 1 1 .
11not fifth decimal place.
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Question 3 Reflect and report

(a) What particular quantity have you estimated in Question 1 and 2? What is your best
estimate for this quantity? How accurate is your estimate? How do you know?

(b) It should be clear that the quantities you found in 1(b) and 2 are approximate, but
why is it approximate in 1(a)? How could you make the approximation in 1(a) more
accurate?

(c) Comment on the relative accuracies of the difference quotient and symmetric difference
quotient for a given value of h.

(d) Given that the exact derivative of f is f ′(x)=xx
(
1+ln(x)

)
,12 check the accuracy of your

approximations in Questions 1 and 2 and comment.

12You might like to show this when you’ve done the rest of the lab. Remenber that any positive function
f can be written as f(x)=eln(f(x)).

13
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Representing Difference Quotients and the Derivative

Please hand in one copy of this page with your report.
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Instructors’ Guide

Solutions

1. (a) With ZOOM FACTORS 4 (the default setting), we obtained the following table for
the slope of a line between two points roughly at the top and bottom of each screen
respectively. All values are rounded to 4 significant digits. Clearly the numbers
you obtain will vary, but they should all tend to the same limit.

ZOOM# Slope
3 6.758
4 6.765
5 6.771
6 6.772
7 6.773
8 6.773

We conclude that f ′(2)=6.773, accurate to four significant digits.

Hint : In carrying out the calculations here, we can make use of the fact that
the cursor coordinates are stored in memories X and Y. Trace to the first point,
quit and execute the command X→U: Y→V. Trace to the second point, quit
and execute the command (Y−V)/(X−U) to calculate the slope. Now zoom in,
trace to the first point, quit and use 2nd entry twice to recall the first command.

Execute it, trace to the second point, quit and use 2nd entry twice

to recall the second command. Execute it to give the second slope value. Keep
repeating the these steps to calculate subsequent slopes.

(b) (i) The difference quotient we want is the slope of the line between the points(
2, f(2)

)
and

(
2+h, f(2+h)

)
. In (a), we measured slopes of (secant) lines

between two points on the curve, but
(
2, f(2)

)
was probably not one of the

points. However, the slopes of the secant lines that we measured will be very
close to the difference quotient we want, providing h is small. The smaller h,
the more nearly parallel the secant lines is to the tangent line.

(ii) The values for the difference quotient (DQ) and symmetric difference quotient
(SDQ)

(
Question 2(b)

)
are given below.

f ′(2) ≈
h DQ SDQ

0.1 7.4964 6.8203

0.01 6.8404 6.7731

0.001 6.7793 6.7726

0.0001 6.7732 6.7726

0.00001 6.7727 —

0.000001 6.7726 —

0.0000001 6.7726 —

We conclude that f ′(2) = 6.7726, accurate to five significant digits. See the
hint on the next page.
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Hint : A quick way to carry out these calculations is to execute the command
0.1→H:

(
Y1(2+H)−Y1(2)

)
/H. Use 2nd entry to recall the command, change

the value for H and re-execute.

2. (a) The symmetric difference quotient is the slope of the line between the points
(
2−

h, f(2−h)
)

and
(
2+h, f(2+h)

)
.

(b) See the table above.

3. (a) We have estimated the derivative of f at x= 2 using the difference quotient and
the symmetric difference quotient. The best estimate, obtained in this case with
all three methods, is f ′(2) = 6.773. This is probably accurate to this number of
digits because we obtain the same value from two successive approximations from
each method.

(b) The estimate in 1(a) is approximate because we actually calculate the slopes of
secant lines (joining the two chosen points) as approximations to the slope of the
tangent line. To improve accuracy, zoom in more and more to make the portion of
the curve shown on the screen straighter and straighter, that is to make the secant
lines closer and closer to the tangent line.

(c) The symmetric difference quotient is more accurate than the difference quotient
for a given h value.

(d) f ′(2) = 4
(
1+ln(2)

)
= 6.7726 to 5 significant digits, in agreement with the results

from our approximate methods.

Hint : To differentiate xx, rewrite it as eln(x
x) = ex ln(x).
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2.3 The Derivative as a Function

Based on a lab by Ruth Hubbard from the Queensland University of Technology.

Aims

• To use the difference quotient and the symmetric difference quotient to plot approxi-
mations to the derivative of a given function.

• To understand how the behaviour of a function is reflected in the behaviour of its
derivative.

• To investigate a case in which the derivative does not exist.

Questions 2 and 3 are on the basics of the relationship between a function and
its derivative; these are fundamental.

Question 1 The derivative as a function: three methods

In the lab Understanding the Derivative, we investigated the instantaneous rate of change of
a function, that is the rate of change at a particular value of the independent variable (t
or x), using the difference quotient and the symmetric difference quotient as approximations.

In this question we will look at the instantaneous rate of change as a function itself, defined
for each value of the independent variable in its domain, a subset of the domain of the original
function.

We shall start by using the difference quotient to approximate the instantaneous-rate-of-
change function. We have to write the formula for the difference quotient at an arbitrary
value x, instead of at a particular value such as x= 0.5 or x= 2. Thus, for a function f , the
difference-quotient function d(x) (which calculates the average rate of change of f in the
interval from x to x+h) is given by

d(x) =
f(x+h)− f(x)

h
.

Previously, we chose a value for x (we called it a) and varied h. Now we will fix h at 0.001
and let x vary, so that d will become

d(x) =
f(x+0.001)− f(x)

0.001
.

With this value of h, we expect d(x) to be a reasonable approximation to the instantaneous
rate of change of f at x (but beware nasty functions!).

As you know, the algebraic process of finding the instantaneous rate of change is called
differentiation, and the instantaneous-rate-of-change function is called the derivative.

PTO
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Let f(x)=x3−x+1.

(a) Write down the difference-quotient function d(x) for this function, program d(x) into
Y2 and plot its graph for −2<x<2.

– Don’t try to expand d(x) out and simplify it — this takes time and can lead to
errors. Program it just as you first wrote it down. Better still, program f into Y1

and use Y1 in the expression for d(x) that you program into Y2.13

– Choose window parameters so that the graph fills most of the screen and so that
the cursor coordinates and function formula don’t obscure the graph when you are
using trace .

(b) Write down the expression for the symmetric-difference-quotient function for f ,
call it s(x), corresponding to the difference-quotient function d(x) above.

Use nDeriv to plot the symmetric difference quotient for f as follows. Set Y3 =
nDeriv(X3–X+1, X, X, 0.001), or nDeriv(Y1, X, X, 0.001) if you have f in Y1. Graph
d(x) and s(x) together.

(c) Finally an algebraic approach. Differentiate f algebraically to find the derivative
function f ′. Write down the expression for f ′(x), program it into Y4 and graph it with
d(x) and s(x).

(d) Describe what you see when you plot the three graphs together, and explain it. Use
trace to explore the graphs.

(e) Repeat the process from (a) down with a larger value of h, say 0.5. Again describe what
you see and explain it.

Question 2 The relationship between a function and its derivative

• Program the function f(x)=esin(x) into Y1 (Radian mode!).

• Set Y2 = nDeriv(Y1, X, X, 0.0001) to give a numerical approximation to f ′.

• Plot Y1 and Y2 together using window parameters [0, 2π, π
2
]×[−2, 4, 1].

• Sketch both functions.

Answer the following questions by looking carefully at these two graphs. You might find zero,
maximum and minimum in the calc menu useful.14

(a) Over what intervals is the graph of f increasing, that is rising as x increases?

(b) Over what intervals is the graph of f ′ positive?

(c) Over what intervals is the graph of f decreasing, that is falling as x increases?

(d) Over what intervals is the graph of f ′ negative?

13Y2=
(
Y1(X+0.001)−Y1(X)

)
/0.001.

14These all work the same way: specify a left bound for X by moving the cursor along the graph to the
appropriate place or by typing in a value and pressing enter ; then a right bound and a guess in the same
way. How accurate? — see the TI Guidebook.
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(e) What are the coordinates of the high point (local maximum of f) and the low point
(local minimum of f) of the graph of f?

(f) At what values of x does the graph of f ′ cross the x axis?

Question 3 Putting the relationship into words

(a) On the basis of your results in Question 2, write a statement describing the relationship
between f and f ′. Does this apply to any function and its derivative?

(b) (i) In terms of increasing and decreasing, what characterises a local maximum and
what characterises a local minimum of a function f?

(ii) What is the corresponding behaviour of f ′ in each case that allows you to distin-
guish a local maximum of f from a local minimum?

Supplementary Questions

Question 4 Do derivatives always exist?

So far in the course, we have considered functions and points for which the derivative was
defined. Sometimes, however, this is not the case.

Plot the function f(x)= |x|
(
Y1 = abs(X

)
15) using a window of [−1, 1, 1]× [−0.2, 1, 0.2]. We

are interested in the derivative of f or, equivalently, in the slope of the tangent to the graph
of f , at values of x around x= 0. Turn off your axes

(
2nd format

)
, so that they do not

obscure the graph at this point. We will use a graphical approach, a numerical approach and
finally an algebraic approach. Make sure you read right through each part before answering
the questions.

(a) (i) Zoom In a number of times on f near or at x=0. What should happen when you
Zoom In on a point on a graph at which a derivative exists? What happens with
f? What do you conclude?

(ii) Now compare the behaviour of f with that of g(x) =
√
x2+0.00001. Plot f

and g together, starting with the original window [−1, 1, 1]× [−0.2, 1, 0.2]. Find
both functions using trace . Then Zoom In as you did in (i). Describe what
happens. What do you conclude about the derivatives of f and g at x=0?

(b) (i) Use the symmetric difference quotient (nDeriv) to calculate an approximation to
the derivative of f at x = −1, 0, 1. Comment on what you find and how it fits in
with your results in (a).

• Remember to try decreasing h values in each case to determine accuracy. Draw
up the usual table. Think here! Comment.

• For each x value, draw a sketch of f and show what the symmetric difference
quotient is calculating.16 Do some more thinking.

15Where is abs on the TI-84/CE? In the math NUM menu.
16Remember, the symmetric difference quotient calculates the slope of a particular line. Draw the line.
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(ii) Then use nDeriv to plot an approximation to the derivative. Set Y2 = nDeriv
(Y1, X, X, 0.0001). Think about mode settings. What should you do when you see
what looks like a vertical line on a graph? Sketch f and its derivative. Comment
on what you find and how it fits in with your results in (a) and (b)(i).

(c) Write down the difference quotient
(
f(x+h)−f(x)

)
/h for f(x) = |x| at x= 0 and with

a general h, i.e. just leave it as h. Simplify your expression as much as possible. To
get rid of the absolute-value signs, you will have to consider two cases, h positive and h
negative.

• Does this result support what you found in (b)(i)?

• The derivative at x= 0 is given by the limit as h → 0 of the difference quotient.
What is the value of this limit here? For a limit to exist, it must be unique. Does
this result support your conjectures in (a) and (b)?

(d) What are your final conclusions regarding the derivative of f , particularly at x=0?

Question 5 Which is the derivative?

In the figure below:

• identify which is the function, which is the derivative and which is the second derivative,
explaining your reasoning;

• prove that it could not be another way around.

Note that it is not sufficient just to say something like “when f ′ is positive, f is increasing”
since this is always true. You have to pin such assertions to specific intervals relevant to the
given function.

Question 6 Do derivatives always exist #2?

(a) As a preliminary to (b), let’s think about how to calculate on the calculator a function
in which there is a one-third power or cube root. Take the simplest example: plot using
a window of [−3, 3, 1]×[−2, 2, 1] the following functions one at a time.

(i) f(x)=x1/3 X∧(1/3)

(ii) f(x)= 3
√
x the cube root is math 4

(iii) f(x)=x0.333333333333 (twelve 3s)

(iv) f(x)=x0.3333333333333 (thirteen 3s).

What do you observe? Which graphs are identical
(
use trace

)
? Which are correct?

Can you think why (iii) and (iv) are the way they are?

For thinking about and experimenting some other time: Does it happen with other
powers of the form 1/(an integer), 2/(an integer), . . . ?
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(b) Let f(x) = x1/3. Discuss the behaviour of the derivative of f . Use the same tools you
used in Question 4, that is a graphical approach (with axes turned off), a numerical
approach and an algebraic approach. In particular,

• for what values of a does f ′(a) exist and for what values does it fail to exist?

• if it fails to exist, why does it fail to exist?

(c) Describe and explain the behaviour of the second derivative f ′′ of f(x) =x1/3 (see the
procedure below) in terms of the behaviour of

(i) f (concave up/down)

(ii) f ′ (increasing/decreasing).

Set up the function and its derivatives in your calculator as follows: f in Y1; (an approx-
imation to) its derivative f ′ as Y2 = nDeriv(Y1, X, X, 0.0001); and (an approximation to)
its second derivative f ′′ (derivative of f ′) as Y3 = nDeriv(Y2, X, X, 0.0001). Plotting the
second derivative in this way is rather slow as the calculator has to evaluate the function
f four times for each point.

Alternatively, you may find f ′ and f ′′ algebraically, then plot them (plots much faster).
Be careful with programming them. You should check your algebraic results either
graphically or numerically with nDeriv.

Question 7 Calculator-aided delusions

Consider the function f(x)= |x|x, x 6= 0.

Plot the function on your calculator using a window of [−2, 2, 1]× [0, 4, 1]. Make sure you
have brackets in the right places in the function on your calculator. Check a couple of points
by hand to make sure.

(a) “Evaluate” the function at x= 0 using your calculator. What value should you put in
for f(0) to make the function continuous, i.e. what is lim

x→0
f(x)?

(b) Investigate the slope at x=0 graphically and numerically.

(c) Do the problem algebraically (differentiate the function) and show that your assertions
in (b) were correct.

Note that for any positive function f , f(x)=eln(f(x)) and that
d

dx
ln |x|= 1

x
.
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Instructors’ Guide

Solutions

1. (a) d(x) =
(x+ 0.001)3 − (x+ 0.001 + 1− (x3 − x+ 1)

0.001
.

(b) s(x) =
(x+ 0.001)3 − (x+ 0.001) + 1−

(
(x− 0.001)3 − (x− 0.001) + 1

)
0.002

.

(c) f ′(x) = 3x2 − 1.

(d) The three graphs are indistinguishable on the screen when h = 0.001, although
trace reveals small differences. With a window of [−2, 2, 1]×[−2, 5, 1], we get

(e) With a relatively large h, say h= 0.5, we expect the difference quotient and the
symmetric difference quotient to be less accurate approximations to the derivative
than in (d). As it turns out (see the figure below), the symmetric difference quotient
is still a reasonable approximation (the thin line in the figure is the graph of the
derivative), but the difference quotient (with the cursor on its graph) is noticeably
less accurate.

PTO
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2. Graphing the two functions:

(a) The function f is increasing for 0< x < 1.57 (π/2) and for 4.71 (3π/2)< x < 2π.
Use maximum/minimum on the calculator.

(b) The graph of f ′ is positive over the same intervals. Use zero on the calculator.

(c) The function f is decreasing for 1.57<x<4.71.

(d) The graph of f ′ is negative over the same intervals.

(e) The local maximum of f is at (1.57, e), the local minimum of f at (4.71, e−1).

(f) The graph of f ′ crosses the axis at x=1.57 and x=4.71.

3. (a) When f is increasing, f ′ is positive; when f is decreasing, f ′ is negative. This
applies to any function which is differentiable.

(b) (i) A local maximum is characterised by the function first increasing, then de-
creasing as x increases. A local minimum is characterised by the function first
decreasing, then increasing as x increases.

(ii) As x increases through a local maximum, f ′ is positive, then negative. As x
increases through a local minimum, f ′ is negative, then positive.

4. (a) (i) If the derivative of a function exists at a point, the graph of the function will
become straight if you zoom in a sufficient number of times. In the case of f
here, the corner in the graph remains, no matter how many times you zoom
in. This suggests the derivative of f does not exist at x=0.

(ii) The graphs of f and g coincide, with the given window. After zooming in a
few times, the graph of g becomes rounded at x= 0 and eventually straight,
whereas the corner remains in the graph of f . It looks like g′(0) exists, but
f ′(0) does not.

(b) (i) The symmetric difference quotient (nDeriv) gives f ′(−1)=−1 for all values of
h down to 10−12. For h=10−13, nDeriv gives 0, because of roundoff error.
The symmetric difference quotient calculates the slope of the straight line
through the points (−1−h, |− 1−h|) and (−1 +h, |− 1 +h|). For h ≤ 1, this
line coincides with the graph of f . Hence, the SDQ value for f ′(−1) is exact.

The same considerations apply to the calculation of f ′(1), for which we obtain
the value 1.
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The SDQ gives f ′(0) = 0, for all values of h. Does this make sense? The
symmetric difference quotient calculates the slope of the straight line through
the points (−h, |−h|)=(−h, |h|) and (h, |h|). Because the two y values are the
same (independent of the value of h), the line is horizontal and hence its slope
is 0.

Although the SDQ does give a value for f ′(0), it is clear from the sketch why
and it is also clear that this value is not necessarily correct at x=0.

(ii) A vertical line usually means a jump or discontinuity in the graph of the
function: the calculator joins points on either side of the discontinuity to try
to draw a connected graph. Change to Dot mode to see just the calculated
points.

The derivative clearly has a discontinuity at x=0, at which it jumps from −1
for x<0 to 1 for x>0 . This is consistent with the graph of the function and
our deliberations in (b)(i). trace shows a calculated f ′ value of 0 at x=0, but
as the graph is drawn using values from nDeriv, this is not surprising. The
existence or otherwise of f ′(0) is still uncertain.

(c)
f(x+ h)− f(x)

h
=
|h|−|0|
h

=
|h|
h

=

{
1 h > 0

−1 h < 0
.

Now f ′(0) = limh→0

(
|h|/h

)
. If we approach x= 0 from below (h< 0), we get −1

for the limit; if we approach x= 0 from above (h> 0), we get +1. Hence we get
different values for the limit, depending on from which direction we approach x=0.
The limit is not unique, and therefore does not exist.

We conclude that f ′(0) does not exist, consistent with (a) and our suspicions in
(b).

(d) The derivative of f(x) = |x| exists for x 6= 0: f ′(x) =−1 for x<0 and f ′(x) = 1 for
x>0.
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5. Consider Curves 1 and 2. Curve 1 initially has a negative slope, so Curve 2, which is
positive, cannot be the derivative of Curve 1. Curve 1 could be the derivative of Curve
2 because it is positive where Curve 2 has a positive slope, negative where Curve 2 has
a negative slope and zero at the maximum and minimum of Curve 2.

Now consider Curves 1 and 3. By the same considerations as above, Curve 1 cannot be
the derivative of Curve 3, but Curve 3 could be the derivative of Curve 1 and therefore
the second derivative of Curve 2.

Looking at Curves 2 and 3, we see that Curve 2 cannot be the derivative of Curve
3, because Curve 2 is positive initially whereas Curve 3 has a slope that is initially
negative. The same argument about initial slope shows that Curve 3 cannot be the
derivative of Curve 2.

We conclude that Curve 1 is the derivative of Curve 2 and that Curve 3 is the derivative
of Curve 1, and therefore the second derivative of Curve 2.

The actual function is f(x)=sin(2x), plotted for 0<x<π, −5<y<5.

6. (a) On a TI-84/CE, graphs (i), (ii) and (iv) are the same — they all plot the function
for negative values of x. Graph (iii) plots the function only for non-negative values
of x.

The calculator is smart enough to work out that 3
√
x is defined for negative values

of x. x1/3 is just another way to represent the cube root and 0.3333333333333 (thir-
teen 3s) is interpreted by the calculator as 1/3. However, it takes 0.333333333333
(twelve 3s) as being different to 1/3 and needs to use logs to work out the function
values, thus excluding negative exponents.

(b) Zooming in on the origin on the graph of f(x)=x1/3 eventually produces a vertical
line, suggesting the derivative at x = 0 is infinite. For other values of x, after
zooming in we obtain (approximately) straight lines, with slope depending on x.

Using the symmetric difference quotient produces larger and larger numbers as h
becomes smaller and smaller.

The derivative f ′(x) = 1/3x2/3, which goes to ∞ as x approaches 0 from above or
below.

We conclude that the derivative of f(x)=x1/3 does not exist at x=0 because it is
infinite, but exists for all other values of x.

(c) Graphing the second derivative shows that f ′′(x)>0 for x<0, corresponding to the
function f being concave up and the function f ′ increasing; for x<0, f ′′(x)<0, f
is concave down and f ′ is decreasing. The second derivative changes sign at x=0
(although f ′′(0) is not defined), so that x=0 is a point of inflection of f .

PTO
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7. (a) The calculator gives no value for f(0). However, it is clear from the graph that
lim
x→0

f(x)=1.

(b) The graph looks quite well-behaved, except for the missing value at x=0. However,
after zooming in a few times, we see that the curve becomes steeper and steeper
near x=0 and suspect that the slope may become infinite as x→ 0.

Using the symmetric difference quotient, we find that the slope ‘at’ x= 0 slowly
becomes more and more negative as h is decreased, until eventually round-off error
gives a value of 0. There is clearly no convergence to a finite value for the slope
‘at’ x= 0. In the figure below, the first column contains the H values, the second
column the corresponding symmetric difference quotients.

(c) f ′(x)= |x|x
(
1+ln(|x|)

)
. Therefore, f ′(0) is not defined, as both |x|x and ln(|x|) are

not defined at x= 0. Because of the ln(|x|) term, f ′(x)→−∞ as x → 0, as we
suspected from (a) and (b).
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2.4 Graphics and Calculus: Families of Curves

Aim: To use both graphics and Calculus to study the behaviour of families of curves.

Our study of Calculus has given us experience in using the first and second derivatives to
study the qualitative properties of a function. In this lab, we study two families of functions,
one the Normal Distribution, which arises frequently in Probability and Statistics, the other
used in modelling damped oscillatory motion.

In modelling some phenomenon, a crucial first step involves recognising which families of
functions might fit the available data. You can think of our work in this lab as an introduction
to some of the skills needed in mathematical modelling, without much discussion of the
phenomena being modelled.

Here we will be looking at families of functions, initially using the FAMILY2/FAMLY2CE pro-
gram in the calculator to see how changing parameters in a function changes the form of the
function’s graph. However we will also be using Calculus to draw some general conclusions
about the entire family of such functions. Calculus is most useful when applied to families
rather than specific functions; specific functions can be analysed individually using the cal-
culator graphics, but to understand dependence on parameters you need general laws.

A. Curves of the form f(x)=e−(x−a)2/b

This is a constant multiple of the normal density function or Normal Distribution used
in Probability and Statistics, and the Gaussian curve of Physics and Mathematics. The
parameter a corresponds to the mean µ and b to twice the square of the standard deviation σ
of the distribution. This function has wide application and was probably used, for example,
in scaling your Year 12 results.17

Here we will consider the function as a two-parameter family, depending on a and b, and we
will assume b>0.

Question 1 Doing it graphically

(a) Graph some representative members of this family using the FAMILY2/FAMLY2CE pro-
gram, first by keeping b=1 and varying a (try say 0, ±1, ±2).

Set Y1 = e∧(¯(X−A)2/B). Use a window of [−5, 5, 1]×[0, 1.2, 1].

Press on 1 to stop the program.

What is the effect on the graph of varying a? Explain this by referring to the formula
for f .

(b) Now keep a= 0 and vary b (>0). What is the effect of varying b? Explain this too by
referring to the formula for f .

(c) What is the limit of f(x) as x→ ±∞? Does it depend on a or b?

17In applications, f is usually multiplied by a positive constant such that the total area under the graph of
f(x) from x=−∞ to x=∞ is equal to 1.
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Question 2 Now we go algebraic

(a) First the critical points.

(i) Find the critical points of f in terms of a and b.

(ii) Classify each critical point as a local minimum, local maximum or neither. The
first-derivative test is straightforward here.

(iii) Does your result agree with what you found graphically in Question 1?

(b) What is the global maximum of f on (−∞,∞) in terms of a and b? the global minimum?

(c) Find, in terms of a and b, the x coordinates of the points where f ′′(x)=0.

• A point at which the graph of a function f changes concavity is called a point of inflection
of f . Equivalently, a point of inflection is where the first derivative has a local maximum
or minimum, and therefore where the second derivative f ′′ changes sign. Mostly (but
not always) this is where the second derivative is zero.

Are the points you just found points of inflection? Hint : What does the graph of the
quadratic that arises here look like?

(d) Sketch a representative graph from the family and mark on it all the points you have
found in (a) to (c).

B. Curves of the form g(t)=e−at cos(bt)

These functions represent damped harmonic motion, such as a pendulum oscillating with
friction, the shock absorber/spring system of a car’s suspension and many other forms of
vibration. g(t) gives the displacement from equilibrium at time t.

Question 3

(a) Graph the function cos(2t) on [0, 2π, π/2]×[−1, 1, 0.5] Y1 = cos(2X).

(i) What is its period? What is the period of cos(bt)? The function cos(bt) represents
an undamped vibration.

(ii) Graph cos(2t) and e−0.1t. The exponential curve represents damping or absorption
of energy.

(iii) Now graph e−0.1t cos(2t). What is the ‘period’ of this oscillatory function? What
is its ‘amplitude’? It might help to graph the functions e−0.1t and −e−0.1t as well.

(b) Graph some members of the family of functions g(t) = e−at cos(bt). Take a, b > 0 and
consider especially the cases a<<b (weak damping) and a>>b (strong damping). You
may need to change Xmax.

Describe the behaviour of the functions in these two limiting cases.

(c) What is the limit of g as t→∞? Does it depend on a or b?

PTO
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(d) You have to design a car suspension whose response to a bump (which displaces the
system from the equilibrium position g(t) = 0) is modelled by the family of curves
g(t)=e−at cos(bt).

(i) Explain the sort of characteristics you would look for in such a suspension system.
Think about the behaviour of the different curves of g you examined in (b) —
which one would you want to describe the suspension of the car you are in?

(ii) Sketch a member of the family that gives these characteristics. Don’t forget to
label the axes and give some sort of scale for each axis.

(e) What can you say about the zeros of g relative to those of cos(bt)? Use an algebraic
approach here.

(f) Now think about the critical points of g relative to those of cos(bt)? If b is fixed, what
happens to the critical points as a goes from 0 to ∞? Again, do this algebraically.
Hint : Look at what happens to one critical point, say the first local minimum as a is
increased from 0. For a=0, this is at the first local minimum of cos(bt), bt=π.

Check your result graphically by plotting g′ for different values of a starting at 0, keeping
b=1.

Supplementary Question

Question 4

(a) Just by looking at the graph of f (i.e. without using the calculator or differentiating
the function), sketch the first derivative of your representative curve in Question 2(d).
Explain your reasoning in arriving at this sketch. Mark on the sketch the critical points
and points of inflection of f (not of f ′). You may use the calculator (plot f ′ worked
out algebraically or use nDeriv) to check your answer.

(b) Similarly, sketch the second derivative of your representative curve in Question 2(d).
Again explain your reasoning. Mark on this sketch the points of inflection of f (not of
f ′′). Again you may use the calculator to check your answer.

(c) Sketch a function F whose derivative is the function f in Question 2(d). In other words,
what does the graph of the function that we differentiate to give f look like? Use what
you know about the relationship between a function and its derivative. Don’t forget the
explanation.

• What you are sketching here is the function

F (x)=

∫ x

C

f(t) dt,

where C is some constant. Take C to be a value at or to the left of the x interval
over which you sketched the curve in 2(d).

• Note that

∫ ∞
−∞

f(t) dt =
√
πb, i.e. it is finite.
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Instructors’ Guide

The FAMILY2/FAMLY2CE program (or SPGRAPH/SPGRPHCE)18 allows students to input
values for the parameters a and b, with the resulting curve plotted. Successive curves are
superimposed. Some of the more recent graphics calculators have a similar program built in.

Solutions

1. (a) Varying a causes the graph to be translated along the x axis. The basic curve
(a=0) is centred on x=0 because of the x−a in the exponent. With a non-zero,
the graph is centred on x=a.

(b) The effect of increasing b is to broaden the curves — they all pass through the
point (0, 1). We are effectively changing the x scaling when we change b — the
exponent is x/b.

(c) In all the curves, f(x)→ 0 as x→ ±∞. This behaviour does not depend on a or
b.

2. (a) (i) f ′(x)=−2(x−a)e−(x−a)
2/b/b.

f ′(x)=0 when x=a. f ′ is defined for all x. Therefore, the only critical point
is x=a.

(ii) From (i), when x<a, f ′(x)>0; when x>a, f ′(x)<0. The function therefore
changes from increasing to decreasing as we pass through the critical point,
showing that x=a is a local maximum.

(iii) In the graphs, there was a local maximum at x=a.

(b) As there is only one critical point of the continuous function f and it is a local
maximum, it must also be the global maximum.

There is no global minimum — f(x)>0 for all x, but never attains the value 0.

(c) f ′′(x) =
4

b2

(
(x−a)2 − b

2

)
e−

(x−a)2

b =
4

b2

(
x−a+

√
b

2

)(
x−a−

√
b

2

)
e−

(x−a)2
b .

Therefore, f ′′(x)=0 when x=a±
√
b/2.

The quadratic (x−a)2− b/2 is a heads-down parabola, with zeros at x=a±
√
b/2.

From this or from the factorisation of the quadratic above, we see that f ′′(x)> 0
when x<a−

√
b/2 and when x>a+

√
b/2; the function f is concave up in these

intervals. Similarly, f ′′(x) < 0 when a−
√
b/2 < x < a+

√
b/2; the function f is

concave down in this interval.

Therefore, f ′′(x) changes sign at x=a±
√
b/2, so that there are points of inflection

at these x values. This agrees with the behaviour of the function as seen on the
graphs — concave down in the middle, concave up to the left and right.

18available from www.XXX
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(d) The graph of f(x) = e−x
2/2 (a= 0, b= 2) for −2<x< 2 and 0< y < 1.1 is shown

below. It has a global maximum at x=0 and points of inflection (PI) at x=±1.

3. (a) (i) The period of cos(2t) is π (below) — there are two cycles on the interval [0, 2π].
The period of cos(bt) is 2π/b.

(ii) Below left.

(iii) This function (above right) has a period π (from the cos(2t)), but an amplitude
now of e−0.01t. The curves e−0.01t and −e−0.01t provide an envelope for the
oscillations.

(b) In the case a<< b, there are many oscillations before the amplitude decreases to
near 0. For a>>b, there are few or no oscillations before the amplitude decreases
to near 0.

(c) limt→∞ g(t) = 0. This does not depend on a (provided a>0) or b. The parameter
a determines how quickly the function decreases, but not the limiting value.

(d) (i) You would like a suspension set up so that the amplitude decreases to near zero
reasonably quickly (to be ready for the next bump), but without oscillations
(other than possibly when the amplitude is close to 0 — such low-amplitude
oscillations would not be noticed).
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(ii) Values of a=3, b=0.3 give these characteristics.

window [0, π/2, 0.5]×[0, 1, 0.5]

(e) The zeros of g are the same as those of cos(bt), because g is just cos(bt) multiplied
by a function, e−0.01t, which is never 0.

(f) The critical points of g are given by g′(t)=0, i.e.

−
(
a cos(bt) + b sin(bt)

)
e−at = 0.

Therefore, a cos(bt)+b sin(bt) = 0 or bt = arctan(−a/b).
If a = 0, this gives bt = 0, π, 2π, . . . , the critical points of cos(bt). As a increases,
the value of bt at the critical point decreases following the arctan curve.

The value of bt at the first local minimum is given by bt=π+arctan(−a/b), which
starts at π when a=0 and tends to π/2 as a→∞

(
arctan(−x)→−π/2 as x→∞

)
.

4. The three functions f , f ′ and f ′′ plotted on −2<x<2 and −1<y<1 are shown below.

(a) In sketching the first derivative of f from its graph, we take into account the
following features.

• f ′ is zero at the critical point x=0.

• To the left of the critical point, f is increasing at an increasing rate, then at a
decreasing rate, so f ′ is positive and increasing, then positive and decreasing,
thus passing through a local maximum at the point of inflection of f at x=−1.

• Similarly, to the right of the critical point, f ′ passes through a local minimum
at x=1. This too is a point of inflection of f .

(b) In sketching the second derivative of f , we use (a) and the fact that f ′′ is the
derivative of f ′.

• f ′′ is zero at the critical points (local maximum/minimum) x = ±1 of f ′,
corresponding to the points of inflection of f .

• f ′′ has local maxima at x=±
√

3 and a local minimum at x=0, corresponding
to the points of inflection of f ′.
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(c) The function F (x) =

∫ x

C

f(t) dt has the following properties.

• It is 0 at x=C (property of the definite integral).

• It is increasing for all x>C, because f ′>0.

• It has a point of inflection at x=0, changing from concave up (f ′ increasing)
when x<0 to concave down (f ′ decreasing) when x>0.

The function F (x) =

∫ x

−5
e−x

2/2 dt, plotted on −2<x< 2 and 0<y< 2.5, is shown

below.
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2.5 Newton’s Method: A Classic Problem

Based partly on material from the book Exploring Calculus with a Graphing Calculator by
C.E. Beckmann and T.A. Sundstrom, Addison-Wesley, 1992.

Aims

• To show graphically how Newton’s Method approximates the solution of a particular
equation and to relate this to the corresponding algebraic steps.

• To become proficient in using the NEWTON/NEWTONCE program as a numerical
method to solve equations of the form f(x)=0 and f(x)=g(x).

Introduction

When there are no algebraic methods that will give an exact solution of an equation f(x)=0,
numerical methods are used to approximate the solution. There is a built-in root finder on
the TI-84/CE, but how does it work?

Newton’s Method (sometimes called the Newton-Raphson Method or the Newton-Raphson-
Simpson Method or even the Newton-Raphson-Simpson-Fourier Method uses tangent-line
(linear) approximations to the function f to successively approximate the solution of the
equation.

Question 1 The process done graphically and algebraically using a specific function

Let f(x) = x2−10. Carry out the graphical construction of Newton’s Method and the cor-
responding algebraic steps for solving the equation f(x) = 0, using an initial approximation
x0 =1, as follows.

(a) Write down the equation of the tangent line to the graph of f at x=x0 = 1. You may
differentiate f algebraically to find the slope of this line.

(b) Show algebraically that the zero or x intercept, x1, of the tangent line is given by x1 =5.5.
x1 is then the next approximation to the solution of the equation f(x) = 0, that is we
approximate the zero of the function by the zero of the tangent-line approximation to
the function.

Use the points (1,−9) and (5.5, 0) to draw the tangent line at x0 on the graph of f in
Figure 1 (page 35); label x1.

(c) Repeat steps (a) and (b) using the new approximation x1 (instead of x0) to find the
next approximation x2. Draw the tangent line at x1 on Figure 1 (using the two points
you know) and label x2.

(d) Then use x2 to find x3 graphically, i.e. this time, just draw the appropriate tangent line
by eye. There is no need to calculate things algebraically. Label x3.

(e) Estimate from the graph of f the value of x for which f(x) = 0. Comment on the
sequence of values x1, x2, x3.

34



2.5 Newton’s Method: A Classic Problem 2 LABS REQUIRING A TI-84/CE

Figure 1: f(x)=x2−10.
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Newton’s Method in Recursive Form

The overall procedure of Newton’s Method is usually stated in recursive form as follows.

(1) Start with an initial approximation x0 for the solution of f(x)=0.

(2) To go from the nth approximation xn to the next approximation xn+1, use the formula

xn+1 = xn −
f(xn)

f ′(xn)
.

That is, we start with x0, use the formula to find x1, then use it again to find x2, etc. This
process is called iteration. In most cases, the values of xn (n = 0, 1, 2, . . . ) will converge
rapidly to the solution, and so give decimal approximations to the solution of the equation
f(x)=0. From the work done in Question 1, you should be able to see how the above formula
is derived.

Question 2 Using the NEWTON/NEWTONCE program

Read the instructions regarding use of the NEWTON program in the Appendix, especially on
the two ways of entering the initial approximation and on how to stop the program.

(a) Solve f(x) = x2−10 = 0 as follows:

• set Y1 = X2−10;

• store the initial approximation x0 =1 in X: 1 stoI X,T,θ, n enter ;

• run the NEWTON/NEWTONCE program, choosing Y1 as the function, through
three steps to give x1, x2, x3.

Write down x1, x2, x3 and compare them with your answers to Question 1.

(b) Find an approximation to the solution accurate to 9 significant digits by continuing to
run the program.

• We assume that a result here is accurate to n significant digits if the first n signif-
icant digits are the same in two successive answers (after rounding).

• How many iterations (key presses) did it take to obtain this accuracy?

• Check your answer by squaring it (quit the program and evaluate X2). Comment.

(c) Plot the graph of f(x)=x2−10 on your calculator using the window [0, 6, 1]×[−15, 20, 5].
This time generate the initial guess x0 to the zero of f by tracing along the curve to
a point close to the zero. Then run the program until you have an answer accurate to
9 significant digits. What do you notice about the convergence here compared to (b)?
Explain why.

(d) What is the other solution to the equation x2−10 = 0?

Note: The program uses the calculator routine nDeriv, a numerical approximation to the
derivative, to estimate f ′. This may cause some inaccuracy, particularly when we get close
to the solution, but does not seem to be a real problem with most of the functions we use. A
more accurate alternative is to work out the derivative algebraically, put it into Y2 say and
replace nDeriv command in the program with Y2.
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Question 3 A classic problem

A hare and tortoise compete in a one-kilometre race. The distance each competitor has
travelled from the starting point is given by a formula. In time t minutes, the distance in
metres travelled by the hare is given by H(t)= 500

3

(
2
√
t+ 3
√
t
)
, while the distance in metres

travelled by the tortoise is given by T (t)=100t+250
√
t.

Plot graphs of H and T as functions of time on your calculator19 using a suitable domain and
range, i.e. so that the two graphs go from the bottom left to the top right of the screen (how
far is the race? ). If you select Simul in the mode menu of your calculator before graphing,
you will get a real-time view of the race.

Write a commentary of the race, including at least the following features:

• which competitor gets to the halfway point first and how long it takes;20

• the time and distance (after the start) at which the two competitors are neck and neck;

• the winner of the race, the time margin and distance margin by which it wins.

• the payout on a $1 bet on the winner.

In a Technical Appendix, give details of how you worked out these features: the equations
you solved; how you solved them (Newton’s Method should be prominent here); and the
accuracy of your answers. You don’t have to describe how the program works, just the inputs
and outputs. Document your steps so that someone else with a TI-84/CE could repeat your
calculations.

19The cube root is math 4 on a TI-84/CE.
20Hint : An equation f(x) = g(x) can be written in the form f(x)−g(x) = 0. Set Y3= Y1−500 and use

Newton’s Method on Y3, etc.
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Supplementary Questions

Question 4 The general case done algebraically

Here we essentially repeat the process of Question 1, but with a general function f and general
points x0, x1, x2, . . . .

In Figure 2 below, the solution of f(x)=0 corresponds to the x intercept r of the graph of f .
The exact value of r is not known, and we wish to approximate it using Newton’s method.
Let x0 be the initial approximation to r.

(a) Write down the equation of the tangent line to the graph of f at x=x0 in terms of its
slope f ′(x0) and x0, f(x0). Then write this equation in the form y=T (x), i.e. put y on
the left-hand side of the equation and everything else on the right-hand side.

(b) This tangent line is a linear approximation to the function f , accurate for x near x0.
As it is not possible to solve the equation f(x) = 0, we solve the equation T (x) = 0 to
obtain the next approximation to the solution of f(x)=0.

(i) On Figure 2, locate the point on the graph of y=T (x) for which T (x) = 0. Label
this point x1.

(ii) From the equation of y=T (x) found in (a), determine an expression for x1 in terms
of x0, f(x0) and f ′(x0). Simplify this expression as much as possible.

(c) x1 is the next approximation to the solution of f(x) = 0. The procedure can then be
repeated to find the x-intercept x2 of the tangent line to the graph of f at x=x1.

(i) Mark the point (x1, f(x1)) on Figure 2 and sketch the tangent line to the graph of
f through this point.

(ii) Label the x-intercept of this second tangent line x2. Is x2 a better approximation
for r than x1?

Figure 2
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Question 5 Solving f(x)=g(x)

Rewrite the equation cos(x)=0.5x in a form suitable for Newton’s Method.

(a) Find the solution to the equation, accurate to 10 significant digits, by

• graphing the appropriate function using a window of [−5, 5, 1]×[−5, 5, 1].

Did you get a straight line? If so, you are not in Radian mode .

• using the cursor to provide the initial approximation.

• What is the solution?

• Check your answer by stopping the program and evaluating Y1 (X). (The last
approximation in the program is stored in X.)

(b) Now start with an initial approximation of 3.67, i.e. store 3.67 in X and run the program
through a few iterations.

• What do you observe?

• Was 3.67 a good choice for the initial approximation? Explain in terms of the
tangent line at x=3.67, using a sketch.

Question 6 Sensitivity to the initial approximation

Let f(x)=x3−x. The equation x3−x = 0 has three solutions: −1, 0 and 1.

(a) Sketch f and show algebraically that a local minimum occurs at x=1/
√

3 and a local
maximum at x=−1/

√
3.

(b) Argue from the graph of f (you might like to consider its slope and concavity) that if
x0>1/

√
3, Newton’s Method will converge to the solution 1. Therefore, by symmetry, if

x0<−1/
√

3, Newton’s Method will converge to the solution −1. Discuss what happens
if x0 =±1/

√
3.

(c) Demonstrate algebraically that if we start Newton’s Method with x0 =±1/
√

5, then
x1 = ∓1/

√
5 and x2 = ±1/

√
5. Therefore, if we start with x0 = ±1/

√
5, we do not

converge to a solution. In this case, ±1/
√

5 are called Period 2 points.

(d) Interesting chaotic behaviour occurs when 1/
√

5 < x0 < 1/
√

3 or, by symmetry, when
−1/
√

3 < x0 < −1/
√

5. Complete the table below and comment on the sensitivity of
Newton’s Method to the choice of x0.

x0 Solution found

0.4656

0.4657

0.44721

0.44722

0.44723

39



2.5 Newton’s Method: A Classic Problem 2 LABS REQUIRING A TI-84/CE

Appendix

The NEWTON/NEWTONCE program finds a zero of any of Y1 – Y5/Y7, equivalently a solution
X of the corresponding equation Yn(X) = 0) using Newton’s Method. The derivative of the
function is estimated numerically using the symmetric difference quotient with an H/tolerance
of 10−6.

The program requires an initial guess for the zero to be stored in memory X. One way to
generate this guess is to graph the function and move the cursor approximately to the zero.
The X co-ordinate of the cursor is automatically stored in X. Then run the program. This
should also almost guarantee that the zero the program finds is the one you want. If you
don’t want to graph the function, just store the initial guess in X.

You could also use the calculator’s built-in numerical or graphical solver to find zeros of
functions. The nice thing about the Newton’s Method program is that you can see the
method converging (hopefully).

Use: Type the function into any of Y1 – Y5/Y7.

Select the initial guess for X by tracing along the graph of the appropriate function or by
storing a value in X. Run the program.

Choose which Y function to use.

Press enter to generate successive values.

Press on and select Quit to stop the program.

The NEWTON/NEWTONCE program is available at www.XXX.
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Instructors’ Guide

General comments

While a program is useful for this lab, Newton’s Method can be achieved with a one-line
command. Put the function in Y1 and its derivative (either numerical using nDeriv or exact)
in Y2. Store the initial guess in X. Then repeatedly execute (keep pressing enter ) the
command X−Y1/Y2 → X to give successive approximations to the solution. You could also
use zero in the CALC menu but you then have to accept the calculator accuracy (more than
adequate here) and skip the lesson on convergence.

Solutions

1. (a) f ′(x) = 2x, so that f ′(1) = 2. The tangent at x= 1 is therefore a straight line of
slope 2, passing through

(
1, f(1)

)
=(1,−9). Its equation is then y+9 = 2(x−1) or

y = 2x−11.

(b) The x intercept is given by y=0, so that x=x1 =5.5.

(c) f ′(5.5) = 11, so that the tangent at x= 5.5 is a straight line of slope 11, passing
through

(
5.5, f(5.5)

)
= (5.5, 20.25). Its equation is then y−20.25 = 11(x−5.5) or

y = 11x−40.25. The x intercept of this line is x2 =40.25/11≈3.659.

(d) Graphical estimates should put x3 within about 0.1 or 0.2 of the zero of f and
certainly significantly closer than x2. Algebraically, x3≈3.196.

(e) From the graph, the zero of f is about 3.18. The sequence of values x1, x2, x3 is
getting closer and closer to this value.

2. (a) x1 =5.5, x2≈3.659 and x3≈3.196, as we found in Question 1.

(b) The fifth iteration gives the solution to f(x) = 0 as x= 3.1622777, rounded to 8
significant digits. The sixth iteration confirms the accuracy of this answer.

Squaring the sixth iteration gives (exactly, according to the calculator) 10, so that
our solution looks to be very accurate.

(c) This time we obtain the same answer as in (b), but after only 3 iterations. The
convergence is faster because we started with a better initial guess.

(d) The exact solution to f(x)=0 is x=±
√

10.

We have found an approximation to
√

10, so the other solution is
x=−

√
10=−3.16227766, accurate to 9 significant digits.
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3. The Technical Appendix should contain the following information.

The equation for the hare was put in Y1, that for the tortoise in Y2.

• From the graph, the hare clearly reached the halfway point (500 m) first.

To find how long it took, we solve H(t) = 500 for t. The easiest way to do this
on the calculator is to set Y3 = Y1− 500 and find the zero of Y3 using Newton’s
Method with any reasonable initial guess. The value for t quickly converges to t=1
minute, a value we can confirm algebraically to be exact.

The hare reaches the halfway point first in a time of 1 minute.

• To find when they are neck and neck, we have to solve H(t)=T (t) or
H(t)−T (t) = 0. Set Y3 = Y1−Y2 and again find the zero of Y3 using Newton’s
Method with any reasonable initial guess. We obtain t=4.53 minutes, accurate to
3 significant digits.

The hare and tortoise are neck and neck after about 4.53 minutes or about 4 minutes
32 seconds.

• To find the winner, we have to determine the time at which each competitor reaches
the finish (1000 m). Setting Y3 = Y1− 1000, we find the hare finishes at t= 4.681
minutes. Similarly, with Y3 = Y2− 1000, we find the tortoise finishes at t= 4.624
minutes.

Hare Tortoise

To find the distance margin, calculate H(4.624), the position of the hare when the
tortoise finishes: H(4.624)=994.45 m, rounded to 5 significant digits.

The tortoise wins the race by a margin of 0.057 minutes or 3.42 seconds. The
distance margin is 5.55 m.

• A short discussion on possible odds, given the historical setting?
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4. (a) The equation of the tangent is y−f(x0) = f ′(x0)
(
x−x0

)
or

y = f(x0)+f ′(x0)
(
x−x0

)
, giving T (x) = f(x0)+f ′(x0)

(
x−x0

)
.

(b) (ii) T (x1) = 0 ⇒ f(x0) + f ′(x0)
(
x1−x0

)
= 0 ⇒ x1 = x0 −

f(x0)

f ′(x0)
.

(c) From the graph, x2 is clearly a better approximation to r than x1.

5. cos(x)=0.5x ⇒ cos(x)−0.5x = 0. Set f(x) = cos(x)−0.5x and put in Y1.

(a) Following the usual procedure with the NEWTON/NEWTONCE program, we ob-
tain a solution x= 1.029866529, accurate to 10 significant digits. Y1(X) = 0, con-
firming our solution.

(b) Starting with x0 = 3.67, the sequence of approximations shows no sign of con-
verging to a particular value. Clearly, x= 3.67 is not a good choice for the first
approximation.

The reason is that x=3.67 is very close to a local minimum of f , so that the first
tangent is almost horizontal. The next approximation x1 is therefore a very long
way away from the zero of f and never returns (using the numerical derivative for
f ′) or takes a long time to return (using the exact derivative) to the right value.

PTO
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6. (a) f(x)=x3−x, so that f ′(x) = 3x2−1 and f ′′(x)=6x.

f has critical points when f ′(x)=0, giving x=±1/
√

3, or when f ′ is undefined —
there are no values of x for which f ′ is undefined.

When x=1/
√

3, f ′′(x)>0, so that x=1/
√

3 is a local minimum.

When x=−1/
√

3, f ′′(x)<0, so that x=−1/
√

3 is a local maximum.

(b) If x0>1/
√

3, the tangents will have positive slopes and will lie beneath the graph
of f because f is concave up. All tangents will therefore cross the x axis to the
right of x=1; successive approximations will therefore tend to 1.

If x0 =±1/
√

3, the method will fail because the initial tangent, being horizontal,
will never cross the x axis. On the calculator, this will give a divide-by-zero error
message.

(c) If x0 = ±1/
√

5, f(x0) = ± 1
√

5
3 ∓

1√
5

= ∓ 4

5
√

5
and f ′(x0) = −2/5.

Therefore,

x1 = ±1/
√

5 ± 4/5
√

5

−2/5

= ±
(

1√
5
− 2√

5

)
= ∓ 1√

5

= −x0.

The same calculation gives x2 = ±1/
√

5 = x0.

Therefore, if we start with either value for x0, we will return to this value after two
iterations; successive iterations will oscillate between ±x0.

(d) Using the NEWTON/NEWTONCE program with the given value of x0 stored in X,
we obtain the following results.

x0 Solution found

0.4656 1

0.4657 −1

0.44721 0

0.44722 1

0.44723 −1

Clearly, near particular values of x0, Newton’s Method is very sensitive to small
changes in x0.
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2.6 Optimisation

Aims

• To look at different approaches to finding optimum values.

• To develop skills in mathematical modelling.

Optimisation problems are usually regarded as applications of differentiation. In reality, they
are examples of the common modelling question What’s the best way to . . . ?. If you are
interested in the modelling aspect, having to refind critical points every time you change a
parameter gets in the way of exploring the model. This is where graphics calculators are really
handy. The process of finding a maximum or minimum is simple, once you have plotted the
function to be optimised. Having a graph of the function you are optimising also makes it
easy to see which value you are trying to find, valuable when there are multiple possibilities.
It also allows you to check an algebraic result.

One aspect of modelling beyond finding the optimum is just how critical is the optimum
value, often called sensitivity analysis. Algebraically this can be difficult or impossible but
on a graphics calculator it is just an additional simple step.

Procedure for Optimisation Problems

In most problems (not just optimisation problems) it helps to break down the problem into
parts (mathematical thinking). Here is a procedure for optimisation problems.

1. Define variables with units. Drawing a sketch is always a good idea too. At this
stage you should also think about the problem: what should the answer be?

It is also useful at this stage to write down the information given in terms of your
variables.

2. Formulate the equations. Write down an equation for the variable to be max-
imised/minimised as a function of the other variables. Use other equations to rewrite
this equation in terms of one independent variable.

3. Determine the domain of the function to be maximised/minimised. Usually
follows from the nature of the problem. Is the domain open or closed? If there is a
choice, make it closed (endpoints included), because then there will always be a global
maximum/minimum (provided the function is continuous).

4. Find the GLOBAL maximum/minimum. Do this graphically or algebraically
using the methods we have developed. If you find a local maximum/minimum, you
have to argue in some way that it is also the global maximum/minimum.

5. Answer the question. As the question was in words, your answer should be too.
Don’t forget the units. Does your answer make sense?

Global Maxima and Minima

1. A global maximum and a global minimum always exist for a continuous function with
a closed domain. They occur either at a critical point of the function or at an endpoint
of the domain.

2. A global maximum and a global minimum may not exist if the domain is open
(or if the function is not continuous). If they exist, they occur at critical points of the
function (or at a point of discontinuity).
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Question 1 Global maxima/minima

(a) Write down what you understand by a global maximum and a global minimum of a
function on a given domain.

(b) Sketch a continuous function on a closed domain for which the global maximum occurs
at a critical point and the global minimum occurs at an endpoint (you don’t need to
draw specific functions, just general shapes).

(c) Sketch a continuous function on an open domain which has two critical points, but
neither a global maximum nor a global minimum.

(d) Sketch a continuous function on an open domain which has a global maximum, but no
global minimum. Where does the global maximum occur here?

(e) Sketch a continuous function on an closed domain which has a local minimum, but no
global minimum.

Question 2 A warm-up problem

What is the maximum area possible for a rectangle of perimeter 16m? Follow the steps on
page 45 to answer this question.

• Show that a suitable domain in this problem is 0 ≤ x ≤ 8, where x is one side of the
rectangle. Note the = part of ≤.

• Do Step 4 graphically first, accurate to 4 decimal places, then algebraically — don’t
forget you are looking for a global maximum.

• What shape is the rectangle of maximum area?

Question 3 A bit harder

What dimensions of a rectangle of area A give maximum perimeter? Again you should
follow the steps of the procedure on page 45.

• Because of the parameter A in the equation to be maximised, you will need to find the
global maximum, if it exists, algebraically. You could check your answer graphically by
choosing different values for A and plotting perimeter as a function of side length.

Note to Instructor: Choose (one or more) of Questions 4 – 9 to include in the lab. All of
these questions can be put in the short form of Question 4 or be set out in steps like Question
5 to aid in understanding the process. One question in each form is a good idea. Questions
10 and 11 are supplementary (harder) problems.

46



2.6 Optimisation 2 LABS REQUIRING A TI-84/CE

Question 4 Oil pipeline

You are drawing up plans for the piping that will connect a drilling rig 12 km offshore to a
refinery onshore 20 km down the coast (see the diagram).

(a) What value of x will give you the least expensive connection if underwater pipe costs
$50,000 per km and pipe on land costs $30,000 per km? What is the total cost of this
connection? Make sure you explain what you are doing and how you know your solution
is the least-expensive solution.

(b) It turns out that there is a large mass of rock right at the optimum point for the pipeline
to come onshore. You have to relocate this point either side of the rock, but you only
have $5,000 to do this. How far either side of the optimum point can you go and still
stay within budget? An aproximate answer is sufficient here, but say how you found it
and comment on the accuracy.
Hint : An algebraic solution may not be the smartest way to try to solve this question!

(c) If you did (a) algebraically, now do it graphically. If you did it graphically, now do it
algebraically.

Question 5 Survival

A thirsty soldier out on a survival exercise is at point P on a straight track through the desert.
She desperately wants to reach a waterhole at point W . She can walk at 8 km/h along the
track, but only at 3 km/h through the soft sand off the track. Determine, using the steps
below, how far along the track from P she should walk before setting off in a straight line
for the waterhole, so that she reaches the waterhole in minimum time.

(a) Define suitable variables and units.
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(b) Derive, with reasons, an equation for the quantity to be minimised, remembering that
time = distance/speed.

(c) Determine a sensible domain for the independent variable and explain why it is sensible.

(d) Draw a sketch of the function in (b) with this domain and a suitable range for the
dependent variable.

(e) Determine graphically the position of the point (to within 10 m) at which she should
leave the track to reach the waterhole in minimum time. State precisely how you found
your answer and achieved the desired accuracy. What is the minimum time?

(f) Repeat (e) algebraically.

(g) She decides that it doesn’t matter if she takes up to 5 minutes longer than this minimum
time and wants to know how accurate she has to be in determining where to leave the
track.

(i) Outline briefly three possible approaches to this problem: graphical, numerical and
algebraic. Which approach is likely to be easiest here if an approximate quantita-
tive answer is required?

(ii) Use one of the approachs to answer the question.

(iii) Is the decision on where to leave the track crucial?

(h) In (a)–(d) you have constructed a mathematical model for a particular situation. What
assumptions have been made in the model that may not apply in the real situation and
that might affect the minimum-time calculations? Explain how the calculations
would be affected.

Question 6 Submarine navigation

A submarine can travel 30 km/h submerged and 60 km/h on the surface. The submarine must
stay submerged if within 200 km of the coast. The submarine has to go to the aid of a surface
ship 200 km offshore. The submarine leaves from a base 300 km along the coast from the
surface ship.

(a) Find algebraically the value of x (see the
diagram) that will minimise the time for
the sub to reach the ship. Hint : Remem-
ber that time = distance/velocity. What
is the time to reach the ship in terms of
x?
Check your answer graphically.

(b) The submarine commander is told that the sub has at most 11 hours to reach the ship.
What range of x values does this allow? Use a calculator graph to obtain an approximate
answer.
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Question 7 A supply problem

You have to establish a supply depot at some point S on the banks of a straight river to
supply troops in Camps 1 and 2, as shown in the figure below. Supply trucks can drive in
straight lines across the desert from S to each of the camps.

(a) To make the total travel time to the camps as short as possible, you want to minimise
the total distance from the depot to the camps. Where should the supply depot be
located? What is the minimum total distance?

(b) You are allowed a tolerance of 200m in the total distance to the camps. What tolerance
does this give you in locating the supply depot?

Question 8 Running a boat

The cost of fuel to propel a boat through the water (in dollars per hour) is proportional to the
cube of the speed. A certain ferry uses $100 worth of fuel per hour when cruising at 10 km/h.
Apart from fuel, the cost of running this ferry (labour, maintenance, etc) is $675 per hour.
At what speed should it travel so as to minimize the cost per kilometre travelled?

PTO
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Question 9 Running a truck

You, the owner of a trucking company, have to send a truck across the Nullarbor Plain.

• The total trip is 1000 kilometres.

• Running the truck (except for the cost of fuel) and paying the driver together cost $60
per hour.

• If the truck is driven at a constant 100 kilometres per hour, the fuel consumption is 2
kilometres per litre. For each kilometre per hour increase in speed above 100 kilometres
per hour, the fuel efficiency decreases by 0.02 kilometres per litre.

• Fuel in the outback costs $1 per litre.

(a) Show that the total cost (in $) for the trip if the truck is driven at a constant speed of
v kilometres per hour is

C(v) =
60 000

v
+

1000

4−0.02v
.

Hint : Look carefully at the units of each quantity.

(b) What speed minimises the overall cost of the trip? Your answer should be accurate to
at least the nearest kilometre per hour.

(c) What is the minimum cost for the trip (to the nearest dollar)?

(d) You know that driving at a constant speed is difficult and tiring. You are therefore
prepared to allow the cost of the trip to go up to 5% above the minimum cost. What
is the lowest constant speed and the highest constant speed at which the driver could
travel and stay within budget? Again, your answer should be accurate to at least the
nearest kilometre per hour.

Question 10 Converting a try

In rugby, how far back from the tryline should a kicker take the ball to have the best chance
of converting a try? How critical is the choice of distance? You should think initially about
the apparent width of the goalposts, rather than the height of the crossbar. Take the width
of the goalposts to be 5.6 m.

There are a number of variations on this problem, such as how far back should you be to get
the best view of the whiteboard/the TV/your favourite public monument.

Question 11 A fun problem

Find (algebraically) the global maximum and global minimum of f(x) = x−3λx1/3 on the
interval [−1, 1], where λ>0 is a parameter.

• Hint : Your answer will depend on the value of λ. The usual algebraic approach should
give you some inequalities in λ to solve to find the global maximum and mimimum. The
simplest way to do this is graphically.

• Check your algebraic answer by graphing f for −1<x< 1 and with λ = 0.15, 0.5, 1.1.
Note that just choosing some values for λ and using a graphical or numerical method
does not answer this question fully.
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Instructors’ Guide

Solutions

1. (a) A variety of possibilities, but plain English is probably the best.

The global maximum of a function on a given domain is the largest value
of the function on that domain. The global minimum is the smallest value
of the function on that domain.

(b) For example, a head-up parabola on a closed domain.

(c) For example, a generic cubic shape with a local minimum and a local maximum,
but defined on an open domain such that the endpoints, if they were included,
would be the global maximum/minimum.

(d) For example, a head-up parabola on an open domain. The global maximum occurs
at the local maximum.

(e) This is not possible because of the Extreme-Value Theorem.

2. Following the suggested steps . . .

Define variables with units

Let x and y be the lengths of the sides of the rectangle in metres and let A be the area
in square metres.

Formulate the equations

We have 2x+2y=16 from the perimeter or y=8−x. The area of the rectangle is A=xy.

Putting y=8−x in the expression for A, we have as the function to be maximised

A(x) = x(8−x).

Determine the domain of the function to be maximised/minimised

The area cannot be negative, so that 06x68. Graph A(x) if you are not sure.

Find the GLOBAL maximum/minimum

As the function is continuous and defined on a closed domain, the global maximum
exists and must occur at either a critical point of A or at an endpoint of the domain.

A′(x)=8−2x, so that the only critical point is x=4.

Evaluating A at the critical point and at the endpoints gives

A(4)=16

A(0)=A(8)=0.

The global maximum therefore occurs at x=4. The corresponding y value is also 4.

Answer the question

The maximum area of a rectangle of perimeter 16 m is 16 m2; the rectangle of maximum
area is a square of side 4 m.
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3. Following the same steps as Question 2, but with perimeter P , we have to maximise

P (x) = 2

(
x+

A

x

)
with respect to x on an open domain 0<x<∞. The global maximum, if it exists, will
occur at a critical point.

P ′(x) = 2

(
1− A

x2

)
.

The critical points are x=±
√
A (P ′(x) = 0), of which x=

√
A lies in the domain, and

x=0 (P ′(x) undefined), which does not lie in the domain.

Use either the first-derivative test (P ′ changes from negative to positive as we pass
through x=

√
A) or the second-derivative test (P ′′(

√
A)< 0) to show that x=

√
A is

a local minimum. As the function is continuous on its domain and there is only one
critical point, this must also be a global minimum.

That there is no global maximum can be seen from the fact that P (x)→∞ as x→0 or
as x→∞. This is also evident in a graph of P (x) for any value of A.

Therefore, there is no rectangle of given area that has maximum perimeter, something
that makes sense when we think about it.

4. Follow the usual scheme. (c) is included in (a).

(a) Define variables and units

Let x km be the distance shown in the figure. Let C be the total cost of the pipeline
in thousands of dollars.

Formulate the equation

By Pythagoras, the distance from the rig to land is
√
x2+144 km, and the distance

from there to the refinery is 20−x km.

Therefore, the total cost C(x)=50
√
x2+144 + 30(20−x) thousand dollars.

The problem: find the global minimum of C with respect to the variable x.

Find the domain

A sensible domain here is 06 x6 20. x= 0 means the pipe goes straight to the
land by the shortest route; x= 20 means the pipeline goes direct to the refinery,
all underwater. Choose the domain to be closed.

Find the global minimum

The function C is continuous and has a closed domain. The global minimum
therefore exists and must occur at an endpoint of the domain or at a critical point.

PTO

52



2.6 Optimisation 2 LABS REQUIRING A TI-84/CE

Graphically

Plot C(x) on [0, 20]. Using minimum on the calculator, the global minimum is at
the local minimum x = 9, giving a total cost of C = 1080 (claimed accuracy for
minimum is at least 5 significant digits).

window [0, 20, 5]×[1000, 1200, 100]

Algebraically

dC

dx
=

50x√
x2+144

− 30.

The derivative is defined for all x, so that it is defined for all x in the domain.

C ′(x)=0 when 50x=30
√
x2+144.

After squaring both sides and carrying out some algebra, we find C ′(x) = 0 when
x2 = 81 or x=±9. x=−9 does not lie in our domain, so the only critical point is
x=9.

C(0)=1200 endpoint

C(9)=1080 critical point

C(20)=1166.2 (5SD) endpoint

Therefore, the global minimum occurs at x=9.

Answer the question

The pipeline should come ashore 9 km towards the refinery from the point on land
directly opposite the rig. The total cost is $1,080,000.

(b) The total cost can rise to $1,085,000. To find the corresponding x values, we have
to solve C(x) = 1085. The easiest way to do this is to plot the line y= 1085 and
find where it cuts the graph of C using intersect.

window [0, 20, 5]×[1000, 1200, 100]

To 5 significant digits, 6.9231 6 x 6 11.264 (claimed accuracy for intersect is at
least 5 significant digits).
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A sensible answer to the problem is that the pipeline can come ashore anywhere
between 6.9 km and 11.3 km towards the refinery from the point on land directly
opposite the rig and still come within a budget of $1,085,000.

5. (a) Define variables

Let x km be the distance along the track from P to where she leaves the track.
Let T hours be the total time taken to reach W .

(b) Formulate the equation

The time along the track is x/8 hours. The distance to W from where she leaves
the track is

√
(3−x)2+4, so the time across the desert is

T (x) =
x

8
+

√
(3−x)2+4

3
(hours).

(c) Domain

A sensible domain is 0 6 x 6 3. There is no point in walking away from the
waterhole along the track from where she currently is, so x > 0. It is also not
sensible to walk past the point directly opposite the waterhole, so x63.

(d) Plot T (x) on [0, 3].

window [0, 3, 1]×[0.9, 1.25, 0.1]

(e) Find the global minimum graphically

The global minimum occurs at the local minimum with x = 2.19 (3SD) and
T = 0.993 (3SD), using minimum on the TI-84/CE (claimed accuracy at least
5 significant digits).

She reaches the waterhole in a minimum time of about 0.993 hours or about 59.6
minutes if she leaves the track after about 2.19 km.

PTO
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(f) Find the global minimum algebraically

T is a continuous function on a closed domain, so the global minimum exists and
occurs either at an endpoint or a critical point.

Critical points

dT

dx
=

1

8
+

1

2
· 1

3
((3−x)2+4)−

1
2 · 2(3−x) · −1

=
1

8
− 3−x

3
√

(3−x)2+4
.

T is defined for all x, so any critical points occur when T ′(x)=0.

T ′=0 when

3−x
3
√

(3−x)2+4
=

1

8
.

∴ 8(3− x) = 3
√

(3−x)2+4.

∴ 64(3−x)2 = 9
(
(3−x)2+4

)
.

∴ (3−x)2 =
36

55
.

∴ (3−x) = ± 6√
55
.

∴ x = 3± 6√
55
.

Only the critical point x=3−6/
√

55≈2.19 (to the nearest 10 m) lies in the domain.

T (0)=1.20 hour (3SD) endpoint

T (2.19)=0.993 hour (3SD) critical point

T (3)=1.04 hour (3SD) endpoint

Therefore, the global minimum lies at the critical point.

As found in (e), she reaches the waterhole in minimum time if she leaves the track
after about 2.19 km.

(g) If she can take up to 5 minutes longer than the minimum time, the total time can
be up to 1.08 hours (3SD). To find the range of possible x values, we have to solve
T (x)=1.08 for x. We expect two solutions, one less than and one greater than the
x value for minimum time.

(i) Graphically, we plot T (x) and trace along the curve to find the two x values
at which T (x) is as close as possible to 1.08.

Numerically, we use one of the built-in calculator routines, for example inter-
sect, to give approximations for the values of x at which y=T (x) and y=1.08
intersect.

Algebraically, we solve T (x)=1.08 for x.

The graphical and numerical methods look easier here than the algebraic
method.
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(ii) Graphically, with the window in (d), the points on the screen for which T (x)
is closest to 1.08 give 0.88<x<3.26.

window [0, 4, 1]×[0.9, 1.25, 0.1]

Numerically, we get the same answers, but we now know the values are accurate
to the number of digits given. Algebraically, we end up with a quadratic in x
which gives the same answers (showing that the values obtained numerically
were in fact accurate to 8 significant digits).

(iii) Clearly the decision on where to leave the track is not at all crucial. She
can leave the track anywhere between 0.88 km and 3.26 km (actually past the
waterhole on the track) from where she is and still only take up to 5 minutes
or about 8% longer than the minimum time.

(h) The two most obvious assumptions that we make in the model are that she does
indeed walk at a constant speed both on the track and across the sand, and that
she can walk in a straight line across the sand. If she doesn’t walk in a straight
line, she will clearly take longer than the calculated minimum time, because she
will cover a greater distance than assumed in the model. As far as the speed is
concerned, provided her average speeds over the total distance along the track and
the total distance across the sand are equal to the assumed values, the model will
still be valid.

6. (a) Define variables and units

Let T (x) be the time in hours for the sub to reach the ship. Let x as shown on the
diagram be measured in km.

Formulate the equation

With the help of Pythagoras,

T (x) =

√
2002+x2

30
+

300−x
60

.

Determine the domain

A sensible domain is 06x6300. Choose it to be closed.

PTO
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Find the global minimum

T is a continuous function on a closed domain. The global minimum therefore
exists and lies at a critical point or at an endpoint of the domain.

T ′(x) =
1

2

2x

30
√

2002+x2
− 1

60
.

T ′ is defined for all x, so any critical points occur when T ′(x)=0.

T ′(x)=0 ⇒ x√
2002+x2

=
1

2
⇒ (2x)2 =2002+x2 ⇒ 3x2 =2002.

Therefore x2 = 2002/3 or x≈±115.47. x≈−115.47 is not in the domain, so that
x≈115.47 is the only critical point.

T (0)≈11.7 endpoint

T (115.47)≈10.8 critical point

T (300)≈12.0 endpoint

Therefore, the global minimum, T (x)≈10.8 occurs at x≈115.47.

Graphical check:

window [0, 300, 50]×[10, 12, 1]

Answer the question

The value of x to minimise the time taken by the sub to reach the ship is about
115.5 km, giving a minimum time of about 10.8 hours.

(b) To answer this question, we need to solve T (x)=11. For an approximate solution,
trace along the graph of T until T (x) is as close to 11 as you can make it — we
find approximately 54<x<185.

window [0, 300, 50]×[10, 12, 1]

For more accurate answers, find the intersections of the graph of y = T (x) with
y= 11 using intersect to give 54.5<x<185, these values accurate to 3 significant
digits. Clearly the choice of x is not critical.

The equation T (x)=11 can also be solved algebraically — it reduces to a quadratic.
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7. (a) Define variables and units

Let x km be the distance shown in the figure. Let D km be the total distance from
the depot to the two camps.

Formulate the equation

By Pythagoras, the distance from S to Camp 1 is
√
x2+1 and the distance to

Camp 2 is
√

(4−x)2+16.

Therefore, D=
√
x2+1 +

√
(4−x)2+16.

The problem: find the global minimum of D with respect to the variable x.

Find the domain

Whether the domain is open or closed is important in determining how we go about
finding the global maximum. If we have the choice, we make the domain closed,
even if we know the endpoints are not the optimum values, because that makes
solving the problem mathematically more straightforward.

If x=0, S is directly opposite Camp 1; if x=4, S is directly opposite Camp 2. A
sensible domain here is therefore 06x64.

Find the global maximum

The function D is continuous and has a closed domain. The global minimum
therefore exists and occurs at an endpoint of the domain or at a critical point.

Graphically

Plot D(x) for 0<x<4. The global minimum occurs at the local minimum x=0.8
(5SD), D = 6.40 (3SD). The claimed calculator accuracy is at least 5 significant
digits.

window [0, 4, 1]×[5, 9, 1]

Algebraically

dD

dx
=

2x

2
√
x2+1

+
−2(4−x)

2
√

(4−x)2+16
=

x√
x2+1

− 4−x√
(4−x)2+16

.

The derivative is defined for all x, so that it is defined for all x in the domain.

dD

dx
=0 ⇒ x√

x2+1
=

4−x√
(4−x)2+16

.

After squaring both sides and carrying out some algebra, we find D′(x)=0 when

15x2+8x−16 = 0.

The quadratic formula gives x=0.8 or x=−4/3.
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The value x=−4/3 does not lie in our domain; the only critical point is x=0.8.

D(0)=6.66 (3SD) endpoint

D(0.8)=6.40 critical point

D(4)=8.12 (3SD) endpoint

Therefore, the global minimum occurs at x=0.8. The corresponding total distance
is D=6.40 km.

Answer the question

Locate the supply depot 0.8 km to the right (on the map) of the point on the river
closest to Camp 1. The total distance to the camps is 6.40 km (3SD).

(b) A tolerance of 200 m = 0.2 km means the total distance can go up to 6.6 km.
Why can’t it also go down to 6.2 km? Find x for which D(x) = 6.6 graphi-
cally/numerically (easier) or algebraically (messy).

Plot D(x) and the line y = 6.6 and use intersect. Locating S anywhere between
x = 0.09 km and x = 1.7 km will give a total distance within the tolerance. The
graph of D versus x has a fairly flat minimum, so the placement of S is not critical.

window [0, 4, 1]×[5, 9, 1]
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8. Define variables and units

Let v be the speed of the boat in kilometres per hour.
Let C be the cost per kilometre travelled.
Let D be the cost per hour.

Formulate the equation

D=Df +675, where Df is the fuel cost per hour. We are given that Df ∝ v3, so that
Df =kv3, where k is a constant. As Df =100 when v=10, we find k=0.1.

Therefore, D(v)=0.1v3+675.

We want to find the global minimum of C, which has units of dollars/km. D has units
of dollars/hour, so that if we divide D by a quantity having units km/hour, i.e. by the
velocity, we obtain C.

Therefore, C(v) =
D(v)

v
= 0.1v2 +

675

v
.

The problem: Find the global maximum of C with respect to the variable v.

Determine the domain

The only restriction is v>0, so the domain here is (0,∞).

Find the global minimum

The function C is continuous, but has an open domain. The global minimum, if it
exists, will occur at a critical point.

Graphically : Plot C(x) on [0, 30] say. Using minimum on the calculator, the global
minimum is at the local minimum v=15, giving C=67.5.

window [0, 30, 5]×[60, 100, 5]

Algebraically
dC

dv
= 0.2v− 675

v2
.

The derivative is defined for all v in the domain.

C ′(v)=0 when v3 =675/0.2, giving v=15.

The only critical point is v=15, with C(15)=67.5.

As v→0, C(v)→∞. As v→∞, C(v)→∞.

Therefore, the global minimum occurs at v=15.

Answer the question

The boat should travel at 15 km/h to achieve a minimum fuel cost per km of $67.50.
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9. (a) Total cost C(v) = cost of fuel + other costs.

Other costs: total time for trip is
1000

v

km

km/hr
=

1000

v
hr;

total other costs = 60
$

hr
× 1000

v
h = $

60 000

v
.

Fuel cost: fuel efficiency = 2− 0.02(v−100) km/`

= 2 + 2− 0.02v km/`

= 4− 0.02v km/`;

total fuel required =
1000

4−0.02v

km

km/`
=

1000

4−0.02v
`;

total fuel cost = 1
$

`
× 1000

4−0.02v
` = $

1000

4−0.02v
.

∴ C(v) =
60 000

v
+

1000

4−0.02v
.

(b) The domain is v>0, but clearly the truck cannot exceed say 160 km/h, so a sensible
domain is (0, 160).

Graphically: Plot C(v) vs v over its domain.

window [0, 160, 20]×[0, 5000, 500]

From the graph, the global minimum on the domain lies at the local minimum
v = 104.6 (4SD) (found using minimum,claimed accurate to at least 5 significant
digits).

Algebraically

The function is defined on an open domain, so that the global minimum, if it exists,
lies at a local minimnum, i.e. at a critical point.

Critical points

C ′(v) = −60 000

v2
+

0.02× 1000

(4−0.02v)2

= −60 000

v2
+

20

(4−0.02v)2
.

C ′ is defined for all v in the domain (0, 160).

61



2.6 Optimisation 2 LABS REQUIRING A TI-84/CE

C ′(v)=0 if

60 000(4−0.02v)2 = 20v2.

∴ 16− 0.16v + 0.0004v2 = 0.0003̇v2.

∴ 6.6̇×10−5v2 − 0.16v + 16 = 0.

∴ v =
0.16±

√
0.162−64× 6.6̇×10−5

2×6.6̇×10−5

≈ 0.16± 0.146059

1.3̇×10−4

≈ 2215 or 104.6 (4SD).

Only v≈104.6 lies in the domain, so this is the only critical point.

C ′′(v) =
120 000

v3
+

0.8

(4−0.02v)3
,

which is positive for all v in the domain.

Therefore, C is concave up, the critical point is a local minimum, and because it
is the only critical point, it is also the global minimum.

To the nearest km/h, the optimum speed is v=105 km/h.

(c) The minimum total cost for the trip to the nearest dollar, either from using mini-
mum on the graph or calculating C(vopt), is $1098.

(d) 5% more than the minimum total cost is 1.05 × 1098 ≈ $1153, so we must solve
C(v)=1153.

The simplest way to do this is numerically: graph C(x) and use intersect to find
where C(v)=1153 or use zero to find where C(v)−1153=0. To fall within budget,
the driver can drive at a constant speed between 82 km/h and 126 km/h (both to
the nearest km/h).

window [0, 160, 20]×[0, 5000, 500]

Solving C(v)=1153 algebraically is straightforward too — you end up finding the
roots of a quadratic equation.
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10. This problem allows students to develop a model (beyond just finding a maximum), to
look at its implications and limitations in a context which should be familiar.

One approach: Take the ball back until the angular width of the goalposts as seen
by the kicker is a maximum. Let a be the width of the goalposts, let the try be scored
a distance b (measured along the tryline) from the lefthand goalpost and let x be the
distance the ball is taken back from the tryline.

The steps to solving this problem and questions that arise subsequently in using the
model are given below. The lab could be presented in this form for less mathematically
sophisticated students.

(a) Show that the value of x that maximises the angular width of the goalposts is

x =
√
b(b+a). (1)

Solution: From the figure,

θ = arctan

(
b+a

x

)
− arctan

(
b

x

)
.

Setting dθ/dx= 0 and solving the resulting quadratic gives x=±
√
b(b+a). For

our problem x>0 (but see (i)), so we choose the + sign.

(b) Plot the optimum kicking distance x versus the distance b from the goalpost that
the try was scored, given the width of the goalposts a= 5.6 m and the width of a
rugby field is 70 m.

Solution: The distance from a goalpost to the touchline on that side is
(70−5.6)/2=32.2 m. Plotting x(b) with this domain gives

window [0, 32, 5]×[0, 40, 5]
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(c) However, suppose that the width a differs from ground to ground. Do we have to
plot a separate graph for each ground?

The answer is no. We define the non-dimensional variables X=x/a and B=b/a,
and Equation (1) then becomes

X =
√
B(B+1). (2)

Now there are only two variables, so that a plot of X versus B will be valid for
all grounds. Often using non-dimensional variables from the beginning makes the
algebra easier too.

Derive Equation (2) using non-dimensional variables from the beginning.

Solution: With non-dimensional variables,

θ = arctan

(
B+1

X

)
− arctan

(
B

X

)
.

Setting dθ/dx=0 and solving the resulting quadratic gives X=±
√
B(B+1).

(d) Plot X versus B. First work out the domain of the function.

Does the answer to the problem, as given by (2) and your graph (which can be
regarded as a plan of the ground), make sense?

Solution: We found in (b) that the distance from a goalpost to the touchline on
that side is (70−5.6)/2 = 32.2 m. The normalised distance is therefore 32.2/5.6 =
5.75. With domain 06B65.75, a graph of X(B), valid for any ground is

(e) What happens as B→ 0? Does the answer for B just bigger than 0 predict what
a kicker would do? Why not?

Solution: As B→ 0, X→ 0. For small B, the model predicts a small X, i.e. the
kick would be taken close to the tryline. However, the model does not take into
account the fact that the kick has also to pass over the crossbar. In practice, for
small B the kicker would take the ball back further than predicted by the model.

(f) In reality, B can be as small as −1/2. What does −1/2<B< 0 correspond to in
practice? What does the model say when −1/2<B< 0? What actually happens
in practice when −1/2<B<0?

Solution: If −1/2 < B < 0, the try has been scored under the goalposts. The
model gives no value for X in this case because the argument of the square-root
function is negative. In practice, the kicker would take the ball far enough back
that he or she was confident the kick would clear the crossbar.
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(g) What happens as B gets big (B >> 1)? Is there a quick rule of thumb in this
case? If the ground were arbitrarily wide, would the predictions of Equation (2)
be useful for a kicker? Again what other (practical) considerations are there that
are not included in the model?

Solution: As B gets big, X also gets big, with X ≈ B. If the ground were
arbitrarily wide, the kick would have to cover an arbitrarily large distance.

For example, with B = 5.75, corresponding to a try scored next to the touchline,
according to the model the kicker should take the ball back a distance of nearly
35 m, giving a distance to the centre of the goalposts of nearly 50 m. The kicker
may not be able to kick the ball this far and would therefore choose a smaller value
of X to lessen the kicking distance. The apparent width of the goalposts would
then no longer be a maximum.

(h) What happens if the try were scored on the other side of the goalposts to that in
the diagram? What values of B correspond to this case? Is this handled by the
model?

Solution: The goalposts occupy the interval −16B 6 0. If the try were scored
on the other side of the goalposts, we would have B6−1. The model handles this
case, as you can readily see by allowing B to be negative in your graph.

(i) Why choose the positive square root in Equation (2)? What does the negative
square root mean in practical terms? Define the domain and range of Equation
(2) to correspond to an actual ground.

Solution: The positive square root in Equation (2) gives a ground running in
the positive X direction. If we chose the negative square root, we would have the
ground running in the negative X direction, i.e. on the other side of the goalposts.
The ground is defined by −6.756B6 5.75 and X > 0. If the ground were 100 m
from goalpost to goalpost, the maximum value of X would be 100/5.6≈17.9.

(j) Is the distance given by Equations (1) and (2) a global maximum? You should
have checked this when answering the problem. There are several possibilities.

• first-derivative test: Does the first derivative change sign for values of X either
side of that given by Equation (2)?

• second-derivative test (messy?)

• physical reasoning: Only one critical point in 06B, and the angular width of
the goalposts θ is a minimum (= 0) when B=0 and θ→0 as B→∞. Therefore
the critical number given by Equation (2) must be a local and global maximum.

PTO
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(k) How sharp is the maximum given by Equation (2)? Does it make a lot of difference
if we choose X to be different to the ‘best’ value, i.e. if we choose to take the kick
from a different distance back from the tryline?

Solution: Plot θ versus X for different values of B.

window [0, 6, 1]×[0, 0.6, 0.1]

Clearly, if B is small (try scored close to the goalposts) it does matter: the angular
width of the goalposts drops off quite sharply either side of the maximum. However,
as we found above, the model is somewhat suspect for small B. For B greater than
about 2, there is not much of a peak, and the position of the kick is not crucial.
The distance that the ball will have to be kicked is probably just as important, if
not more so.
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11. f(x) = x−3λx1/3 is a continuous function defined on a closed domain [−1, 1], so that
the global maximum and global minimum must exist for all values of λ. They must lie
either at a critical point of f or at an endpoint of the domain.

f ′(x) = 1− λ

x2/3
,

so that f ′(x)=0 when x2/3 =λ or x=±λ3/2. f ′ is undefined when x=0.

The critical points are therefore x=0 and x=±λ3/2. The latter only lie in the domain
if λ61.

f(−1)=−1+3λ Endpoint 1

f(−λ3/2)=2λ3/2 Critical Point 1

f(0)=0 Critical Point 2

f(λ3/2)=−2λ3/2 Critical Point 3

f(1)=1−3λ Endpoint 2

The biggest of these five numbers is the global maximum, the smallest the global mini-
mum. Plot the functions y=−1+3x, y=2x3/2, y=0, y=−2x3/2 and y=1−3x for x>0
to determine for which values of x (i.e. λ), which function is the biggest/smallest.

After some playing around with the window (try [0, 1, 0.5]×[−1.5, 1.5, 0.5]) and intersect,
we find the following.

– For 0<λ< 1/4, Endpoint 2 is the global maximum, Endpoint 1 the global mini-
mum.

– At λ= 1/4, Endpoint 2 and Critical Point 1 are the global maxima, Endpoint 1
and Critical Point 3 the global minima.

– For 1/4<λ<1, Critical Point 1 is the global maximum, Critical Point 3 the global
minimum.

– At λ= 1, Critical Point 1 and Endpoint 1 are the same point x=−1; this is the
global maximum. Critical Point 3 and Endpoint 2 are the same point x= 1; this
is the global minimum.

– For λ > 1, the critical points no longer lie in [−1, 1]. Endpoint 1 is the global
maximum, Endpoint 2 the global minimum.

f(x)=x−3λx1/3

window [−1, 1, 0.5]×[−3, 3, 1]
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2.7 Bush Mathematics

The Problem

Your Maths class is out bush on a camp. One evening, a local farmer wanders into your camp
and, hearing who you are, asks you to help him with a problem that has been keeping him
awake at nights.

He has 4 km of fencing wire left over in his shed and, in the spirit of efficiency necessary these
days for farms to make a profit, wants to make best use of it. After some discussions, you
and he decide that ‘best use’ means that he wants to enclose maximum area with the wire.
(For simplicity, we shall assume that the fence is single strand — if the fence had w strands,
he would effectively have 4/w km of wire, and the problem would be the same.)

Following the steps below, try to find the best solution to the farmer’s problem. Along the
way, we may find out why most paddocks have four sides.

Part I

It is clear from looking around that rectangular paddocks are the norm. Your first task is to
determine what shape rectangle encloses maximum area with the 4 km of wire.
Hint : Let the sides of the rectangle be x km and y km, and do the problem algebraically.
Remember the scheme for tackling optimisation problems? See below.

• Tell a lab instructor your solution to Part I. If it is correct, he or she will give you Part
II.

• Write a progress report for the farmer: this report should contain a short summary in
words of what you have done and discovered, a section detailing your calculations and
a recommendation as to what he should do at this stage. The farmer has done Year-12
Mathematics.'

&

$

%

Procedure for Optimisation Problems

1. Define variables with units. Drawing a sketch is always a good idea too. At this
stage, think about the problem: what should the answer be?

2. Formulate the equation. Write down an equation for the variable to be min-
imised/maximised as a function of the other variables. Use other equations to rewrite
this equation in terms of one independent variable.

3. Determine the domain of the function to be minimised/maximised. Usu-
ally follows from the nature of the problem. Is the domain open or closed? If there
is a choice, make it closed (endpoints included), because then there will always be
a global minimum/maximum (if the function is continuous).

4. Find the GLOBAL minimum/maximum. Do this graphically or algebraically
using the methods we have developed. If you find a local min/max, you have to
argue in some way that it is also the global min/max.

5. Answer the question. Since the question was in words, your answer should be
too. Remember units. Does your answer make sense?
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Bush Mathematics

Part II

The farmer vaguely remembers something from school about circles and area. After some
more discussion, you decide to work out what combination of a square and/or a circular
paddock (a radical concept) will enclose maximum area with the 4 km of wire.

Hint : Have two paddocks, one a square with side x km, the other a circle of radius r km.

Again do the problem algebraically, guided by a graph. What is the maximum area you
enclose?

Extension: The solution to this problem causes the farmer much excitement and he can’t
wait to tell his mates, who also have left-over wire, but of different lengths. You decide you
had better solve the problem and find the maximum enclosed area for p km of wire. Then
you can just apply the final formula to the length of wire that each farmer has.

• Tell a lab instructor your solution to Part II. If it is correct, he or she will give you
Part III.

• Don’t forget a progress report for the farmer and a recommendation as to what he should
do at this stage.
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Bush Mathematics

Part III

After the excitement over the discovery about circular paddocks has died down, you realise
that to build a perfectly circular paddock, you will need a large number of posts — an infinite
number in fact, if you assume that each post takes up negligible space. Realistically, what
you will build is a polygonal paddock with n sides if you have n posts. The larger n, the
closer the paddock to a circle. Archimedes went through a similar sort of paddock problem
quite a while ago.

A polygonal paddock is no longer the optimal solution to your problem, so what sort of gain in
area do you get with a paddock of n sides over a square one? An entry from a book of maths
formulas, reproduced below, might help you to work out the area of a polygonal paddock of
perimeter 4 km and n sides.21

Regular polygon of n sides, each of length b

Area =
nb2

4 tan(π/n)

Perimeter = nb

What’s the best value of n for a perimeter of 4 km?

Hint : Graphics and/or a table of area values22 are likely to be very handy here.23

Remember that here the independent variable n is discrete, not continuous, so we can’t use
differentiation.

• Tell a lab instructor your solution to Part III. If it is correct, he or she will give you
Part IV.

• Don’t forget a progress report for the farmer and a recommendation as to what he should
do at this stage.

21You might even like to prove this result yourself. Look at the figure.
22Radian mode on your calculator is essential
23If you do the general case of p km of wire, you can plot/calculate values of Area/p2, so that p does not

enter into the determination of the optimum n. It will of course enter into the value for the maximum area.
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Bush Mathematics

Part IV

So far we have not included the fact that posts cost money to buy and put in.

(a) Assume that there is a post at each vertex of the paddock. Let each of these n corner
posts cost $c to buy and put in. As money is limited, a reasonable strategy now seems
to be to maximise not area A enclosed by the 4 km of wire, but B, the area enclosed
per dollar spent. What’s the best n now? Does it depend on c?24

(b) We now have posts at each corner of the paddock, but fences also need smaller support
posts to hold up the wire between the corner posts.25 Suppose that these support posts
cost $s to buy and put in (s6c).

Assume we need posts every 5 m, that is there is no length of fence between posts longer
than 5 m. What value of n maximises area per dollar now for a perimeter of 4 km? Hint :
What is the total number of posts? The total number of support posts? The total cost
of the posts?

You should find that the optimum value of n depends on the ratio s/c (although the
maximum value for area per dollar depends on c and s individually). Use s/c= 0.005
first, but then try a range of values 06 s/c6 1. Draw up a table of values of s/c and
the corresponding optimum n.

Can your theory explain why most paddocks have n=4?

(c) Extension: If the perimeter is p km and the maximum distance between posts is d km
(note), what is the optimum n value?26 You should find it now depends on two ratios,
s/c and p/d, not on the four individual values.

Check your answer using p/d=4/0.005=800, the values we used above.

What happens if p/d = 400, 200, 100? Is the optimum value of n sensitive to changes in
the parameter p/d for the values used here?

• Tell a lab instructor your solutions to Part IV. If they are correct, he or she will give
you Part V.

• Don’t forget a progress report for the farmer and a recommendation as to what he should
do at this stage.

24Graph/tablulate the function c×area per dollar = cB.
25This is still not the full story: a standard fence has support posts, typically star pickets, every 5 m.

Roughly every tenth post is a larger wooden strainer post.
26The ceiling or least-integer function C(x) might be useful here: C(x) is the smallest integer greater than

or equal to x: math NUM iPart(X + 0.9999) on your calculator.
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Bush Mathematics

Part V

Another possible explanation for the choice of n=4 for paddocks is that farmers rarely have
only one paddock. Square paddocks (and all other polygonal paddocks) can share sides if
there is more than one paddock. Which of the three shapes of paddocks that have arisen so
far, triangular, square and circular, comes out best when there are m paddocks sharing as
many sides as possible? ‘Best’ here means that the m paddocks enclose maximum area for a
total wire length of 4 km. Don’t include the cost of fence posts just yet.

Hint : Circles are the easiest here. What is the total area of m identical circles for which
the total length of wire used is 4 km? For triangles and squares, sketch how you would
join together m paddocks (m = 2, 3, 4, . . . ) most efficiently. Forming, as often as possible,
hexagons with the triangles and an overall square with the squares, seems to be the best
strategy. The whole question of ‘best packing’ arises here and leads off into many areas of
chemistry and physics.

Now (for the very keen) include the cost of fence posts. What’s the best n for m paddocks?

Write a short summary of your results in all parts of the lab. What advice are you going to
give the farmer?

Congratulations on reaching and hopefully completing the last part of this lab.
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Instructors’ Guide

This is an open-ended lab, with the problems becoming successively harder. The idea is to
see the steps in constructing a mathematical model, how to test it against the data (most
paddocks are square or rectangular), then refine the model. The idea of handing out each
part separately is that the group as a whole concentrates on one part at a time, rather than
taking a part each. You can stop at any point that is appropriate for your class.

When you do stop, students should be asked to summarise all their results along the lines of
. . .

Write a full report for the farmer, summarising all your findings. Make a practical recom-
mendation as to what he should do. What other considerations might have to be taken into
account in finding the optimum solution to this problem? (Think about building a fence.)

Solutions and Discussion

Part I

This is the same problem as Question 2 of the Optimisation lab. The rectangle of maximum
area is a square.

Part II

A standard problem in Calculus texts, usually involving string or wire. It is one of the few
optimisation problems with an endpoint maximum, and therefore useful in pointing out this
possibility to students. It was this problem and the attempt to put it in a more interesting
context that led to this lab.

Define variables and units

Let A km2 be the total area enclosed by the square and the circle. Let x km be the side of
the square and r km be the radius of the circle.

Formulate the equation

A = x2 + πr2 total area

4 = 4x+ 2πr total perimeter is 4 km

∴ r =
4(1−x)

2π

∴ A(x) = x2 +
4

π
(1−x)2 area to be maximised

Find the domain

The domain here is 06 x6 1. x= 0 means all the wire is in the circle, x= 1 means all the
wire is in the square. Choose the domain to be closed.
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Find the global maximum

The function A is continuous and has a closed domain. The global minimum therefore exists
and must occur at an endpoint of the domain or at a critical point.

Graphically

Plot A(x) on [0, 1]. The global maximum is clearly at the endpoint x=0.

window [−0.05, 1, 0.5]×[0, 1.5, 0.5]

Algebraically
dA

dx
= 2x− 8

π
(1−x).

The derivative is defined for all x, so that it is defined for all x in the domain.

A′(x)=0 when x=4/(4+π)≈0.56: this is the only critical point.

A(0)=4/π ≈ 1.27 endpoint (all wire in circle)

A
(
4/(4+π)

)
=4/(4+π)≈0.56 critical point

A(1)=1 endpoint (all wire in square)

Therefore, the global maximum occurs at x=0.

Answer the question

The maximum area is enclosed if all the wire goes into the circular paddock. The area is
4/π≈1.27 km2, a 27% improvement over putting all the wire into a square paddock.

Extension

The equations for p km of wire are

A = x2 + πr2 total area

p = 4x+ 2πr total perimeter is 4 km

∴ r =
p− 4x

2π

∴ A(x) = x2 +
1

4π
(p−4x)2 area to be maximised

Find the domain

The domain here is 06x6p/4. x=0 means all the wire is in the circle, x=p/4 means all the
wire is in the square. Choose the domain to be closed.
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Find the global maximum

The function A is continuous and has a closed domain. The global minimum therefore exists
and must occur at an endpoint of the domain or at a critical point.

dA

dx
= 2x− 1

2π
(p−4x).

The derivative is defined for all x, so that it is defined for all x in the domain.

A′(x) = 0 when x=p/(4+π): this is the only critical point.

A(0) = p2/4π endpoint

A
(
p/(4+π)

)
= p2/4(4+π) < A(0) critical point

A(p/4) = p2/16 < A(0) endpoint

Therefore, the global maximum occurs at x=0.

Answer the question

The maximum area is enclosed if all the wire goes into the circular paddock. The area is
p2/4π, still a 27% improvement over putting all the wire into a square paddock.

Part III

At this stage reality kicks in and makes the problem more interesting.

The area of a polygonal paddock of perimeter 4 km with n (equal) sides is

A =
4

n tan(π/n)
km2.

If we graph A(x) = 4/x tan(π/x) and only look at integer values or use the table feature of
the calculator (probably easier), we find that A increases as n increases — there is no ‘best’
polygon. As n→∞, the area of the polygon approaches the area of the circle that we found
in Part II.

In the table, X is n and Y1 is A.

As the area of the square (n= 4) is 1, it is easy to see from a table of function values the
improvement of successive polygons (with n > 4) over the square, but there is no obvious
criterion for choosing the best polygon.

75



2.7 Bush Mathematics 2 LABS REQUIRING A TI-84/CE

Part IV

Money had to come into the problem somewhere! The cost of the posts could also include
the cost of stringing the wire from each post — students from a rural background may bring
this up.

(a) The area enclosed by a polygon with n sides was found in Part III to be

A=
4

n tan(π/n)
km2.

The cost of n posts is $nc, so the area enclosed per dollar is B=A/nc or

B=
4

n2c tan(π/n)
km2 per dollar.

To use a graph or table, we plot/tabulate cB=4/n2 tan(π/n). The constant c does not
affect the optimum n (if it exists), because the maximum of cB will occur at the same
value of n as that for B. However, the value of c will determine the value of B for any
given n.

In the table, X is n and Y1 is B.

B is only defined for n> 3 (for a viable paddock) and we find that it is a decreasing
function of n: the paddock enclosing the maximum area per dollar spent is a triangular
paddock.

(b) If there are posts every 5 m, there will be 4000/5 = 800 posts altogether. As we have n
corner posts, we will need 800−n support posts. The total cost of the posts is therefore
nc+s(800−n) dollars, and the area per dollar spent is

B =
4

n tan(π/n)
· 1

nc+s(800−n)

=
4

nc tan(π/n)
· 1

n+ s
c
(800−n)

.

The optimum value of n now depends on the ratio s/c.

Using a table of values of cB versus n, we find the following optimum values of n as a
function of the ratio of post costs s/c. The relative values of area per dollar spent, cB,
at optimum are also given.
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s/c Optimum n cB Comments
0 3 0.2566 corner posts only

0.005 4 0.1253 relative cost of support posts increasing

0.01 5 0.0850 ↓
0.05 7 0.0254

0.1 9 0.0139

0.2 11 0.0073

0.5 18 0.0031

0.9 36 0.0018

0.99 81 0.0016

0.999 174 0.0016

1 800 0.0016 maximum possible number of posts

As the price of support posts goes up, corner posts are relatively less expensive and
so we can have more, enclosing greater area. While there is a value of s/c that gives
an optimum value of n= 4, i.e. a square paddock, the optimum value is quite sensitive
to changes in s/c. The graphs of cB versus n are also quite flat, particularly as s/c
increases, so that choosing a value of n that is not optimum makes little difference to
the value of B.

It therefore seems unlikely that this model explains why most paddocks have n=4.

(c) The area enclosed by a polygon of perimeter p km with n sides is

A =
p2

4n tan(π/n)
km2.

The total number of posts required so that the maximum spacing between posts is d km
is C(p/d), where C(x) is the smallest integer greater than or equal to x, also called the
ceiling function.27 We therefore have n corner posts costing $c each and C(p/d) − n
support posts costing $s each. The total cost of posts in dollars is then

nc+ s
(
C(p/d)−n

)
= nc

(
1+

s

c

(
1

n
C(p/d)−1

))
,

and the area enclosed per dollar spent as

B =
p2

4n tan(π/n)
· 1

nc
(
1+ s

c
(C(p/d)/n− 1)

)
=

p2

4n2c tan(π/n)

1

1+ s
c

(C(p/d)/n− 1)
.

27On a TI-84/CE, you can use iPart(X+0.9999) to generate the ceiling function.
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To simplify the calculations, we assume that the perimeter is exactly divisible by the
spacing between posts. Then p/d is an integer, giving

B =
p2

4n2c tan
(
π
n

) 1

1+ s
c

(
p
nd
− 1
) .

The maximum of B will occur at the same value of n as that of

4c

p2
B =

1

n2 tan
(
π
n

) 1

1+ s
c

(
p
nd
− 1
) .

and this is what we tabulate as a function of n for different values of s/c and p/d. For
each tabulation, we then find the n to give maximum B.

The table below shows the optimum n for the same values of s/c as in (b) and with
the number of posts p/d = 800, 400, 200, 100. The first of these values is what we used
in (b), and corresponds to 5 m post spacing in a total perimeter of 4 km. The other
values for p/d correspond to 10 m, 20 m and 40 m post spacings respectively in a total
perimeter of 4 km.

p/d
s/c 800 400 200 100

0 3 3 3 3
0.05 7 6 5 4
0.1 9 7 6 5
0.2 11 9 7 6
0.5 18 14 11 9
0.9 36 29 23 18
1 800 400 200 100

As in (b), the graphs of

(
4c

p2

)
B versus n are quite flat, becoming flatter as s/c

increases, and again the model does not seem to explain why n=4 in practice.
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Part V

Joined paddocks, cost of posts not included

Circles

If there are m circular paddocks, each of radius r, with total perimeter p, we have total

perimeter p=2πrm, so that r=
p

2πm
and total area enclosed is

A = mπr2 =
p2

4πm
.

Squares and Triangles

For the number of paddocks m = 1, 2, 3, . . . , count the number of units (length of one side
of a paddock) required. The fixed perimeter then determines the length of one unit. You
can then use the formula for the area of one paddock in terms of the length of one side to
determine the total enclosed area. In all cases, we can take out a factor of p2 and tabulate
A/p2. The aim in putting the paddocks together is to have as few sides as possible, so the
more shared sides the better. However, the results below do not represent a full treatment
of the problem, merely some experimentation on the part of the author. It is this sort of
experimentation that we wish to encourage in our students.

The table below shows the values of A/p2 as a function of m. The largest of the three values
for each m (underlined) gives the best option of the three paddock shapes considered here.

A/p2

m Circles Squares Triangles
1 0.0796 0.0625 0.0481
2 0.0398 0.0408 0.0346
3 0.0265 0.0300 0.0265
4 0.0199 0.0278 0.0214
5 0.0159 0.0222 0.0179
...

...
...

...

As m → ∞, A/p2 ∼ 1/4πm for circles, A/p2 ∼ 1/4m for squares and A/p2 ∼ 1/6.4m for
triangles.

Except for m = 1, square paddocks are always best. They are better than circles because
square paddocks can share sides and better than triangles presumably because they enclose
more area for a given perimeter (Part III). Perhaps this is the reason why most paddocks are
square (or rectangular).
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Joined paddocks, cost of posts included

If we include the cost of posts, considering only corner posts, triangles come out better than
squares for all m, and we suspect triangles are the the best of all shapes, based on our
experience in Part IV (b). The overall strategy here seems to be the same as when the cost
of the posts is not included, because the more shared sides, the fewer posts.

The table below shows Bm/p
2, where Bm = Am/nc is the area enclosed by m square or

triangular paddocks divided by nc, the cost of n corner posts. Bm/p
2 is proportional to the

area enclosed per dollar spent. The total number of posts required is also shown.

Squares Triangles

m Bm/p2 Posts Bm/p2 Posts

1 0.0156 4 0.0160 3

2 0.0058 6 0.0087 4

3 0.0038 8 0.0053 5

4 0.0031 9 0.0043 6

5 0.0020 11 0.0026 7

6 0.0017 12 0.0026 7

7 0.0013 14 0.0019 8

8 0.0012 15 0.0015 9

9 0.00098 16 0.0012 10

10 0.00076 18 0.0012 10

11 0.00069 19 0.00098 11

12 0.00063 20 0.00082 12
...

...
...

...
...

Conclusions

For a single paddock, the best mathematical solution (maximum area enclosed for a given
amount of wire) if the cost of posts and construction is not included is a circular paddock.

The best practical solution is a polygonal paddock with as many sides as possible, although
the gain in area from adding an extra side decreases as the number of sides increases.

If the cost of posts and construction is included, the best solution (maximum area enclosed
per dollar spent) is a triangular paddock.

If the cost of posts and construction is not included, the maximum area enclosed by m
paddocks (m>1) constructed using a fixed amount of wire is given by square paddocks joined
optimally.

If the cost of posts and construction is included, the maximum area enclosed by m paddocks
(constructed using a fixed amount of wire) per dollar spent is given by triangular paddocks
joined optimally.
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2.8 Rectangles, Area and the Definite Integral

The TI-84/CE program NINTGRPH/NINTGRCE28 illustrates graphically how the area under
a graph can be approximated by the areas of rectangles. As the number of rectangles covering
the area increases, we obtain a better approximation to the area.

Here we calculate approximations to

∫ 1

0

ex dx by drawing the rectangles: the sum of their

areas is called a Riemann sum.

• Put the function f(x)=ex in Y1.

• Set a window of [0, 1, 0.2]×[0, 3, 1].

• Run the program: press prgm , press the number against its name and press enter to
start the program.

• Set the integration limits A = 0 and B = 1.

• Set the number of rectangles N=5.

• Choose the Left-Endpoint Rule (LER). The program will plot the function and draw in
5 rectangles, each rectangle touching the curve at its top-left corner. In this case, the
area of the rectangles clearly underestimates the area under the graph.

• Press enter to see the area of the rectangles (LHSUM) as an approximation to the area
under the graph. Put your answer in the table below. Round your answers to 3 decimal
places.

• Press enter , set N = 5 again and choose the Right-Endpoint Rule (RER). This time
we obtain an overestimate of the area under the curve.

• Repeat the above two steps, doubling the number of rectangles each time.

The mean of the two estimates is equivalent to the Trapezoidal-Rule approximation
to the area, a more accurate approximation for a given N than either the Left- or
Right-Endpoint Rules.

N LER RER Mean

5

10

20

40

80

Your best estimate:∫ 1

0

ex dx ≈

Compare this with the exact value
if you know how to do the integral.

• When you’ve finished, select QUIT in the RULE menu.

28NINTGRPH is for the TI-84; NINTGRCE for the TI-84CE.

81



2.8 Rectangles, Area and the Definite Integral 2 LABS REQUIRING A TI-84/CE

Instructors’ Guide

Answers rounded to 3 decimal places.

Left-Endpoint Rule Right-Endpoint Rule

N LER RER Mean

5 1.552 1.896 1.724

10 1.664 1.806 1.720

20 1.676 1.762 1.719

40 1.697 1.740 1.718

80 1.708 1.729 1.718

Best estimate is 1.718 from the Mean column. The fact that two successive values give 1.718
indicates that this is probably the exact answer rounded to 3 decimal places,

The exact answer is e−1=1.718 rounded to 3 decimal places.
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2.9 Approximating Definite Integrals

Modified from an UNSW Canberra Maths Lab, which is itself based on a lab in Resources for
Calculus, Volume 1: Learning by Discovery, Anita Solow, editor, Mathematical Association
of America Note 26, 1993.

In this lab, we shall be comparing several numerical approximations to∫ 1

0

(5x4−3x2+1) dx

with the exact answer obtained by algebraic integration. This will give us a feel for some of
the methods of numerical integration, which we can then use for any function, including those
which cannot be integrated algebraically.

Question 1 Algebraic integration — the exact answer

What is the exact value of this integral? You may not realise it, but you are using the
Fundamental Theorem of Calculus to do this definite integral exactly.

Question 2 The Left-Endpoint Rule

One approach to numerical integration is to approximate the definite integral of y = f(x)
with a6 x6 b by the sum of the areas of a number of rectangles covering the region under
the curve. If the top left-hand corner of each rectangle touches the curve, we have the Left-
Endpoint Rule; if the top right-hand corner of each rectangle touches the curve, we have the
Right-Endpoint Rule.

As the number of rectangles in the interval [a, b] gets larger and larger (covering the integration
range a6x6b with more and more, thinner and thinner rectangles), both rules give numbers
closer and closer to the definite integral (exact answer).

(a) On Figure 1 (at the end of this lab), draw and shade in the rectangles for the Left-

Endpoint-Rule approximation to the definite integral
∫ b
a
f(x) dx with N = 4 (4 rectan-

gles).

(b) Using your sketch in (a), explain why the Left-Endpoint Rule with 4 rectangles approx-
imates the area under the graph as

h
(
f(x0)+f(x1)+f(x2)+f(x3)

)
,

where x0 =a, x4 =b and the width of each rectangle is h=(b−a)/4.

(c) Use the NINTGRPH/NINTGRCE program (instructions below)29 to estimate the definite

integral
∫ 1

0
(5x4−3x2+1) dx using the Left-Endpoint Rule with the number of rectangles

N = 4. A suitable window is [0, 1, 0.5]×[0, 3, 1].

Note that the integrand here is positive, so that the definite integral corresponds to the
area under the graph of f .

(d) Now use the program, doubling N until two successive answers from the Left-Endpoint
Rule are the same when rounded to 2 decimal places. Write down the N value of the
first of these two answers.

29NINTGRPH is for the TI-84; NINTGRCE for the TI-84CE.
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Question 3 The Trapezoidal Rule

The Left-Endpoint and Right-Endpoint Rules approximate the area under a function by
rectangles. In many cases, for example the function in Figure 1 with the rectangles you drew
in, this is not a good approximation. We get a better approximation by using trapeziums:
both top corners of each trapezium touch the curve.

(a) On Figure 2, draw and shade in the 4 trapeziums (N = 4), the total area of which

approximates the definite integral

∫ b

a

f(x) dx.

The area of the trapezium in Figure 3 is h(r+s)/2. To
see this result, split the trapezium into two regions — a
triangle and a rectangle.

(b) Using your sketch in (a) and Figure 3, explain why the Trapezoidal Rule with 4 trapez-
iums approximates the area under the graph as

h

2

(
f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)

)
,

where x0 =a, x4 =b and the width of each trapezium is h=(b−a)/4.

(c) Evaluate T4, the Trapezoidal Rule with 4 trapeziums, as an estimate of the integral∫ 1

0
(5x4−3x2+1) dx using NINTGRPH/NINTGRCE.

How does this result compare with the Left-Endpoint result and the exact answer?

(d) Now use the program, doubling N, the number of trapeziums, until two successive
answers are the same when rounded to 2 decimal places. Write down the N value of the
first of these two answers. Compare it with the Left-Endpoint value.

Question 4 Simpson’s Rule

A picture of Simpson’s Rule for which N = 4 is given in Figure 4. We want to estimate the
area under the solid curve. We do this by a fitting parabola to each set of 3 successive points
on the graph and adding up the areas under the parabolas.

The dashed line in Figure 4 shows two parabolas: one through
(
x0, f(x0)

)
,
(
x1, f(x1)

)
and(

x2, f(x2)
)
; the other through

(
x2, f(x2)

)
,
(
x3, f(x3)

)
and

(
x4, f(x4)

)
.

(a) On Figure 4, shade the area calculated by Simpson’s Rule as an approximation to the

definite integral
∫ b
a
f(x) dx.

(b) Evaluate S4, Simpson’s Rule with 4 sub-divisions of the integration interval, as an

estimate of
∫ 1

0
(5x4−3x2+1) dx using NINTGRPH/NINTGRCE.

The dotted lines are the two parabolas.

Compare your result with those from Questions 1 – 3.
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(c) Now use the program, doubling N, the number of sub-divisions of the integration inter-
val, until two successive answers are the same when rounded to 2 decimal places. Write
down the N value of the first of these two answers.

Compare your result with those from Questions 2 and 3.

Question 5 Comparing the methods

Repeat your first (N = 4) and last calculations above for the three methods, this time keeping
5 decimal places. Put them in a summary table, together with the h value and the absolute
value of the error |E| for each entry (you know the exact answer).

The NUMINT/NUMINTCE program (no graphics) might be faster for this but note the N for
Simpson’s Rule (instructions below).

If |E| = khm, where k is a constant, find m for each method. Hint : Use the two sets of
values of h and the corresponding errors to write down two equations for k and m; divide
one equation by the other to obtain an equation for m. You’ll need natural logs to isolate m.
Hint : We are looking for integer values.

How many times do you have to double N in each method to improve the accuracy by a factor
of 10?

What conclusions can you draw from your results regarding the different methods for esti-
mating the definite integral? Which method would you choose to use? Why?

Calculator Programs

These programs calculate approximate values for

∫ B

A

f(X) dX.

The number N is an input to the program.

NINTGRPH/NINTGRCE approximates the integral using one of five different rules with
N sub-divisions of the interval [A, B] (N+1 if N is odd, for Simpson’s Rule), and draws the
corresponding approximations to the function on each subinterval.

NUMINT/NUMINTCE approximates the integral using the Left-Endpoint Rule (L), the
Right-Endpoint Rule (R), the Trapezoidal Rule (T) and the Midpoint Rule (M), all with N
sub-divisions, and Simpson’s Rule (S) with 2N sub-divisions to ensure an even number
of sub-divisions.

Use: Type the function to be integrated into Y1.

• For NINTGRPH/NINTGRCE, first set a suitable window to display the function. Run
the program and follow the prompts. Make sure B>A, otherwise things get mixed
up. After the graph is plotted, press enter to see the numerical approximation to the
integral.

When you’ve finished, select QUIT in the RULE menu.

• For NUMINT/NUMINTCE, run the program and follow the prompts.

on Quit stops the program.
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Numerical Integration Lab Figures

The function here is not the function in Question 1.

Figure 1: Left-Endpoint Rule

Figure 2: Trapezoidal Rule

Figure 4: Simpson’s Rule
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Instructors’ Guide

Question 1 Algebraic integration — the exact answer

∫ 1

0

(5x4−3x2+1) dx =
[
x5−x3+x

]1
0

= 1.

Question 2 The Left-Endpoint Rule

(a) On Figure 1, draw and shade in the rectangles for the Left-Endpoint-Rule approximation

to the definite integral
∫ b
a
f(x) dx with N = 4.

Done here with the function in Question 1 using the NINTGRCE program (no shading).
The horizontal red lines show the approximation to the function f on each sub-interval.

window [0, 1, 0.5]×[0, 3, 1]

(b) Using your sketch in (a), explain why the Left-Endpoint Rule with 4 rectangles approx-
imates the area under the graph as

h
(
f(x0)+f(x1)+f(x2)+f(x3)

)
,

where x0 =a, x4 =b and the width of each rectangle is h=(b−a)/4.

The formula is just the sum of the areas of the 4 rectangles in (a) with h factored out.

(c) Use the NINTGRPH/NINTGRCE program to estimate
∫ 1

0
(5x4−3x2+1) dx using the

Left-Endpoint Rule with N = 4. A suitable window is [0, 1, 0.5]×[0, 3, 1].

Note that the integrand here is positive, so that the definite integral corresponds to the
area under the graph of f .

See the figure in (a).

The Left-Endpoint Rule with N = 4 gives

∫ 1

0

(5x4−3x2+1) dx ≈ 0.822.

87



2.9 Approximating Definite Integrals 2 LABS REQUIRING A TI-84/CE

(d) Now use the program, doubling N, the number of rectangles, until two successive answers
from the Left-Endpoint Rule are the same when rounded to 2 decimal places. Write
down the N value of the first of these two answers.

N LER

4 0.82

8 0.89

16 0.94

32 0.97

64 0.98

128 0.99

256 1.00

512 1.00

The required N value is therefore 256. The last two values are the same as the exact
answer rounded to 2 decimal places.

Question 3 The Trapezoidal Rule

(a) On Figure 2, draw and shade in the 4 trapeziums (N = 4), the total area of which

approximates the definite integral

∫ b

a

f(x) dx.

Again done here with the function in Question 1 but without shading. The red straight
lines show the approximation to the function f on each sub-interval.

window [0, 1, 0.5]×[0, 3, 1]

(b) Using your sketch in (a) and Figure 3, explain why the Trapezoidal Rule with 4 trapez-
iums approximates the area under the graph as

h

2

(
f(x0) + f(x1) + 2f(x2) + 2f(x3) + f(x4)

)
,

where x0 =a, x4 =b and the width of each trapezium is h=(b−a)/4.
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The total area of the four trapeziums each of width h=0.25 is, using the given formula,

h
f(0) + f(x1)

2
+ h

f(x1) + f(x2)

2
+ h

f(x2) + f(x3)

2
+ h

f(x3) + f(x4)

2

=
h

2

(
f(x0) + 2f(x1) + 2f(x2) + 2f(x3) + f(x4)

)
.

(c) Evaluate T4, the Trapezoidal Rule with 4 trapeziums, as an estimate of the definite

integral
∫ 1

0
(5x4−3x2+1) dx using NINTGRPH/NINTGRCE.

How does this result compare with the Left-Endpoint result and the exact answer?

T4 =1.07, considerably closer to the exact answer 1 than the Left-Endpoint Rule value
with N = 4 of 0.82.

(d) Now use NINTGRPH/NINTGRCE, doubling N, the number of trapeziums, until two
successive answers are the same when rounded to two decimal places. Write down the
N value of the first of these two answers. Compare it with the Left-Endpoint N value.

N TRAP

4 1.07

8 1.02

16 1.00

32 1.00

The required N value is therefore 16, compared with the much larger value of 256 for
the Left-Endpoint Rule. The last two values are the same as the exact answer rounded
to 2 decimal places.

Question 4 Simpson’s Rule

(a) On Figure 4, shade the area calculated by Simpson’s Rule as an approximation to the

definite integral
∫ b
a
f(x) dx.

Shade below the dotted curves in Figure 4.

(b) Evaluate S4, Simpson’s Rule with 4 sub-divisions of the integration interval (N = 4), as

an estimate of
∫ 1

0
(5x4−3x2+1) dx using NINTGRPH/NINTGRCE.

The red dotted lines show the two parabolic approximations to the function f on each
two sub-intervals.

window [0, 1, 0.5]×[0, 3, 1]
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Compare your result with those from Questions 1 – 3.

S4 =1.003, considerably closer to the exact answer 1 than the other two values.

(c) Now use NINTGRPH/NINTGRCE, doubling the number N of sub-divisions of the inte-
gration interval each time, until two successive answers are the same when rounded to
two decimal places. Write down the N value of the first of these two answers.

Compare it with the rectangle and trapezium values.

N SIMP

4 1.00

8 1.00

The required N value is therefore 4, compared with 16 for the Trapezoidal Rule and the
much larger value of 256 for the Left-Endpoint Rule. The two values here are the same
as the exact answer rounded to 2 decimal places.

Question 5 Comparing the methods

If |E|=khm, where k is a constant, find m for each method.

Summary table |E| = |1− Value|

Method N h Value (5DP) |E| (5DP)

Left Endpoint 4 0.25 0.82227 0.17773

Left Endpoint 256 0.0039 0.99611 0.00389

Trapezoidal 4 0.25 1.07227 0.07227

Trapezoidal 16 0.0625 1.00455 0.00455

Simpson 4 0.25 1.00260 0.00260

Simpson 8 0.125 1.00016 0.00016

Assume error |E|=khm, where k is a constant. Therefore, if we have values E1, h1, E2 and
h2 for a method,

E1

E2

=
hm1
hm2

=

(
h1
h2

)m
.

Taking natural logs of both sides and solving for m, we have

m =
ln
(
E1

E2

)
ln
(
h1
h2

) .
Substituting in the two values for E and h for each method, we get m≈1 for the Left-Endpoint
Rule, m ≈ 2.0 for the Trapezoidal Rule and m ≈ 4.0 for Simpson’s Rule.
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How many times do you have to double N in each method to improve the accuracy by a factor
of 10?

If you double N, you halve h. Therefore, for the Left Endpoint Rule, you reduce the error by
0.51, i.e. by a factor of 2. For the Trapezoidal Rule, you reduce the error by 0.52, i.e. by a
factor of 4. For Simpson’s Rule, you reduce the error by 0.54, i.e. by a factor of 16.

To achieve an improvement in accuracy of 1 decimal place, you have to reduce the error by a
factor of 10: therefore you have to double N (halve h) four times (23 = 8< 10; 24 = 16> 10)
using the Left Endpoint Rule, twice

(
(22)2 =16>10

)
for the Trapezoidal Rule and only once(

(24)1 =16>10
)

for Simpson’s Rule.

What conclusions can you draw from your results regarding the different methods for esti-
mating the definite integral? Which method would you choose to use? Why?

For a given N or h, Simpson’s Rule gives the most accurate approximation to the definite
integral. To calculate an approximation to a given accuracy, it will therefore be the fastest of
the three methods.
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2.10 Projectile

Based on a problem suggested by John Rickert, Rose-Hulman Institute of Technology, Terre
Haute, Indiana, USA.

Warm-up Mission

Send a projectile, with initial speed 25 m/s, as far as possible over level ground from a launch
site. You might like to read the hints on the next page.

Main Mission

Send a projectile from ground level over a wall 10 m high, so that it lands as far as possible
on the other side of the wall. The projectile can be launched at any distance from the wall.
Its initial speed is 25 m/s. Write down all the assumptions you make. Draw a sketch of your
final trajectory, labelling all relevant distances.

Note that the optimal launch angle for this mission is different to the one you obtained for
the warm-up mission.

Scenario

In about half a page, say what the projectile is and why you want to send it over the wall (or
other obstacle). Drawings/diagrams welcome.

Elephants negotiating the Great Wall of China by Caroline McKenna
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Hints

• Draw a sketch for each mission on which you define the relevant variables. Let R be
the range (the total horizontal distance covered by the projectile with or without the
wall), let W be the horizontal distance from the launch site to the wall and let θ be the
launch angle (to the horizontal).

You need to derive expressions for R(θ) and W (θ), starting with the basic differential
equations.

• First solve the differential equations30 for velocity in the vertical (y) direction

dvy
dt

= −g

and in the horizontal (x) direction
dvx
dt

= 0.

Don’t forget constants of integration. You need to supply the initial conditions.

• Then solve the differential equations for position in the vertical direction

dy

dt
= vy

and in the horizontal direction
dx

dt
= vx.

Note: Some of you know Newton’s equations of motions. In this lab, you don’t just
write them down, you derive them from basics.

• In both missions, knowing a y value allows you to find the corresponding t, which allows
you to find x.

• You should get for the range

R(θ) =
625 sin(2θ)

g
.

Remember that sin(2θ)=2 sin(θ) cos(θ). Take g=9.8 m/s2.

• The PROJ/PROJCE program allows you to simulate the motion of the projectile. You
can work out the answers using PROJ/PROJCE, but for the missions you need to find
the expression for the distance over the wall (as a function of θ) algebraically.

30The parameter θ will occur in these equations.
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Instructors’ Guide

The PROJ/PROJCE program graphs the wall and the trajectory of the projectile, given a value
for the launch angle θ. The graphics give the students a picture of what is happening, and
the program also allows them to convince themselves (particularly students taking Physics)
that the launch angle θ for maximum distance beyond the wall is not 45◦. It may be a good
idea to encourage students to use such a program first to obtain insight into the problem.

PROJ/PROJCE is available at canberramaths.org.au under Resources.

An extension to this lab for keen students is to include air resistance (more assumptions).

Solutions

Let the projectile be launched at the origin at an angle θ to the x axis.

Integrating the differential equation for vy, we obtain

vy(t) = −gt+ C,

where C is an arbitrary constant. Now vy(0) = 25 sin(θ), so that C = 25 sin(θ). Therefore,

vy(t) = 25 sin(θ)− gt.

Integrating dy/dt = vy using the expression just obtained for vy and the initial condition
y(0)=0 gives for the vertical position of the projectile,

y(t) = 25t sin(θ)− 1

2
gt2.

Following similar steps, starting with the differential equation for vx and using the initial
conditions vx(0)=25 cos(θ), x(0)=0,

vx(t) = 25 cos(θ)

x(t) = 25t cos(θ).

The range R is the horizontal distance covered when the projectile lands, i.e. when y(t) = 0.
Solving y(t) = 25t sin(θ)− 1

2
gt2 = 0 for time t gives t=0 (the launch) or

tR =
50 sin(θ)

g
.
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The range is R=x(tR), i.e.

R =
1250 sin(θ) cos(θ)

g
=

625 sin(2θ)

g
.

The maximum value R = 625/g ≈ 63.8 m is achieved when sin(2θ) = 1, i.e. when
θ = π/4 rad = 45◦.

In the warm-up mission, we send the projectile a maximum horizontal distance of approxi-
mately 63.8 m by launching it at an angle of 45◦ to the horizontal.

For the main mission, we have a wall of height 10 m, whose base we take to be W m away
from the launch position, i.e. at x=W . We then have to maximise the distance R−W .

We have

x(t) = 25t cos(θ)

y(t) = 25t sin(θ)− 1

2
gt2

R(θ) =
625 sin(2θ)

g
.

To find W (θ), we use the fact that the desired trajectory just touches the top of the wall, i.e.
it passes through the point (W, 10), so that the time the projectile takes to reach the wall is
given by the solution of y(t) = 10. Once we know this time tW , the distance to the wall is
given by W =x(tW ). Solving y(t)=10, we have

25t sin(θ)− 1

2
gt2 = 10.

∴ gt2 − 50t sin(θ) + 20 = 0.

∴ t =
50 sin(θ)±

√
(2500 sin2(θ)− 80g)

2g
.
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We expect to obtain two values for t, because the trajectory passes through y = 10 twice,
once on the way up when it touches the wall and once on the way down (dashed line in the
previous figure). To maximimize the distance beyond the wall, we clearly want the shorter of
the two times, given by the minus sign. Therefore

tW =
50 sin(θ)−

√
(2500 sin2(θ)− 80g)

2g
.

Therefore,

W = x(tW ) =
25 cos(θ)

2g

(
50 sin(θ)−

√
(2500 sin2(θ)−80g)

)
,

and the distance beyond the wall as a function of launch angle θ is given by

R−W =
625 sin(2θ)

g
− 25 cos(θ)

2g

(
50 sin(θ)−

√
(2500 sin2(θ)−80g)

)
To find the maximum value of R−W , we plot R−W as a function of θ (Radian mode) and
use the calculator maximum operation (in the CALC menu).

window [π/4, 1, 0.1]×[50, 55, 1]

This gives the maximum value R−W =52.84 m when θ ≈ 0.8789 rad or θ ≈ 50.36◦.

In the main mission, we achieve a maximum distance beyond the wall of approximately 52.8 m
when the launch angle is about 50.4◦. This is confirmed by the PROJCE program, a screen
of which is shown below.

window [0, 65, 10]×[0, 30, 5]

Note that, at the optimum launch angle, the range is no longer a maximum, but the loss of
range is more than compensated by being closer to the wall than if we launched the projectile
at 45◦, the angle for maximum range.
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2.11 Parachuting

Based on the article Minimal time of descent by Jack Drucker, College Mathematics Journal
26: 232–235 (1995).

The Problem

You have graduated from the Academy, and in view of your excellent results in Mathematics
Honours, you have been invited to join the Higher Mathematics Corps.

The Corps has been engaged to help out the elite Special Air Services Regiment, the SAS. In a
big exercise coming up, the SAS plan to drop a spy behind enemy lines by parachute from an
altitude of 400 m, the minimum height allowed by the local terrain. As the mission is crucial,
it is important that the spy not be seen descending. She is much less visible during free fall
than when floating down with her parachute open. Therefore, the SAS want to minimize the
time the parachute will be open.

Specifically, they want to know

• what is the last possible moment the parachute can safely be opened?

• what is the minimum time required for the spy to descend safely?

The spy’s mass m, including equipment, is 110 kg. Boots with special shock-absorbing insoles
will let her withstand a maximum impact velocity of 10 m/s. The force of air resistance has
been found experimentally to be proportional to velocity v, with proportionality constant
k≈19.96 (so that mg/k=54 m/s) during free fall and k≈179.7 (so that mg/k=6 m/s) when
the parachute is open. Take g=9.8 m/s2.

A full report, understandable by officers of the SAS, is required. They like to see a few
diagrams/graphs/pictures in reports too.

Some Preliminaries

Before we tackle the main problem, we need to revise a few facts about air resistance and
falling bodies. The derivation and solution of the DEs below, although not required in this
lab, are well within the capabilities of all students in the Maths 1 course.

• The total force acting on a falling body has two components, the gravitational force31

Fg = mg, where m is the mass of the body, and the force due to air resistance Fr.
The force due to air resistance is assumed to be proportional to velocity, i.e. Fr = −kv,
where k is a positive constant. The coefficient of v in Fr is negative because air resistance
acts in the opposite direction to velocity, i.e. in the −v direction. Velocity v is a one-
dimensional vector which can, in general, be positive or negative.

• From Newton’s Second Law of Motion,

m
dv

dt
= sum of forces = Fg + Fr = mg − kv.

Dividing both sides by m ( 6= 0) gives the DE

dv

dt
= g − kv

m
.

31By choosing this force to be positive, we define the positive direction for velocity v and distance fallen x
as downwards.
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The equilibrium solution of this DE is the terminal velocity, which is the velocity of the
body as t → ∞ (a slope field will show you this). To obtain the equilibrium solution,
we set the derivative equal to zero (the two forces are equal in magnitude, but opposite
in direction), giving g−kv/m=0. Solving for v gives the terminal velocity

vT =
mg

k
.

The general solution to the DE

dv

dt
= g − kv

m
,

is (separation of variables)

v(t) = vT
(
1−Ce−gt/vT

)
,

where C is an arbitrary constant.

• To solve the parachute problem, you will also need a differential equation involving the
velocity v and the distance fallen x. We have from the Chain Rule

dv

dt
=

dv

dx

dx

dt
= v

dv

dx
,

so that, from our first DE,

v
dv

dx
= g − kv

m
.

Dividing both sides by v ( 6= 0) gives the DE

dv

dx
=

g

v
− k

m
.

The solution of this DE is also by separation of variables. It turns out that we can find
the explicit general solution for x as a function of v, but not the other way around. The
general solution is

x(v) = −vT
g

(
v + vT ln

∣∣∣∣1− v

vT

∣∣∣∣)+D,

where D is an arbitrary constant.

Now solve on. Reading (and following) the hints is highly recommended. See if you can get
the big picture from the graphs before starting on the details.
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Hints for Solving the Problem

• Look at the sketch of velocity v against time t, covering the time between jump and
landing (Figure 1 over the page).32

– Put in what information you have, i.e. the points on the graph that you know. Let
the chute open at time t1, velocity v1. Let the spy land at time t2.

– Write down the DEs and general solutions for each part of the graph.

– Do you have enough information to find the particular solutions for each of the two
parts of the graph? As you already have the general solution of the DE, it only
remains to find the values for the constant C when the chute is closed and when it
is open to give the particular solutions. You need to know one point on each curve
to do this.

• Now look at the sketch of velocity v against distance fallen x (Figure 2).

– Put in what information you have, i.e. the points on the graph that you know. Let
the chute open at distance fallen x1.

– Write down the DEs and general solutions for each part of the graph.

– Do you now have enough information to find the particular solutions, i.e. to find
values for the constant D for each of the two parts of the graph?

• Having found particular solutions to each of the two parts of the v vs x graph, what are
the unknowns now and how do you go about finding them?

Suggested Report Outline

• Short introduction — describe the problem.

• Formulate the model — write down the differential equations and solutions in the
order you used them. Discuss any assumptions you make in the model. Include a
filled-in copy of the sketches here.

• Solutions of the problems

– the latest time to open the chute

– the minimum time for descent

• Conclusions and recommendations

32Note that we only need to consider the vertical velocity and vertical distance fallen for this problem. For
the sake of a simple picture, imagine she jumps from a hovering helicopter in conditions of no wind.
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Parachute Lab

Please hand in one filled-in copy of these graphs with your group’s report.

Figure 1: Velocity v as a function of time t.

Figure 2: Velocity v as a function of distance fallen x.

Your calculator will plot distance fallen x as a function of velocity v. To make the graphs
match, rotate the graph here 90◦ anti-clockwise and look at it from the reverse side.
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Instructors’ Guide

Solutions

Curve 1 : The differential equation for this curve is

dv

dt
= g − kv

m
,

with general solution

v(t) = vT
(
1− Ce−gt/vT

)
,

where C is an arbitrary constant.

We have vT = 54 m/s and initial condition v(0) = 0, giving C= 1 and the equation for Curve
1 is

v(t) = 54
(
1−e−9.8t/54

)
.

Curve 2 : The differential equation and general solution for this curve are the same as for
Curve 1, but with vT = 6 m/s. We don’t know any points on Curve 2, so we can’t find the
arbitrary constant.

Therefore, we need to look for another method of solution, hence the need for the differential
equation for velocity v as a function of distance fallen x.

Curve 3 : The differential equation for this curve is

dv

dx
=

g

v
− k

m
,

with general solution

x(v) = −vT
g

(
v + vT ln

∣∣∣∣1− v

vT

∣∣∣∣)+D,

where D is an arbitrary constant.

We have vT =54 m/s and initial condition v=0 when x=0, giving D=0 and the equation for
Curve 3 as

x(v) = − 54

9.8

(
v + 54 ln

∣∣∣1− v

54

∣∣∣) .
Curve 4 : The differential equation and general solution for this curve are the same as for
Curve 3, but with vT =6,

x(v) = − 6

9.8

(
v + 6 ln

∣∣∣1− v
6

∣∣∣)+D,

where D is an arbitrary constant.

We do know a point on Curve 4, the landing point, at which x = 400 and v = 10, the
maximum velocity allowed for landing. Putting this into the general solution gives

D = 400 +
6

9.8

(
10 + 6 ln

∣∣∣∣1− 10

6

∣∣∣∣) ≈ 404.633.
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Therefore, the equation for Curve 4 is

x(v) ≈ 404.633− 6

9.8

(
v + 6 ln

∣∣∣1− v
6

∣∣∣) .
Our general strategy is now clear. The intersection of Curves 3 and 4 will give x1 and v1.
Putting v1 into the equation for Curve 1 will give t1, the time at which the parachute should
open. Putting t1 and v1 into the general solution for Curve 2 will give us the equation for
Curve 2. We can then use the equation for Curve 2 to find the t2, the time to landing, at
which the velocity is 10 m/s.

The intersection of Curves 3 and 4 is shown in the figure below. Students should make sure
they understand this figure, perhaps following the graphs as time increases.

window [0, 55, 5]×[0, 400, 100]

The point at which the parachute should open to give a landing velocity of 10 m/s is x1≈368.44
and v1≈47.51, that is she should fall about 368 m, at which position her velocity will be about
47.5 m/s.

Now we use the equation for Curve 1 to find the time t1 at which v=47.51. This can be done
either algebraically or graphically to give t1≈11.67 s.

window [0, 15, 5]×[0, 60, 10]

Now the point (t1, v1)≈(11.67, 47.51) lies on Curve 2, so we can find the arbitrary constant:

C ≈
(

1− 47.51

6

)
e9.8×11.67/6 ≈ −1.312×109,

giving the equation for Curve 2 as

v(t) ≈ 6
(
1 + 1.312×109e−9.8t/6

)
.

We use this equation to find the time to landing t2, the time at which v = 10. Solving this
algebraically or graphically gives t2≈13.1 s. The graphs of Curves 1 and 2 are shown below.
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window [0, 15, 5]×[0, 60, 10]

Therefore, the spy should open her chute after a time of 11.67 s, during which time she has
fallen a distance 368 m and reached a velocity of 47.5 m/s. She should then land after 13.1 s
at a velocity of 10 m/s.

The main assumption that would affect our results is that the parachute opens instantaneously.
Clearly this is not the case, and clearly the margin for error in our problem is very small —
she opens her chute 32 m above the ground! If we were to use this model, we would have to
demand that the chute be fully open after 11.67 s, and work back from there to determine
when she should open her chute. Alternatively, we could split the time between pulling the
ripcord to open the chute and the chute being fully open into several time intervals; the value
of k and hence the terminal velocity vT would then decrease in several steps rather than
instantaneously.

The other assumption which is not realistic is that the air resistance varies as the first power
of velocity: a better assumption is that it varies as velocity squared, as discussed in L.N. Long
and H. Weiss, The velocity dependence of aerodynamic drag: a primer for mathematicians,
The American Mathematical Monthly, 106:127–135 (1999)33. Suitable values for the drag
constant in this case are k = 40 kg/m with the parachute open and k = 0.41 kg/m with the
parachute not open. These values can vary a bit, depending on the type of parachute and on
the position of the parachutist during free fall.

The terminal velocity in this case is given by vT =

√
mg

k
, so that vT ≈ 51.28 with the

parachute closed and vT ≈ 5.191 with the parachute open.

The integrals can still be done algebraically with a velocity-squared dependence of drag. We
obtain the following equations for velocity as a function of time, and as a function of distance
fallen.

v(t) = vT

(
1− e2kvT t/m

1 + e2kvT t/m

)
chute closed; v(0)=0; k=0.41; vT =51.28 > v.

v(t) = vT

(
1+Fe−2kvT t/m

1−Fe−2kvT t/m

)
chute open; F a constant; k=40; vT =5.191 < v.

v(x) = vT
(
1−e−2kx/m

)
chute closed; v(0)=0; k=0.41; vT =51.28 > v.

v2(x) = v2T +
(
100−v2T

)
e−2k(x−400)/m. chute open; v(400)=10; k=40; vT =5.191 < v.

Note that we have to be careful how we express v(x) for the last equation, otherwise we run
into numerical problems with very large exponentials.

33available online

103



2.11 Parachuting 2 LABS REQUIRING A TI-84/CE

We solve the last two equations graphically to find the position and velocity at which the
parachute opens (instantaneously). Substituting this velocity into the first equation tells us
the time at which the parachute opened, and this allows us to determine F in the second
equation. We are then able to answer the questions.

In this case, the spy should open her chute after a time of 11.84 s, during which time she has
fallen a distance 395 m and reached a velocity of 50.2 m/s. She should then land after 12.9 s
at a velocity of 10 m/s. A brave person!
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2.12 Trial of the Session

Modified from an idea by Joel S. Foisy, SUNY Potsdam.

Aims

• To see a practical application of a mathematical model involving a differential equation
that you are now capable of solving.

• To discover one way that unknown physical parameters in mathematical models may
be determined experimentally.�

�

�

�
Newton’s Law of Cooling
The rate of change in temperature of a cooling body is proportional to the difference
between the temperature of the body and the surrounding temperature.

Scenario

Officer Cadet (OCDT) I.M. Innocent has
been accused of the murder of Prof U.R.
Knott.

The body of Prof Knott was found in the
library at 0855 on the morning of Tuesday,
11 August. The cause of death was deter-
mined to be a bayonet stab wound to the
heart. Death was adjudged to be instan-
taneous. The bayonet was found at the
scene and had OCDT Innocent’s finger-
prints on it. As this bayonet was known
to have been allocated to OCDT Inno-
cent, this is not surprising. Needless to
say, OCDT Innocent is the prime suspect.
His alibi that he was in a tutorial can be
verified, but only from 0800 to 0850.

The purpose of this trial is to determine
OCDT Innocent’s innocence or guilt using
Newton’s Law of Cooling. In other words,
you will attempt to prove whether or not
the crime was committed outside the time
interval 0800 – 0850.

We’ve got the murder weapon and the motive
. . . now if we can just establish time of death.

Gary Larson
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Additional Facts Turned Up by Police Investigations

• The body temperature of the professor was 35.0◦C at 0920. The body temperature was
recorded again at 0928 and found to be 34.8◦C. The temperature in the library was
determined to be a constant 23.0◦C.

• OCDT Innocent’s tutorial was in a room 200 metres from the library.

• Three days before the murder, the professor visited a doctor, at which time the profes-
sor’s body temperature was recorded to be exactly 38.7◦C. Normal body temperature
is 37.0◦C.

• On the morning of the murder before coming to work, the professor wrote the following
entry in his diary:

I have been feeling terrible ever since I had that run in with that horrible first-
year student over his failing mid-year grade. What was his name? Innocent?
Not likely. And then for the past few days I’ve had that terrible fever. I
finally feel better today, not 100%, but nearly back to normal.

• All DNA evidence has been thrown out due to multiple lab errors.

Requirements for this Lab

• Write a brief for an expert witness explaining Newton’s Law of Cooling, including as-
sumptions that need to be made for its application and how the resulting equations may
be solved. The body-temperature-versus-time curve for the professor’s body should also
be derived, with the estimated temperature at key times calculated. Think about the
best way to present your results.'

&

$

%

Look (or at least think) before you leap!

– What’s a good time to choose for t=0?

– Your solution to the differential equation will initially have two unknown
parameters in it. How many auxillary conditions will be needed in order
to determine these two parameters? Where will you get them from?

• You are also required to produce a case for either the defence or the prosecution (the
lab instructor will tell you which), based around Newton’s Law of Cooling and the
estimated time of death. Additional arguments consistent with the above evidence are
also allowed.

Any statements supporting (or otherwise) OCDT Innocent, in the event he is convicted,
will be taken into account when passing sentence.
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The Trial

For the purposes of the trial, one lab group will be asked to act as the prosecution team and
another group as the defence team. Volunteers will also be needed for the accused and a
bailiff (who will be provided with a script). The remaining students will be asked to act as
the jury. One of the lab instructors will act as judge. Mini Mars Bars will be awarded to the
team which comes up with either a successful defence or a successful prosecution.

Trial Procedure

• The prosecution team will present their case first. Their first witness will be an “expert
witness” who will explain Newton’s Law of Cooling; how it can be used and the resulting
equations solved; any approximations used in solving the equations in this case; and the
estimated time of death. The expert witness needs to be able to explain things so that a
jury of non-mathematicians can understand what’s going on. Other suitable witnesses
may be concocted by the prosecution. The prosecuting attorney sums up the case for
the prosecution.

• The defence proceeds with their case. They too will need an expert witness to explain
how the mathematics and its assumptions support their case. Further arguments and/or
witnesses can be concocted.

• The prosecution rebuts the defence’s arguments (they will therefore need to have antic-
ipated these) and makes a closing statement to the jury.

• The defence rebuts the prosecution’s rebuttal and makes a closing statement to the jury.

• The jury is asked to consider the evidence and vote on a verdict.
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Instructors’ Guide

Mathematical working

Let T (t) be the temperature of the body in degrees Centigrade at time tmin after 0920.

Other choices for the time origin such as 0800 or 0850 make the analysis of the results easier;
the choice here simplifies the working out a little by having one of the given temperatures be
at t=0. Try both and see which suits your students better.

The differential equation for T is

dT

dt
= −k(T−Ta),

where k is a constant and Ta is the ambient (room) temperature.

We are given

• Ta is constant at 23.0◦C.

• T (0) = 35.0◦C.

• T (8) = 34.8◦C.

• Tnormal = 37.0◦C.

• Tfever = 38.7◦C.

• OCDT Innocent has an alibi for 0800 – 0850, that is −806 t6−30.

• The body was found at 0855.

The general solution to the differential equation — standard separation of variables or let
U = T−Ta and write down the exponential solution for U — is

T (t) = 23 + Ee−kt,

where E is a constant. We use the two given temperatures at different times to determine E
and k.

T (0) = 35.0 ⇒ 35 = 23 + E ⇒ E = 12.

Therefore
T (t) = 23 + 12e−kt.

T (8) = 34.8 ⇒ 34.8 = 23 + 12e−8k ⇒ k = −1

8
ln

(
34.8−23

12

)
≈ 0.00210.

Therefore
T (t) ≈ 23 + 12e−0.0021t.

The question is could the murder have been committed before 0800, i.e. at a time for which
OCDT Innocent does not have an alibi.
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We can work out the time at which the temperature of the body was last normal, 37.0◦C, the
presumed time of death if the professor’s temperature was indeed normal and not still above
normal because of his fever. The time at which the temperature was last normal (found either
graphically or algebraically) is t≈−73.4 or at about 0806. At this time OCDT Innocent was
in the tutorial and does therefore have an alibi.

If the professor’s temperature was above normal, the picture is not so clear. The figure below
shows a plot of body temperature against time, with the critical temperatures (normal and
fever) and tutorial times marked (shaded region).

The figure shows that OCDT Innocent could have committed the murder if the professor’s
temperature was above normal. Tracing along the graph shows that if the professor’s temper-
ature was above about 37.3◦C, OCDT Innocent could have committed the murder and still
had between 3 and 4 minutes to get to his tutorial at 0800.

The rest is up to the prosecution, the defence and the jury, with plenty of scope for drama
and invention.

If we consider that an error might have been made in measuring body temperature after the
murder, the situation becomes more confused. For example, if the actual body temperature
had been 34.7◦C at 0928, an error of only 0.1◦C, the time at which the body was last at
normal temperature would be about 0831, right in the middle of the tutorial.

If the actual body temperature had been 34.9◦C at 0928, an error of 0.1◦C in the other
direction, the time at which the body was last at normal temperature would be about 0653!
Clearly the temperature measurements are crucial, particularly because the time between the
measurements is so short. There is more to explore in this problem for the good student and
plenty of scope for argument in the trial.
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2.13 Some Like It Hot

In this lab, we solve some differential equations numerically using the calculator. Your job is
to tell it what to calculate and to interpret its output.

Question 1 Getting it hot

A potato placed in an oven heats up at a rate proportional to the difference between its
temperature and the oven temperature Toven (Newton’s Law of Heating).

(a) Explain how Newton’s Law of Heating gives the differential equation for the temperature
of the potato T (t) at time t,

dT

dt
= k(T−Toven), where k is a constant.

(b) If Toven =200◦C (constant) and the potato is heating up at a rate of 2◦ per minute when
its temperature is 120◦C, show that k=−0.025 per minute.

Euler’s Method and the modified Euler’s Method are numerical methods to approximate so-
lutions of a first-order differential equation.34 In both methods, we have to specify an initial
point (t0, T0) on the graph of temperature T versus time t and a step length H, which con-
trols the accuracy of the result: the smaller H, the more accurate the result,35 but the more
calculations have to be performed, so the overall calculation takes longer.

Euler’s Method is the basis of the EULER1 program, the modified Euler’s Method the basis
of the MODEULR1 program. Both programs graph an approximation to the solution of the
differential equation and give the final values calculated. Instructions on how to use the
programs are given over the page.

(c) The initial (t0 =0) temperature T0 of the potato is 20◦C. Use EULER1 with a step length
H = 1 (minute) to estimate the temperature of the potato after 20 minutes. Read the
program instructions over the page before you do this. Answer : 91.5◦C.

(d) Now use EULER1 to find the temperature after 20 minutes, accurate to 3 significant
digits. We can be reasonably certain that a result is accurate to n significant digits if,
when we reduce H by a factor of 10, two successive values for T are the same when
rounded to n digits. Document your procedure so someone else could repeat your
calculations on their calculator. A table of values of H and the corresponding calculated
temperatures is a good idea.

(e) Repeat (d) using MODEULR1. Which program would you prefer to use? Why?

(f) The exact general solution to the differential equation is T (t)=200+Ee−0.025t, where E
is an arbitrary constant.

(i) Show that this function T (t) does satisfy the DE, i.e. show LHS of the DE = RHS
with this function.

(ii) If the potato starts at a temperature of 20◦C, show that the constant E=−180.

34The basis of both methods is approximating a curve by a tangent.
35With very small values of H, of the order of 10−10 or less, the accuracy of the result is limited by round-off

error: the calculator cannot calculate the quantities in the calculations accurately enough and may therefore
give meaningless answers. It will also take a very very long time to do the calculations.
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(iii) Compare the exact values36 of T with your results in (d) and (e). Were the numer-
ical methods in (d) and (e) accurate to the number of significant digits claimed?

Question 2 If it’s not hot . . .

The chef realises at 6:30pm that he has forgotten to preheat the oven to cook a potato to be
served with the boss’s dinner at 7:30. If it isn’t done by 7:30, the chef will be fired. He puts
the potato in the oven and turns the oven on. The oven temperature t minutes after it is
turned on is

Toven(t) = 200− 175e−0.2t ◦C.

The potato heats according to Newton’s Law of Heating, that is the rate of change in the
temperature T (t) of the potato is given by

dT

dt
= −0.025

(
T−Toven

)
.

The potato is done when it reaches a temperature of 160◦C. The potato starts off at the same
temperature as the oven, Toven(0), in a kitchen that’s warmed up a bit since Question 1.

• What is the chef’s fate? A full explanation is required, including estimates of the
accuracy of your results.

• Would it have made any difference if the chef had remembered to preheat the oven to
200◦?

Bonus question A different scenario . . .

How else could a heating or cooling problem like this arise? Write a scenario in which a
similar problem could be set. Illustrations always welcome.

Solving first-order differential equations numerically

The EULER1 and MODEULR1 programs calculate and plot approximate solution curves to

the first-order differential equation
dY

dX
=f(X,Y).37

Using EULER1

• First write out your DE using X and Y as the variables. The independent variable
must be X and the dependent variable Y.

• Type the derivative function f(X,Y) into Y1. Hint : There should be a Y in your
expression in Y1 for the current problem.

• Set the window variables to appropriate values. Xmin must be the initial X value.
If you have to estimate Y at some value of X, set Xmax to that X value.

• Run the program.

36actually decimal approximations generated by your calculator from the function
37See Differential Equations in Volume 2 of Mathematics on a TI-84/CE (at www.XXX ) for more details.
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• At the prompts, input a starting value of Y (corresponding to Xmin) and the step length
H. You can move the cursor around the graph once it is plotted, but you can’t trace

the graph.

• Press enter to display a new menu. Press 3 to display the coordinates of the last point
plotted, and enter to return to the menu to input new starting values. This allows you
to plot a different solution curve, use a different step length or quit.

• The MODEULR1 program is a bit fancier, but works in essentially the same way as
EULER1. Choose a TIME PLOT in the first menu.

Supplementary Question

Question 3 Some like it hot — modelling from scratch

You like your coffee white and hot. You have just poured a cup when the phone rings. Your
friend needs to talk to you for 10 minutes.

(a) Should you add the milk before you go off or should you add it when you come back,
so as to have your coffee as hot as possible?

• Use the DE for Newton’s Law of Cooling

dT

dt
= k(T−Troom),

where k is a constant and Troom is room temperature, assumed here to be constant
over the 10 minutes. The general solution to this DE is T (t)=Troom+Eekt, where
E is a constant.

• Make any reasonable assumptions you need to answer this question. For example,
you will need to make up some numbers and you will have to decide what happens
to the temperature of the coffee when you add milk. Don’t forget to write all this
in your report.

(b) Does it make much difference when you add the milk? Quantify your answer.
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Instructors’ Guide

This lab is a preliminary to learning about Euler’s Method. Students are told, step by step,
how to generate an Euler solution to an initial-value problem and are asked to relate the Euler
results to the exact result. The modified Euler’s Method is also introduced as a faster way of
obtaining an approximate solution. Later in the course, we look at Euler’s Method in detail
to find out exactly what the calculator is doing.

The programs EULER1 and MODEULR1 are available at canberramaths.org.au under Re-
sources.

Solutions

1. (a) The rate of heating is dT/dt, and the difference in temperature between the body
and the oven is T − Toven. Therefore,

dT

dt
∝ T−Toven ⇒ dT

dt
= k(T−Toven),

where k is a constant of proportionality.

(b) We have

2 = k(120−200) ⇒ k =
2

120−200
= −0.025.

(c) A table showing results for (c), (d) and (e) is given below. We use a window of
[0, 20, 5]×[0, 200, 50], although any Y window will do as we are only interested in
the final values. The approximations from the two methods are shown for different
values of the step length H min. Temperatures are rounded to 3 significant digits.

T (20)
H EULER1 MODEULR1

1 91.5 90.8
0.1 90.9 90.8
0.01 90.8 –
0.001 90.8 –

The EULER1 estimate for T (20), the temperature of the potato after 20 minutes,
using a step length H = 1 minute is 91.5◦C.

(d) The last two results for EULER1 in the table are the same to 3 significant digits, so
that T (20) = 90.8◦C, accurate to 3 significant digits. The last result in particular
takes a long time.

(e) Using MODEULR1, we find the same result as in (d), but after only two runs. This
is clearly the preferable method, because we achieve the same accuracy as EULER1
but with larger values of H. Consequently the time taken to achieve an accurate
result is much less.
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(f) (i) With the given function for T , we have

LHS =
dT

dt

= −0.025Ee−0.025t.

RHS = −0.025(T−200)

= −0.025(200+Ee−0.025t−200)

= −0.025Ee−0.025t

= LHS.

Therefore, T (t)=200+Ee−0.025t is a solution to the differential equation.

(ii) T (0)=20 ⇒ 20=200+Ee0 ⇒ E=−180.

(iii) The temperature after 20 minutes is T (20)=200−180e−0.5 =90.8, rounded to
3 significant digits. Our numerical approximations were indeed accurate to 3
significant digits.

2. The differential equation for the temperature of the potato is

dT

dt
= −0.025(T−200+175e0.2t),

with T (0)=25, the initial temperature of the oven. We need to find out if T (60)>160.
If so, the chef’s job is safe. Using EULER1 or MODEULR1 (preferable), we obtain the
following.

T (60)

H EULER1 MODEULR1

1 155.6 155.4

0.1 155.4 155.4

The temperature of the potato at 7.30pm is clearly less than 160◦C, so the chef loses
his job.

Had he remembered to preheat the oven to 200◦C, the differential equation would have
been the same as in Question 1, but with T (0) = 25. In this case, the temperature of
the potato would have reached 160◦C, and the chef would still be working there.

PTO

114



2.13 Some Like It Hot 2 LABS REQUIRING A TI-84/CE

3. We work with the general solution

T (t) = Troom + Eekt,

where E is a constant that will be determined by the initial temperature. Assume that
room temperature is 20◦C, that the initial temperature of the coffee is 90◦C and that
the cup has been pre-heated to the same temperature to avoid a sudden initial cooling
of the coffee.

(a) (i) Milk added after 10 minutes

In order to determine the constant k, we need to know/assume a temperature
of the coffee at some time other than t= 0. In this theoretical treatment, we
assume that, without milk added, the coffee cools from 90◦C to 50◦C in 10
minutes.

When we add the milk, the temperature of the coffee + milk will be different
from that of the coffee alone. A reasonable assumption is that the new tem-
perature will be the mean temperature of the coffee and the milk, weighted by
volume. If we assume that there is 160 ml of coffee, 40 ml of milk and that the
milk temperature is 5◦C, the final temperature is

TF =
160×50 + 40×5

200
= 41◦C.

(ii) Milk added immediately

Here, we need to determine a value for k: this comes from the assumption that
the coffee alone cools from 90◦C to 50◦C in 10 minutes. With T (0) = 90, we
find E=70 and

T (t) = 20 + 70ekt.

Putting T (10)=50 gives

50 = 20 + 70e10k.

∴ k =
1

10
ln

(
30

70

)
≈ −0.085.

When we add the milk immediately, the initial temperature of the white coffee
is again the weighted mean of the two temperatures,

T (0) =
160× 90 + 40× 5

200
= 73◦C.

This is the initial temperature for the solution of the differential equation.
Substituting T =73 when t=0 gives E=53, so that

T (t) = 20 + 53ekt,

giving

TF = T (10) = 20 + 53e10k ≈ 42.7◦C.

With these parameters, adding the milk immediately is the better option, giving
a coffee temperature after 10 minutes of 42.7◦C, compared with a temperature of
41◦C if we add the milk after 10 minutes.
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Physically this makes sense, because a hotter body, the coffee without milk, loses
heat faster than a cooler body, the coffee with milk.

It’s an interesting modelling project to write the above equations in a more general
form, investigate what happens when we vary the parameters, including the time,
and to try to prove algebraically our assertion.

(b) Does it make much difference when you add the milk?

With the parameters assumed above, the difference is not great; an exploration of
the problem as suggested above should show that this is mostly the case. One way
is better than the other, but you probably wouldn’t worry too much about which
to choose unless you like large amounts of milk in your coffee.
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2.14 Warm and Wealthy

The Problem

To use the lesser amount of energy, should you

A. turn off the heating in your house at night and have it come on again sometime early
in the morning, or

B. leave the heating on all night?

How much more efficient is the more efficient method in percentage terms?

Some Assumptions

• The temperature in the house is 20◦C at 2200 hours.

– Using Scheme A, you turn off the heating at this time. The heating should then
be switched on (by a suitably set time clock) so as to return the temperature to
20◦C by 0700 hours the next morning.

• The heater is either on or off: its output cannot be varied. The heating is such that,
if there were no heat losses (there are), it would raise the temperature of the house by
3◦C per hour.38

• When the heating is on, it is controlled by a thermostat which switches on when the
temperature drops to 18◦C and off when the temperature reaches 20◦C.

The Method

Use a mathematical model to help answer this question.39

• Sketch a graph of temperature versus time for each case. How are you going to find the
equations of the curves? What points on the graph do you know?

• What further assumptions do you have to make to set up the model? Keep them as
simple as possible for the first model. Think here about how you will write down a
differential equation.

• For which constants do you need to know values?

Write these assumptions and constants down, then ask one of the lab staff to give you the
values. If you can do this, you get BONUS marks. If you haven’t worked this out after 20
minutes, ask for help.

38When building this condition into the DE that applies when the heater is on, think about units and the
idea that the net rate of change of temperature is a balance between heat gains and heat losses.

39Write up your report so that a mathematically literate colleague not familiar with the problem could follow
it. It should contain details of your calculations, together with any necessary explanations and conclusions;
answers without explanations are not acceptable.
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Further Assumptions

To give out to the groups after they have thought about the problem.

• Assume Newton’s Law of Cooling: the rate of change of the house temperature is pro-
portional to the difference between the house temperature and the outside temperature.

• The constant of proportionality k=0.125◦C per hour per degree of temperature differ-
ence. Think carefully about its sign.

• The outside temperature is a constant 5◦C between 2200 and 0700.

Supplementary Questions

1. Would better insulation make a difference to your answer above? What sort of energy
gains do you get with more insulation? A similar analysis to that in the original problem
is expected here.

2. Would a bigger furnace change your answer? Do you use more or less energy overall by
having a bigger furnace? Use the same k value as in the original question.

3. The outside temperature varies with time. Assume a sinusoidal daily outside tempera-
ture varying between a minimum of 0◦C (at 0400) and a maximum of 10◦C (at 1600).
Write down the sine function that gives this outside-temperature variation. Then write
down the differential equation that describes cooling in this case.40 Use EULER1 or
MODEULR1 to compare the solution from this DE to the cooling solution in the origi-
nal problem from 2200 hours on. Explain the difference.

4. In some heating systems, the thermostat allows the inside temperature to drop by 5◦C
overnight (that is cycle between 13◦C and 15◦C), bringing the temperature back up to
20◦C by the required time in the morning. Explore this scheme.

40The DE is not variables separable, but can be solved algebraically by another method.
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Instructors’ Guide

The EULER1 and MODEULR1 programs are available at canberramaths.org.au under Re-
sources. Solving variables-separable differential equations is assumed knowledge.

Solutions

Let T (t) be the temperature of the house in degrees Centigrade at time t hours after 2200.

Scheme A

The general scheme is shown in the figure below. The heating is turned off at 2200 (t=0) and
switched back on at some time t= t1 so that the temperature is back to 20◦C by 0700 (t=9)
the next morning. We have to find t1: the heater will then be on for a total of 9− t1 hours.

The differential equation for cooling, Curve 1, is

dT

dt
= −0.125(T−5),

using the given value for the constant k, a − sign to give cooling and an outside temperature
of 5◦C. The general solution (separation of variables) is

T (t) = 5 + E1e
−0.125t,

where E1 is an arbitrary constant.

T (0)=20 ⇒ E1 =15, so that the equation for Curve 1 is

T (t) = 5 + 15e−0.125t.

The differential equation for heating, Curve 2, is

dT

dt
= 3− 0.125(T−5) = −0.125(T−29).

The units of the left-hand side of this equation are ◦C per hour, showing that the heating
term comes in simply as 3 on the right-hand side.

The general solution is
T (t) = 29 + E2e

−0.125t,

where E2 is an arbitrary constant.
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A point on Curve 2 is the final point T =20 when t=9 (0700 hours).

T (9) = 20 ⇒ E2 = −9e9/8, so that the equation for Curve 2 is

T (t) = 29− 9e9/8e−0.125t = 29− 9e−0.125(t−9).

The graphs of the two functions are shown below, together with their point of intersection,
which determines t1, the time at which the heater is switched on in the night.

window [0, 9, 1]×[0, 20, 5]

We find from the graph or algebraically that t1 = 4.61, accurate to 3 significant digits (the
heater is turned on at 0237 hours). For Scheme A, the heater is therefore on for 9−4.61 =
4.39 hr.

Scheme B

Here the heater cycles on and off. One such cycle consisting of a cooling phase, Curve 3, and
a heating phase, Curve 4, is shown below. We first need to find the total time, t3+t4, for one
cycle.

The equation for Curve 3 is the same as for Curve 1:

T (t) = 5 + 15e−0.125t.
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The time t3 for the temperature to cool to 18◦C is found by solving

18 = 5 + 15e−0.125t

for t, giving (graphically or algebraically) t3 =1.14 hr, accurate to 3 significant digits.

window [0, 2, 1]×[15, 20, 1]

We could use the point (t3, 18) as the initial point on Curve 4, but, as we only need to find t4,
it is easier mathematically to start Curve 4 at (0, 18). Following the same steps as for Curve
2, we find that the equation for Curve 4 starting at t=0 is

T (t) = 29− 11e−0.125t.

The time t4 taken for the temperature to reach 20◦C is found by solving

20 = 29− 11e−0.125t

for t, giving (graphically or algebraically) t4 =1.61 hr, accurate to 3 significant digits.

window [0, 3, 1]×[15, 25, 1]

The heating cycle in Scheme B is therefore 1.14 hours off, 1.61 hours on, for a total cycle time
of 2.75 hours. Therefore, between 2200 and 0700, we go through 3 complete cycles (8.25 hr),
plus 9−8.25=0.75 hr. In this 0.75 hours, the heater is switched off, because the temperature
has reached 20◦C at the end of the last cycle and it takes 1.14 hours before the heater needs
to switch on again.

Therefore, for Scheme B, the heating is on for 3 cycles, i.e. for 3× 1.61 = 4.83 hours.

In Scheme A, the heating was on for 4.39 hours, so that Scheme A uses about 0.44 hours (26
minutes) less heating time than Scheme B or about 9% less energy. The reason for this is
that the greater the house temperature, the greater the heat loss. Scheme A, with an overall
average temperature less than that of Scheme B, results in less heat loss throughout the 9
hours.
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If we were to make the comparison even fairer, we would observe that the temperature at
0700 in Scheme B is in fact less than 20◦C, because the house has been cooling for 0.75
hours after reaching 20◦C at the end of the second cycle. The temperature would then be
5 + 15e−0.125×0.75 = 18.7◦C, accurate to 3 significant digits.

If we require from Scheme A that it only reach a temperature of 18.7◦C at 0700, we find that
the heater must switch on at t1 =5.33 hr, so that the heater is on for a total of 3.67 hr. This
represents a saving of 24% over Scheme B.

Supplementary Questions

Some experimentation with different values of the appropriate parameter is required here,
rather than general conclusions.

1. Greater insulation means a lesser rate of energy loss for a given temperature difference
between inside and outside. Mathematically, this means that the constant k is reduced
in magnitude. Let’s take k=0.1, rather than the value of 0.125 used above.

Scheme A

Following similar steps to those of the original problem, we find the equations for Curves
1 and 2 are

T (t) = 5 + 15e−0.1t T (t) = 35− 15e−0.1(t−9),

which intersect at t1 =5.48.

The heater is therefore on for 9−5.48 = 3.52 hr. This is about 20% less than in the
original question: here, a 20% decrease in k gives a 20% decrease in the amount of
energy used in this case.

Scheme B

The equation for Curve 3 is T (t) = 5+15e−0.1t, giving a time to cool from 20◦ to 18◦

as t3 =1.43. This is longer than the 1.14 hr of the original scheme, as we would expect
with more insulation.
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The equation for Curve 4 starting at (0, 18) is T (t)=35−17e−0.1t, giving a time to heat
from 18◦ to 20◦ as t4 =1.25.

The total cycle time, t3 + t4, is 2.68 hours, giving 3.36 cycles in the 9 hours. In the
last 0.36 of a cycle, the room is cooling, so that the heater is on for 3 cycles, i.e. for
3× 1.25 = 3.75 hours.

Scheme A, with the heater on for 3.52 hours, is still better than Scheme B, with the
heater on for 3.75 hours. Scheme A uses about 6% less energy than Scheme B, less than
the value in the original question because of the greater insulation (smaller k). In the
limiting case k=0 (perfect insulation), the two schemes would give the same answer —
no heating required.

2. Assume a heater of say twice the capacity of the original heater and therefore capable
of raising the temperature of the house by 6◦ per hour in the absence of heat losses.
With the original value of k, k=0.125, the differential equation for the heating phase is
then

dT

dt
= 6− 0.125(T − 5) = −0.125(T−53),

with general solution
T (t) = 53 + E2e

−0.125t.

The differential equation for cooling is the same as in the original question. The equa-
tions for Curves 1 and 2 are

T (t) = 5 + 15e−0.125t T (t) = 53− 33e−0.125(t−9),

with intersection point t1 = 7.10, so the heater in Scheme A is on for 9−1.90 = 1.90
hours.

Note that although the heater here is twice as powerful as the one in the original
question, the total energy used is actually less: the heater in the original question was
on for 4.39 hours, more than twice the time here.

The equation for Curve 3 is the same as for Curve 1, giving the time to cool from 20◦

to 18◦ as t3 =1.14. The equation for Curve 4 is

T (t) = 53− 35e−0.125t,

giving the time to heat from 18◦ to 20◦ as t4 = 0.47. The total cycle time is therefore
1.61 hours, so that there are 5.59 cycles betweeen 2200 hours and 0700 hours. Again the
house is cooling in the 0.59 hours, so the heater in Scheme B is on for 5 × 0.47 = 2.35
hours. Scheme A is about 19% better than Scheme B in this case.

3. Here we start with a general sine curve for the outside temperature,

Tout = A sin
(
B(t−C)

)
+D,

where we have to choose values for A, B, C and D so that the curve has a minimum of
0 at t=6 (0400 hours) and a maximum of 10 at t=18 (1600 hours).
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For the curve to oscillate between 0 and 10, it must have a mean value D= 5 and an
amplitude A=5. The period 2π/B is 24 hours, so B=2π/24=π/12. The curve attains
its mean value of 5 halfway between the minimum at t=6 and the maximum at t=18,
i.e. at t=12. t− C = 0 at this value, so that C=12.

The outside temperature is therefore given by

Tout = 5 sin

(
π(t−12)

12

)
+ 5.

The outside temperature for the original question (a constant 5◦) and for the current
question is shown below for 0 < t < 9.

window [0, 9, 1]×[0, 6, 1]

To find the temperature inside the house at any given time, we now have to solve

dT

dt
= −0.125(T−Tout),

with the initial condition T (0)=20. This cannot be done using the method of separation
of variables (it can be solved algebraically using an integrating factor), so we turn to a
numerical method, either Euler’s method or the modified Euler’s method.

To set this up for the EULER1 or MODEULR1 programs:

– put Y1 =−0.125
(

Y− 5 sin
(
π(X−12)/12

)
− 5
)

;

– set a window of [0, 9, 1]×[−5, 20, 5];

– set Radian mode;

– run the program with an initial Y of 20 and a step length of 1. A step length of
0.1 gives more or less the same curve, showing it is reasonably accurate.

The figure below shows the house temperature assuming a constant outside temperature
of 5◦ (the original question) and the present case with a variable outside temperature. As
the outside temperature is always lower in the second case, so is the house temperature.

124



2.14 Warm and Wealthy 2 LABS REQUIRING A TI-84/CE

4. This problem requires exploration. What happens depends on the values used for the
parameters. For example, using the values in the original problem, the house tempera-
ture does not drop to 13◦ before the heater switches on to bring the temperature back
to 20◦ by 0700 hours. There is therefore no cycling between 13◦ and 15◦, and the result
is the same as the original Scheme A. With a sufficiently large value for k, cycling will
occur. The problem then is to determine when to leave the heater on to bring the
temperature back to 20◦ by 0700 hours.

In the cases where the house temperature would drop below 13◦ in Scheme A, Scheme
A will use less energy than the present scheme, which will in turn use less energy than
Scheme B. This is because the average house temperature will be lowest in Scheme A
and highest in Scheme B, with the current scheme in between. The lower the average
house temperature, the less the heat loss that has to be made up by the heater.
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2.15 Mousecapades

A very irate Ray, the owner of Ray’s Rest and Recuperation Restaurant and Retreat, charged
out through the kitchen’s swinging door because the new chef had forgotten to preheat the
oven for the potatoes (Section 2.13). At the same time as Ray left the kitchen, an opportunistic
mouse entered the kitchen in search of food scraps on the floor. The swinging door (see the
figure below) has adjustment screws that control the amount of friction in the hinges. Its
motion is governed by the initial-value problem

I
d2θ

dt2
+ b

dθ

dt
+ kθ = 0 θ(0) = θ0

dθ

dt
(0) = v0,

where θ is the angle that the door is open in radians, t is the time in seconds, I is the moment
of inertia of the door about the hinges, b > 0 is the damping constant that varies with the
amount of friction on the door, k>0 is the spring constant associated with the swinging door,
θ0 is the initial angle that the door is opened and v0 is the initial angular velocity imparted
to the door.

The width of the door in question is 0.75 m, I=2.5 kg m2, b=2.5 kg m2/s, k=10.625 kg m2/s2

and, in storming out of the kitchen, Ray gave the door an initial angular velocity of v0 =
3π rad/s, letting it go when θ0 =π/3 rad.

What is the maximum amount of time that the mouse can spend in the kitchen and still
escape through the swinging door?

Note: The only way in and out of the kitchen is through this door. The well-fed mouse’s
size and speed is such that as long as the gap in the doorway is at least 0.05 m, it will be able
to get through. You may assume that for small θ, the arc length traced out by the swing of
the door is approximately equal to the the gap in the doorway.

A Useful Result

The general solution to the second-order differential equation θ′′+θ′+4.25θ = 0 is

θ(t) = e−0.5t
(
A cos(2t)+B sin(2t)

)
,

where A and B are arbitrary constants. You should prove this in your report.

PTO for the sequel
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Son of Mousecapades

The mouse starring in Mousecapades stayed in the kitchen for 10 s and was caught. However,
one of its offspring, Rudolf (a very smart mouse), worked out that it had about 8.6 s in which
to forage in the kitchen, then escape. For a while, Rudolf and friends ate well.

Ray saw the mice a number of times and decided that if he tightened the friction screws in
the door sufficiently, the door wouldn’t oscillate when he came charging out. Ray tightened
the screws so that b=22.5 kg m2/s and reckoned he’d then be able to trap the mice provided
they stayed in the kitchen longer than 6 s. Rudolf did some calculations on the back of a
cheese wrapper, and the mice stayed in the kitchen for 7 s. If Ray continued to charge out
the door in his usual fashion, did he catch the mice?

If you have time, think about the best thing for Ray to do.

Another Useful Result

The general solution to the second-order differential equation θ′′ + 9θ′ + 4.25θ = 0 is

θ(t) = Ae−0.5t+Be−8.5t,

where A and B are arbitrary constants. You should prove this too in your report.

Scenario Writers: Not keen on mice? Make up another script using similar mathematics
to Mousecapades/Son of Mousecapades. Alternatively, design a better mousetrap.
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Instructors’ Guide

Mousecapades Solutions

Putting in the values for I, b and k gives a differential equation

d2θ

dt2
+
dθ

dt
+ 4.25θ = 0,

with solution (from A Useful Result)

θ(t) = e−0.5t
(
A cos(2t) +B sin(2t)

)
,

where A and B are arbitrary constants. To prove this is a solution, either show that it satisfies
the differential equation (a little messy) or use the method of the characteristic equation to
solve the differential equation (straightforward).

Initial condition: θ(0)=π/3 ⇒ A=π/3.

Therefore,

θ(t) = e−0.5t
(π

3
cos(2t) +B sin(2t)

)
,

giving

θ′(t) = e−0.5t
(
−0.5

(π
3

cos(2t) +B sin(2t)
)
− 2π

3
sin(2t) + 2B cos(2t)

)
.

Then, θ′(0) = −π/6+2B = 3π from the given initial condition, so that B=19π/12 and

θ(t) = e−0.5t
(
π

3
cos(2t) +

19π

12
sin(2t)

)
.

A graph of θ(t) for 0<t<10 and −2<θ<4 is shown below.

window [0, 10, 1]×[−2, 4, 1]

For small θ, the gap in the door is approximately 0.75θm, and for the mouse to escape this
has to be at least 0.05 m. Therefore,

θmin ≈
0.05

0.75
= 0.06̇.
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As the door can be open in either direction (θ positive or negative), the latest time that
the mouse can leave the kitchen is therefore when θ(t) is last equal to ±0.06̇. We solve this
graphically by plotting the lines y=±0.06̇ over the graph of θ(t) and looking for the largest
value of t at which the θ graph intersects either of these lines. This is made easier if we replot
the graphs with −0.1<θ<0.1.

[0, 10, 1]×[−0.1, 0.1, 0.05]

Using intersect on the calculator, we find the latest time at which the door is open the
minimum amount is t=8.63 s (intersection with y=−0.06̇).

Therefore, the mouse can spend up to about 8.6 s in the kitchen and still escape.

Son-of-Mousecapades Solutions

Putting in the new value for b gives the differential equation

d2θ

dt2
+ 9

dθ

dt
+ 4.25θ = 0,

with solution (from Another Useful Result)

θ(t) = Ae−0.5t +Be−8.5t,

where A and B are arbitrary constants. As before, prove this is a solution either by showing
that it satisfies the differential equation or by using the method of the characteristic equation
to solve the differential equation.

Putting in the initial conditions gives

θ(t) =
35π

48
e−0.5t − 19π

48
e−8.5t.

Plot as before and find the latest (and only) intersection is with y = 0.06̇ at time t= 7.07s.
Rudolf was right and the mice escaped.
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One thing Ray could do is to open the door less violently, reducing the initial opening θ0 and
the initial velocity v0 as much as possible, so the door is open for a shorter time.

If Ray is unable to modify his door-opening habits, he could adjust the hinges to obtain
critical damping, which gives the fastest approach to equilibrium without oscillations. The
analysis is most easily done algebraically, using the method of the characteristic equation.

Assume that θ(t)=ert, where r is a parameter whose value we have to find so that ert satisfies
the differential equation. Then, θ′(t) = rert and θ′′(t) = r2ert. Substituting these into the
differential equation

I
d2θ

dt2
+ b

dθ

dt
+ kθ = 0

and cancelling out a (non-zero) factor of ert gives the characteristic equation

Ir2 + br + k = 0,

with solutions

r =
−b±

√
b2−4Ik

2I
.

Critical damping is obtained when
√
b2−4Ik= 0 or b= 2

√
Ik≈10.31 for the values of I and

k given here. Then r=−b/(2I)≈−2.06, and the general solution to the differential equation
is

θ(t) ≈ e−2.06t
(
A+Bt

)
,

where A and B are arbitrary constants. The initial conditions θ(0)=π/3 and θ′(0)=3π give
the particular solution

θ(t) ≈ e−2.06t
(π

3
+11.58t

)
.

The graph of y=θ(t) only intersects the graph of y=0.06̇, with the only intersection at time
t=3.06 s.

If Ray adjusts the hinges so that b= 10.31, the door closes enough to trap the mice in just
over 3 s.
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2.16 Higher Mathematics Inc

Clients of your firm, Higher Mathematics Inc, have developed a Super Cool Night Vision
Detection System for the military. In order to give a digital read-out in appropriate units, the
System requires the calculation of natural logs. The System does contain a microprocessor,
but, as you know, a microprocessor can only carry out additions and multiplications, that is
evaluate polynomials.

The clients require an approximation to the function y=ln(1+x) in the region of x=0, where
x can take on all values>−1.

You, the Head of the Polynomials Section at Higher Mathematics Inc, decide that Taylor
polynomials should be used, and now have to write a report for your clients, persuading them
that your approach is correct and giving them details of how to carry out the calculations.

The clients have only limited (Year 12) mathematical knowledge but want to be able to
understand most of the report (remember they pay the bill). You will therefore have to
begin the report with a short explanation of the ideas behind Taylor polynomials and include
explanations of all your calculations.

The clients have mathematically more knowledgeable employees who will be checking the
details. They have TI-84CE calculators, and so will need to be able to duplicate all your
results from the information you give in the report.

Following are some of the details your clients would like to know — any additional useful
information you give is likely to make the clients happier about the service you provide and
more likely to hire you next time.

1. What do the first five Taylor polynomials look like compared to the function?

2. What is the expression for the nth-degree polynomial Pn(x) (in case they need to extend
your calculations later)?

3. Are there x values for which the polynomials do not provide a good approximation,
even when the degree n is increased?

4. The clients’ favourite number is 5, and on that basis, they would like to use a fifth-degree
polynomial in their microprocessor. Over what range of x values is the fifth-degree
polynomial accurate to within 0.0001?41 The clients need to know the endpoints of this
range of x values accurate (not just rounded) to 3 decimal places.

Write the report

Suitably explained graphical, numerical or algebraic methods are all acceptable to the clients.

41That is, find all x such that |f(x)−P5(x)|60.0001. A graphical method might be useful here.
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Calculator Hints

• When programming the polynomials into your calculator, make use of the fact that the
polynomial of degree n contains the polynomial of degree n − 1. Thus, for example, if
your polynomials are

P1(x) = x

P2(x) = x+ x2

P3(x) = x+ x2 + x3

P4(x) = x+ x2 + x3 + x4

you can program these as (assuming you have the function f in Y1)

Y2 = X

Y3 = Y2 + X2

Y4 = Y3 + X3

Y5 = Y4 + X4

and so on. This scheme is especially useful when the coefficients are complicated.

• A graphical intersection or root-finding routine might be useful for the last part of the
problem, but how accurate is it?

The SCNVDS under field trial. The microprocessor screen is blank

because the client is awaiting your report.
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Instructors’ Guide

Students are expected to come up with a reasonably comprehensive report here. Below we
just give details of the calculations.

Solutions

1. The Taylor polynomial of degree 5 about x=0 for a function f(x) is

P5(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5.

Here,

f(x) = ln(x+1) f(0) = 0

f ′(x) =
1

x+1
f ′(0) = 1

f ′′(x) =
−1

(x+1)2
f ′′(0) = −1

f ′′′(x) =
2

(x+1)3
f ′′′(0) = 2 = 2!

f (4)(x) =
−3!

(x+1)4
f (4)(0) = −3!

f (5)(x) =
4!

(x+1)5
f (5)(0) = 4!

Therefore,

P5(x) = 0 + x− 1

2!
x2 +

2

3!
x3 − 3!

4!
x4 +

4!

5!
x5

= x− x2

2
+
x3

3
− x4

4
+
x5

5

=
5∑
i=1

(−1)i+1 x
i

i
.

Each polynomial Pn, n = 1, 2, 3, 4, is obtained by truncating P5 at xn. Graphs of the
first five Taylor polynomials and the function f(x) = ln(x+1) (bold curve) are shown
below for 0<x<1.5, 0<y<1.
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2. Continuing the above process, we see that

Pn(x) =
n∑
i=1

(−1)i+1 x
i

i
.

3. Graphing the higher-degree polynomials in Question 1 above (or using the Ratio Test
if you have covered it) shows that the Taylor series for f(x) = ln(x+1) converges for
|x|<1 The series actually converges at x= 1, but not at x=−1, where f is undefined.
Therefore, the Taylor polynomials will not be useful for x>1.

4. Finding the zeros of
∣∣ ln(x+1)− P5(x)

∣∣− 0.0001 using zero on the calculator (accurate
to 3 decimal places according to the manual) shows that P5 is accurate to 0.0001 for

−0.277 < x < 0.302,

both numbers accurate to 3 decimal places.

window [−0.4, 0.4, 0.1]× [−1.2×10−4, 1×10−4, 1×10−5]
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2.17 Exploring the Ideas of Linear Equations

Aims

• To see examples of problems leading to linear equations.

• To practise formulating and solving problems.

• To see extensions of the basic linear-equations problem.

• To relax a little over some challenging problems!'

&

$

%

Puzzles

G.H. Hardy (1877 – 1947) was Professor of Mathematics at Cambridge University and one of
the finest mathematicians of his time. He wrote a little book, A Mathematician’s Apology,
in which he gave his views about Mathematics, the nature of the subject and its importance.
In the book, which is now very famous, Hardy claimed that Mathematics was much more
popular than most people realised, and he referred to the puzzles that are given in so many
newspapers and magazines. Many puzzles involve sorting out information and using linear
equations. Questions 1 and 2 provide examples and Question 5 shows how puzzles lead us
to develop some general results for linear equations.

Question 1

I have labelled the unknowns in
this popular “Magic Star” puzzle as
x, y, z, p, q, t. Find p first, then q and
then t. Now explain by writing out
the linear equations how your method
is like “back substitution”. Now solve
for x, y, z.

Magic Star

Find the missing numbers. The four numbers
along every line add up to the magic number in
the center.
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The solution set for linear equations may be restricted if we want only positive integers, as
naturally happens in some puzzles. Here is an old puzzle written with an American flavour.

Question 2

Find all the ways in which 100 coins — pennies (one cent), dimes (10c) and quarters (25c)
— can be worth exactly $4.99.

Hints : How many unknowns are there?

How many equations are there?

Does your solution involve a parameter?

How does this particular problem affect the range of parameters to use?

You might wonder when linear equations will or will not have integer solutions. We return to
this in Question 5.

Question 3 Beyond equality

Here is a problem of the type that commonly occurs in all sorts of industrial and other
planning problems. It leads to an area of mathematics called Linear Programming.

The Fruit Basket

The produce manager of a grocery is making up fruit baskets to sell as gifts. They are to sell
for no more than $5, and contain only apples and oranges. She wants to get 24c per orange,
12c per apple, and 68c for the basket. No more than 26 pieces of fruit will fit in the basket.
Suppose she uses x oranges and y apples. How can and should x and y be chosen?

(a) Show that we are looking for those x and y values that satisfy the inequalities

x ≥ 0 x+ y ≤ 26

y ≥ 0 2x+ y ≤ 36.

(b) When the equality signs are used, we have the equations for 4 lines. Draw a diagram
showing those 4 lines and then find an area of the xy plane in which useful x and y
values must be found. Shade in that area. Remember to explain what you are doing.

(c) Which of these (x, y) values could the manager use?

(5, 10) (10, 5) (5, 25) (20, 5) (−2, 10)

(d) If she makes a profit of 3 cents on every orange sold and 2 cents for every apple sold,
what is the equation for the total profit p?

Draw in the p=30 and p=42 lines on your diagram.

Can you see how to get the maximum profit? Explain your reasoning.

What is the maximum profit?
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Question 4 Beyond linear equations

Even if we have sets of equations that are no longer linear, we may still be able to use our
basic ideas to find solutions:

manipulate equations to get equivalent equations,

solve using back substitution

Here is an example that comes from using the Global Positioning System (GPS).

GPS is based on a constellation of 24 high-altitude satellites — officially known as Navstar
GPS (short for Navigation System with Timing and Radar). A simple example of using
the system works as follows (although of course more signal analysis and more-elaborate
algorithms will be used in practice).

Suppose you know there are three satellites, with position coordinates (a1, b1, c1), (a2, b2, c2)
and (a3, b3, c3). By bouncing a signal off each one, you measure their distances r1, r2 and r3
from yourself. Now your (unknown) coordinates (x, y, z) must satisfy

(x− a1)2 + (y − b1)2 + (z − c1)2 = r21

(x− a2)2 + (y − b2)2 + (z − c2)2 = r22

(x− a3)2 + (y − b3)2 + (z − c3)2 = r23.

We have a set of nonlinear equations, but perhaps we can use our ideas developed in Linear
Algebra to find a way to get a solution. Let’s try with a simple example.

Consider the set of equations

x2 + y2 + z2 = 6 (1)

(x−1)2 + y2 + (z+1)2 = 10 (2)

(x+1)2 + (y+1)2 + (z−1)2 = 9. (3)

(a) Find solutions for x, y and z.

Here are some suggestions to help you.

– Can you use Equation (1) to convert Equations (2) and (3) into a pair of linear
equations?

– Can you solve those linear equations?

– Can you use the idea of back substitution to re-use Equation (1) now? What sort
of equation do you have to solve?

– Now can you give the full solution?

(b) How many solutions did you get?

Do you think that will always be the case for any set of equations like the general ones
we began with?
Why? Can a geometric argument help? What shape is represented by the equations?
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Question 5 Finding some general mathematical results

Puzzles very often have integer answers, and in fact in ancient times many people could only
handle integers. About 2000 years ago, the Greek Diophantus wrote the first real algebra
books.

Equations that involve integers and count only integers as possible solutions are
called Diophantine equations.

The linear Diophantine equation with two unknowns x and y is

my = nx+ k where m, n and k are given integers.

e.g. 3y = 2x+ 7.

This example clearly has x=7, y=7 as a (Diophantine) solution.

(a) All linear Diophantine equations with 2 unknowns have solutions.

Is that statement true or false?
Notice that examples can never prove it is true in all cases, but we only need one example
(a “counter-example”) to prove the statement “false”. Explain that in your report.
Does the example 2y = 6x+5 help?

Can you give other examples? Perhaps at the end of the lab, if you have spare time,
you can come back and try to give a general condition for when

my = nx+k

has Diophantine solutions.

(b) Our example 3y = 2x+7 does have a solution and here are some more:

x 1 4 7 10 13

y 3 5 7 9 11

Can you see a pattern? Write down a formula involving a parameter t for your guess
for all the Diophantine solutions. Check that your formula satisfies the equation.

(c) Find a general formula for the solutions of my = nx+k as follows.

– Assume we have found one solution. Call it x=x1, y=y1.
So we must have my1 = nx1+k.

– Now use that to check that x = x1+mt, y = y1+nt is also a solution.
Specify the possible t values (for this Diophantine equation, remember).

– In summary, what can you say about the form and possible number of solutions for
linear Diophantine equations for two unknowns?
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Instructors’ Guide

Introductory Problem

Magic Star

Find the missing numbers. The four numbers
along every line add up to the magic number in
the center.

I have labelled the unknowns in this popular “Magic Star” puzzle as x, y, z, p, q and t. Find
p first, then q and then t. Now explain by writing out the linear equations how your method
is like “back substitution”. Now solve for x, y, z.

The equations are:

x+ z = 54− (28 + 2) = 24 (4)

x+ y = 54− (14 + 23) = 17 (5)

y + z + t = 54− 19 = 35 (6)

t+ q = 54− (26 + 14) = 14 (7)

p+ q = 54− (19 + 28) = 7 (8)

p = 54− (26 + 2 + 23) = 3 (9)

The last equation gives p = 3.

Substituting this into Eq. (8) gives q = 7−p = 4 (back substitution).

Substituting this into Eq. (7) gives t = 14−q = 10 (back substitution).

Substituting this into Eq. (6) gives
y + z = 25 (10)

Eq. (4) − Eq. (10) gives
x− y = −1 (11)

Eq. (5) + Eq. (11) gives 2x = 16, so that x = 8.

Eq. (11) then gives y = 9, and Eq. (10) gives z = 16 (back substitution).

Therefore, x = 8, y = 9, z = 16, p = 3, q = 4 and t = 10.

Check by substituting back into the original equations.
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1. Suppose there are p pennies, d dimes and q quarters.

Then the problem translates into

p+ d+ q = 100

p+ 10d+ 25q = 499

The solution is q= t, d=(133−8t)/3, p=(167+5t)/3, with t ∈ R.

We want p, d, q to be non-negative integers

As q= t, we must have t>0. For t>16, d becomes negative, so 06 t616.

On the calculator, if X is the number of quarters, Y1 = (133−8X)/3 is the number of
dimes and Y2 = (167+5X)/3 is the number of pennies. Set these equations up using
table and look for integer solutions with 06X616.

PTO
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2. (a) The numbers of oranges and apples are zero or positive, so that

x ≥ 0 y ≥ 0.

There are to be no more than 26 pieces of fruit, so that x+ y ≤ 26.

The total cost of fruit plus basket is to be no more than $5, so that

24x+ 12y + 68 ≤ 500

or 2x+ y ≤ 36.

(b) x=0 and y=0 give the axes. The shaded area bounded by the four lines contains
the useful x and y values.

(c) (5, 10) and (10, 5) are in the shaded area, so those x, y values could be used. The
other x, y values are not in the shaded area and could not be used.

(d) The profit is given by p = 3x+2y.

The lines for p = 30 and 45 are shown below.

All profit lines will be parallel to those. The largest value of p is for the profit line
farthest to the right and still intersecting the shaded region, i.e. the line through
the corner point (10, 16), giving p=62. The maximum profit is therefore 62 cents,
obtained with 10 oranges and 16 apples in a basket.

window [0, 25, 5]×[0, 35, 5]

The white lines are the
constant-profit lines for
p=30 (bottom left), 45
and 62 (top right).

3. (a) Subtracting Eq. (1) from Eqs. (2) and (3) respectively leads to the linear equations

−x+ z = 1

x+ y − z = 0.

These can be solved to give x=z−1, y=1.

Substituting this into Eq. (1) leads to the quadratic equation

z2 − z − 2 = 0

or (z−2)(z+1) = 0.

Thus, we deduce the solutions z = 2 y = 1 x = 1

and z = −1 y = 1 x = −2.

141



2.17 Exploring the Ideas of Linear Equations 2 LABS REQUIRING A TI-84/CE

(b) We get two solutions.

Equations like these always have two solutions, or do they?

Each equation represents a sphere, and solving them simultaneously finds the points
in which three spheres intersect, if they do intersect. Two spheres intersect, in
general, in a circle. This circle of intersection then intersects the third sphere at
two points (two solutions), at one point (circle touches third sphere — one solution)
or not at all (no solution).

4. (a) The statement is false.

One counter-example: 2y = 6x+5 can be written as 2y−6x = 5, but if x and y are
integers, 2y−6x must be an even number and hence can never equal 5.

The general equation has a solution if and only if k is a multiple of the greatest
common divisor of m and n.

(b) x = 7+3t, y = 7+2t, where t = 0,±1,±2,±3, . . ., i.e. t is any integer.

(c) Check that x = x1+mt, y = y1+nt, where (x1, y1) is a solution of my = nx+k.

If x=x1, y=y1 is a solution, we have

my1 = nx1+k. (12)

Then,

my = m(y1+nt)

= my1 +mnt

= nx1 + k +mnt using Equation (12)

= n(x−mt) + k +mnt as x = x1+mt

= nx+ k.

Therefore, x= x1+mt, y = y1+nt, with t any integer, is a solution. It turns out
that all solutions are of this form.

Linear Diophantine equations in two unknowns therefore have no solution or an
infinite number of solutions.

142



2.18 Population Models: Matrices and Eigenvalues 2 LABS REQUIRING A TI-84/CE

2.18 Population Models: Matrices and Eigenvalues

Aims

• To see problems that can be modelled mathematically using matrices.

• To explore matrix problems using the TI-84/CE.

• To develop a bit more algebra concerning eigenvalues.

Preliminary work Program POP/POPCE a

This will allow you to multiply repeatedly a column vector v by a transition matrix T
and to see the sum of the components of v. T will be a 3×3 matrix stored in [A], v will
be a 3×1 column matrix stored in [B].

Prgm POP/POPCE

[A][B] → [B] gives Tv and puts the answer into [B] ready for
the next multiplication.

[B](1,1) + [B](2,1) + [B](3,1) gives the sum of the components of v.

Disp [B], Ans displays v and the sum of its components.

You can test this program in Question 1(b) below.
Select this program and press enter to run it. Each time you press enter , it

will run again. Do as many enter s as you need repeated T multiplications.

aavailable at www.YYY

A reminder before you begin

(a) For a matrix T , there are special vectors v called eigenvectors: multiplying v by
T gives a scaled version of v, i.e.

Tv = λv,

where the scaling constant λ is the eigenvalue. If v1 is an eigenvector with λ1 =1,
multiplying by T gives back exactly v1, i.e. Tv1 =v1.

(b) If u is not an eigenvector of T , Tu 6= a constant times u.

(c) Eigenvalues are the roots of the characteristic equation∣∣T−λI∣∣ = 0,

and the eigenvector vi corresponding to eigenvalue λi is found by solving(
T−λiI

)
vi = 0.

More details on the use of matrices on a TI-84/CE and further examples can be found in
Matrix and Vector Operations in Volume 3 of Mathematics on a TI-84/CE.42

42available at www.XXX
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Question 1 Leslie matrices and beetles

A population is divided into a number of classes — we shall assume three classes referring to
three age groups: young y, adults a and seniors s. The population is then described by the
vector

v =

 y

a

s

 .
There will be a 3×3 matrix T that tells us how the population evolves. For example, if the
population is  y1

a1
s1


to start with, after one cycle it is  y2

a2
s2

 = T

 y1
a1
s1

 .
In problems leading to a Leslie matrix:

• in each year or cycle, members of the other classes produce a certain number of new
young in Class 1;

• a certain fraction of each class survives to move into the next class and the rest die;

• all members of the top class die.

This leads to a transition matrix that is zero everywhere except possibly

• along the top row after the first element and

• in the elements along the diagonal parallel to and just below the main diagonal.

0 ∗ ∗ ∗ ∗ · · · ∗ ∗
∗ 0 0 0 0 · · · 0 0

0 ∗ 0 0 0 · · · 0 0

0 0 ∗ 0 0 · · · 0 0

0 0 0 ∗ 0 · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 0 0 0 · · · ∗ 0


Leslie discovered these matrices in the 1940s when he pioneered this way of exploring how
populations can develop. He had TB and taught himself matrix algebra while he was in
hospital.
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(a) For our beetle population: during each cycle, each adult produces on average 2.75
young and each senior produces on average 2.5 young; one quarter of the young survive
to become adults and one half of the adults survive to become seniors. In a Leslie-matrix
problem, all the seniors die.

Find the Leslie transition matrix T .

Good strategy: Write out the linear equations for y2, a2, s2 in terms of y1, a1, s1 and
convert to matrix form.

y1 = ?y0 + ?a0 + ?s0

a1 = ?y0 + ?a0 + ?s0

s1 = ?y0 + ?a0 + ?s0

(b) If we start with 40 young and no adults or seniors, show that after one cycle

v =

 y

a

s

 =

 0

10

0

 .
If you do not get this, check your T with a lab instructor. You should have entered T
into [A] and the initial v into [B].

(c) Multiply repeatedly by T (using POP/POPCE), and record the population vector v and
the population total P =y+a+s after 11, 12 and 13 cycles.

(d) Looking at the values of P , what is your guess for an eigenvalue λ1 of T ?
What do you guess for the eigenvector v1?
Check the accuracy of your guess by working out Tv1 and seeing whether the result is
equal to λ1v1.

Question 2 A mathematical check

Make sure you have done 1(d) before you do Question 2.

(a) For the Leslie matrix T in Question 1, find the characteristic equation∣∣T−λI∣∣ = 0 for the eigenvalues λ.

(b) Check that λ1 =1 satisfies that characteristic equation.

(c) Now check that the eigenvector v1 satisfies
(
T−λI

)
v = 0 for this case: as λ1 =1, you

should expect
(
T−I

)
v1 = 0.

Let v1 =

 8

2

1

 and check that this homogeneous equation is really satisfied.

Would any other v1 satisfy the equation?
You should now be able to confirm your guess in Question 1(d).
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Question 3 You are the consultant

An orchardist has beetles in her trees and knows the beetle population evolves as described
in Question 1, with a cycle taking one year. At the start of last year she had employed a
pest-control company to reduce the beetle numbers and they did that (they claim) by using
a spray that killed off the “senior” beetles. This year the orchardist did a survey over 50
trees and found 800 young beetles, 200 adults and 100 seniors. She now says the pest control
company failed and she wants her money back.

Discuss her claim and how you would support or not support her case in court.

Question 4 Populations and oscillations

Workers other than Leslie had independently used matrix algebra in population models. The
first was Harro Bernardelli, who had published a paper in 1941 in the Journal of the Burma
Research Society with the title Population Waves. Bernardelli’s paper was unusual in fo-
cussing not on the eventual stability of the population structure, but on intrinsic oscillations
in the population structure. He had observed oscillations in the age structure of the Burmese
population between 1901 and 1931. As an abstract model for such oscillations, he proposed
a matrix model for the evolution of the population with

T =

 0 0 8

0.5 0 0

0 0.25 0


and showed by numerical calculations that this gave rise to apparently permanent oscillations
in the age structure.

(a) Set the vector v initially to

 1

0.01

0.01

 (population in millions).

Then use POP/POPCE to run Bernardelli’s matrix T for 12 cycles, recording the total
population at each cycle. Plot P versus cycle number, joining up the points with straight
lines.

(b) Discuss your findings.

Could you have predicted something like that just by thinking how the population
classes develop according to Bernardelli’s model?

Check the case where initially y=1, a=0 and s=0. You do not even need a calculator
to get results in this very simple case!

(c) Repeat (a) using T =

 0 0 5

0.7 0 0

0 0.5 0

. Describe your results in words.

Question 5 Review

You have now seen examples of systems specified by a vector and with a matrix producing
transitions to show how that system’s vector evolves. What types of behaviour have you
observed? Summarise what you see as the various possibilities and speculate on other types
of results you think could be obtained in these linear problems.
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Supplementary Question

Question 6 Managing a car hire business

You are the area manager for a car rental company with three hiring locations P , Q and R,
and 600 cars under your control. You must decide where to base your cars. Luckily you have
done Maths 1 so you know how to build a mathematical model to tackle this problem.

A little monitoring of car hire and returns gives you the following data or Weekly Distribution
History:

location P : 60% of cars starting at P remain there at the end of the week,
10% go to Q, 30% go to R

location Q: 80% of cars starting at Q remain there at the end of the week,
10% go to P , 10% go to R

location R: 70% of cars starting at R remain there at the end of the week,
10% go to P , 20% go to Q.

(a) Let pn, qn and rn be the number of cars at locations P , Q and R respectively at the
start of week n. They can be the components of a column vector. What is the transition
matrix T which tells you the distribution pn+1, qn+1 and rn+1 at the start of Week n+1?
Answers are available from the lab supervisors if you want to check at any stage. Record
in your report whenever you check at a particular stage.

(b) If Week 1 starts with 200 cars at each location, how are they distributed at the start of
Week 2?
Work this out by hand, then use program POP/POPCE to check. Another check: has
the total number of cars remained constant?

(c) How do you assign your staff (clerks, cleaners, mechanics) to the three locations?
Hint : You really need staff numbers at each location proportional to the number of cars
there. Do you want to have to keep moving them around?

Explain how an eigenvector of T helps and why the eigenvalue should be 1.

(d) Substitute λ=1 into the characteristic equation
∣∣T−λI∣∣ = 0 to check that 1 is indeed

an eigenvalue of T .

(e) Now find the corresponding eigenvector v1. Make it suitable for a total of 600 cars.
Check Tv1 really does give you back the same distribution and therefore convince
yourself that this will keep cars located in a steady-state way.

(f) You employ a total of 20 car cleaners. How many should you, smart manager, base at
each location P , Q and R?
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Bonus Parts

(g) Check the other solutions to the eigenvalue problem for T :

λ2 = 0.6 v2 = t

 0

1

−1

 λ3 = 0.5 v3 = t

 −1

−1

2

.

(h) You might wonder: is there some test we can do to detect a mistake in the eigenvalues
of a matrix A. Suppose A is n×n and let p(λ) be the characteristic polynomial. We
know

• p(λ) =
∣∣A−λI∣∣ and the characteristic equation is p(λ)=0;

• if the eigenvalues are λ1, λ2, · · · , λn, it must be possible to write

p(λ) = (−1)n(λ−λ1)(λ−λ2)(λ−λ3) . . . (λ−λn).

Now have a think about p(0). Work it out using each of the above two results and hence
obtain your test for the eigenvalues.

(i) Check that the three eigenvalues satisfy your test for the matrix T .
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Instructors’ Guide

Solutions

1. (a) T =

 0 2.75 2.5

0.25 0 0

0 0.5 0

.

(b) T

 40

0

0

 =

 0

10

0

.

(c) After cycle v P

1

 0

10

0

 10

2

 27.5

0

5

 32.5

3

 12.5

6.875

0

 19.375

...
...

...

11

 17.320

4.305

2.184

 23.809

12

 17.299

4.330

2.153

 23.781

13

 17.289

4.325

2.165

 23.779

(d) It appears that P is becoming close to a constant value, so we guess λ1 = 1 (and
that this is the eigenvalue with the largest absolute value).

The eigenvector is close to

 17.289

4.325

2.165

 = 2.165

 7.99

2.00

1

.

In fact the exact answer is λ1 = 1, v1 = t

 8

2

1

, t any real number.
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2. (a) The characteristic equation is λ3−0.6875λ−0.3125 = 0.

(c) Any multiple of v1 will satisfy the equation, but all other vectors will not.

3. From Question 2, we see that the survey numbers give an eigenvector (100v1 in Question
2) of T , with eigenvalue 1. Therefore, the numbers of beetles the year before (after the
spraying) must have been the same as now — the pest-control company appears to have
killed no beetles at all.

4. (a) After 1 cycle:

 0 0 8

0.5 0 0

0 0.25 0

 1

0.01

0.01

 =

 0.08

0.5

0.0025

, so P = 0.5825.

From successive cycles, we build up the table

cycle 0 1 2 3 4 5 6 · · ·
P 1.02 0.5825 0.185 1.02 0.5825 0.185 1.02 · · ·

window [0, 12, 1]×[0, 1.2, 0.25]

(b) The population is oscillating or going in waves, with no overall growth or decline.

A group of young first becomes adults with a decline of 50%; the group then has
to become seniors before producing young, and the process repeats itself.

If you begin with

 1

0

0

, it is even easier to see that the cycle is

 1

0

0

 −→
 0

0.5

0

 −→
 0

0

0.125

 −→
 1

0

0

 −→ · · · · · ·

(c) The populations are now 1.02, 0.755, 0.41, 1.785, 1.321, 0.718, 3.124, 2.312, 1.256,
5.467, 4.046, 2.197, 9.566, 7.081, 3.846, 16,741, . . . . The population is oscillating,
but growing overall.

window [0, 16, 1]×[0, 18, 2]
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6. (a) We have T =

 0.6 0.1 0.1

0.1 0.8 0.2

0.3 0.1 0.7

, so that

 pn+1

qn+1

rn+1

 =

 0.6 0.1 0.1

0.1 0.8 0.2

0.3 0.1 0.7

 pn
qn
rn

.

(b)

 200

200

200

 −→
 160

220

220

 after 1 cycle.

(c) The staff should be distributed in proportion to the number of cars at each location.
A stable distribution would be sensible, so the staff do not have to be shifted
around.

Mathematically we need to see if T has an eigenvalue λ=1 and use the eigenvector
for the steady-state distribution. (λ 6=1 means the total number of cars goes up or
down — not what we want.)

(d) With λ=1,
∣∣T−λI∣∣ =

∣∣T−I∣∣ =

∣∣∣∣∣∣
−0.4 0.1 0.1

0.1 −0.2 0.2

0.3 0.1 −0.3

∣∣∣∣∣∣ = 0 (check).

Therefore, λ=1 is an eigenvalue.

(e) Solve
(
T−I

)
v = 0. Using Gaussian elimination, −4 1 1 0

1 −2 2 0

3 1 −3 0

→
 1 −2 2 0

−4 1 1 0

3 1 −3 0

→
 1 −2 2 0

0 −7 9 0

0 7 −9 0

→
 1 −2 2 0

0 −7 9 0

0 0 0 0



Back-substitute to get v =

 4t/7

9t/7

t

. For 600 cars, 20t/7 = 600, so that t = 210

and v =

 120

270

210

. Check that T

 120

270

210

 =

 120

270

210

.

(f) Distribute the staff in proportion to number of cars. Therefore, at P , we have
20×(120/600) = 4 staff; similarly 9 staff at Q and 7 staff at R.

(g) Check these are solutions to Tv = λv.

(h) Notice that p(0)=
∣∣A∣∣ and p(0) = λ1λ2λ3 . . . λn, i.e.

product of eigenvalues = determinant of matrix.

(i)
∣∣T ∣∣ = 0.3 and λ1λ2λ3 = 1× 0.6× 0.5 = 0.3.
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2.19 Gambling Returns

Question 1 Means and variances for a roulette wheel

In Australia, casinos have adopted the European roulette wheel. This wheel has 37 slots
numbered 0 and 1 to 36. (It gives better odds than the Las Vegas wheels which have 38 slots
numbered 00, 0 and 1 to 36.) Half the slots 1 to 36 are coloured red and half are black. The
0 slot is neither red nor black. The casinos pay even money for red/black and odd/even bets,
that is you win as much as you bet.43

To see what sort of margin the casino has over the player, we shall examine two of the many
possible bets — straight-up bets, where a player bets on one particular number, and red/black
bets, where the player bets on either red or black.

A straight-up $1 bet returns $35 for a win (plus the $1 you bet), otherwise the $1 is lost. The
probability of a straight-up win is 1/37, while the probability of a loss is 36/37.

To calculate the margin operating in favour of the casino, we calculate the expected return
to the gambler for a $1 bet. The player’s return is +$35 for a win and −$1 for a loss. Let
ri be the ith return (i= 1, 2) and pR(ri) be the probability of return ri. Then r1 = 35, with
pR(r1)=1/37, and r2 =−1, with pR(r2)=36/37. The expected or mean return is

E[R] =
2∑
i=1

ri pR(ri)

= r1 pR(r1) + r2 pR(r2)

= 35× 1

37
− 1× 36

37

= −$
1

37

≈ −$0.027

= −2.7% of the initial bet.

We say that the casino’s margin for the straight-up bet is 2.7%, i.e. for every $100 bet on the
game, it will take, on average, $2.70 for itself.

Now let us examine the outcome for a red/black bet. A $1 wager on red, say, returns $1
for a win, otherwise the $1 bet is lost. The probability of a win on red is 18/37, while the
probability of a loss is 19/37.

(a) Calculate the expected return for a player placing a red/black bet.

You should have found that the casino margin was again 2.7%. In fact, by the same argument,
you can show that the margin is the same for every bet on the European wheel. Hence,
whatever bet you make, your expected loss is still 2.7%. What this means is that, on average,
a player will lose $2.70 for every $100 wagered, no matter which way he or she bets.

43If you win at a gambling game, you get back what you win (the return) plus what you bet.
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However, while the two betting strategies yield the same expected return, the spread or
variability of the return differs greatly in each case.

(b) (i) Suppose a player bets $1 one hundred times in succession on red each time. What
is the most she could win? What is the most she could lose?

(ii) Suppose a player bets $1 one hundred times in succession on a single number.
What is the most he could win? What is the most he could lose?

To complete the picture we need to look at the variance of the return: the greater the variance,
the more volatile the fortune of the player.

To illustrate this, we examine again the cases of a straight-up bet and a red/black bet. For
the straight-up $1 bet, we have

E[R2] =
2∑
i=1

r2i pR(ri)

= (35)2 × 1

37
+ (−1)2 × 36

37

≈ 34.08.

Hence the variance

Var(R) = E[R2]− (E[R])2

= 34.08− (− 1

37
)2

≈ 34.08.

(c) (i) Calculate the variance of the return for a $1 bet on red/black.

(ii) Compare the variances for the straight-up and red/black bets, and explain what
this difference in variability means in practice. Note that the greater the variance
of R, the more variation R exhibits about the mean return of −2.7%.

If we did not know the formulas to calculate these quantities, we could estimate these quan-
tities by performing a large number of simulated spins of the wheel. In this lab, we shall
simulate 999 spins on a TI-84/CE.44 We calculate the sample mean return

R =
R1+R2+. . .+R999

999
=

1

999

999∑
i=1

Ri

to estimate E[R], and to estimate Var(R) we calculate the sample variance

S2 =
(R1−R)2 + (R2−R)2 + . . .+ (R999−R)2

999
=

1

999

999∑
i=1

(Ri−R)2.

44Lists on the TI-84/CE only take up to 999 values. We need the values in a list to carry out our statistical
analysis.
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(d) Use the program WINBET/WINBETCE (see next page) to simulate returns from each
of 5 runs of 999 straight-up bets and from each of 5 runs of 999 red/black bets. Share
this around — do two or three runs each. For each simulation write down the return,
the mean return per bet R (= R/999) and the variance S2 (the last two to 4SD); the
program calculates these using the stat operations on the TI-84/CE (see next page).

(e) Write down a formula for the return as a function of the number of wins in 999 bets.
Hint : What return would you get from 1 win? from 2 wins? from n wins? What is the
minimum number of wins for a profit (positive return)?

(f) We would now like to combine, if possible, the statistics from our 5 runs to calculate the
corresponding statistics for a single run of 5×999 = 4995 spins. Show mathematically,
using the formula for R on page 153, that the mean of 5R values is equal to the mean of
a single run of the same 4995 spins, i.e. of all spins done in one go. Is this true for the
variance? What is your value for R from all 5 runs of the straight-up bets combined?
From all 5 runs of the red/black bets combined?

(g) Compare your results in (d) and (f) with the theoretical means and variances obtained
above.45

(h) In a paragraph, summarize your findings in (a) – (g) as an explanation to a novice
gambler.

Question 2 The Law of Averages or The Law of Large Numbers

Many people misunderstand the Law of Averages.

A sales book said something along the lines of

If 1 in 2 people are interested in buying your product and you get a knockback at
one house, the Law of Averages says you will get a sale at the very next house.

It makes you wonder whether this guy had ever tried it himself.

It’s like saying that if red came up on the roulette wheel last time, black must come up next.
If that were the case, you could correctly predict the next umpteen trillion spins of the wheel
and retire tomorrow.

(a) Let the probability of an event be p. Let the number of times this event occurs in n
trials be x. To what value would you expect the ratio x/n to approach as n→∞?46

This is the Law of Averages, which concerns the long-term behaviour of a process. In the
statistical literature, this is referred to as the Law of Large Numbers.

The Law of Averages does not say that one event or a series of events causes another event
to occur next, in order to even things out. In fact the opposite is true: the Law of Averages
depends for its validity on each event being independent, i.e. unaffected by earlier events.

(b) Use the program COINTOSS/CNTOSSCE (see next page) to simulate 999 tosses of a
fair coin. This program plots H/N against N, where H is the number of heads thrown
in N tosses. To what value does H/N converge?

45These are the values we would obtain in the limit as the number of simulated spins tends to ∞.
46If you can’t work this out, let the event be throwing a 6 on a die. What would you expect in this case?
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(c) From your simulation in (b), find how many tosses it takes before H/N stays within 10%
of the limiting value you found in (b). This number is given on the graph.

Do this for two further runs each of 500 tosses.

(d) Summarize your findings in (a) – (c) with regard to the Law of Averages.

Statistics Operations on the TI-84/CE

The statistics operations are in the stat menu, and operate on data contained in the

lists. List names L1 – L6 are on the keys 1 – 6 , and are selected by pressing the 2nd key
first. stat Edit gets you into the list editor to look at the lists, 2nd quit out of it.

To calculate means and variances, you need to use one-variable statistics on list L1: you can
do this manually by selecting 1-Var Stats from the stat CALC menu, followed by 2nd 1

(L1) enter , or you can let the WINBET/WINBETCE program do exactly this for you.

The mean is x and the variance we want in Question 1 is (σx)2.

Using the Programs

These programs are available at www.YYY.

WINBET/WINBETCE

This program simulates a game such as roulette using, as do the other simulation programs,
the rand function on the TI-84/CE

(
math PRB menu

)
: this generates a random number

between 0 and 1.

Enter the amount you win on a $1 bet, the probability of a win (you can enter a fraction
here, e.g. 1/37) and the number of trials (spins). For example, for a straight-up bet you would
win $35 for a $1 bet and the probability of a win would be 1/37. Press enter to start the
simulation. The counter tells you the number of the current trial.

After the simulation is over, the program tells you the return, that is how much you won (+)
or lost (−). The results of each trial are stored in L1. Press enter to calculate the mean and
variance.

Note: Storing values in the calculator uses up LOTS of memory, about 1K per 100 values.
You may need to delete something

(
mem

)
on a TI-84 so you have enough memory; the CE

has heaps of memory. Remember to delete the lists when you have finished.

COINTOSS/CNTOSSCE

This program simulates tossing a coin (fair or biassed). Enter the probability of heads and
the number of trials (up to 999). The program plots the ratio H/N versus N, where H is the
total number of heads in N tosses. The program also displays the value of N beyond which
H/N remains within 10% of the probability of heads.

Values of H/N are stored in list L1; you should clear this when you have finished.
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Solutions

1. (a) E[R] = $1×(18/37)− $1×(19/37) = −$1/37 ≈ −$0.027, 2.7% of the initial bet.

(b) (i) The most she could win is $100 — win $1 each time.
The most she could lose is $100 — lose $1 each time.

(ii) The most he could win is $3500 — win $35 each time.
The most he could lose is $100 — lose $1 each time.

(c) (i) E[R2] = (1)2×(18/37) + (−1)2×(19/37) = 1.

Hence the variance Var(R) = E[R2]−(E[R])2 = 1−(−1/37)2 ≈ 0.9993.

(ii) The variance for the return on a straight-up bet is much higher than the
variance for the return on a red-black bet. This is not surprising, because we
would expect the winnings or losses of a red-black player to remain much more
steady than a straight-up player, who could easily have a long losing streak
before winning or, conversely, may have big wins very quickly. The fortunes
of a straight-up player are more volatile; he or she will win ‘big’ or ‘go bust’
much faster than the red-black player.

(d) Examples of using the WINBET/WINBETCE program are given below. Obviously
the numbers will vary from trial to trial. The values for sample mean and sample
variance have been rounded to 4 significant digits.

Straight-up Bet: $1 bet; return on win $35; win probability 1/37; 999 trials.

Simulation Total Sample Mean Sample Variance
Number Return R S2

1 −63 −0.0631 32.85

2 225 0.2252 42.61

3 261 0.2613 43.81

4 −99 −0.0991 31.62

5 −207 −0.2072 27.91

Red-Black Bet: $1 bet; return on win $1; win probability 18/37; 999 trials.

Simulation Total Sample Mean Sample Variance
Number Return R S2

1 5 0.0050 1.000

2 −55 −0.0551 0.9970

3 −47 −0.0470 0.9978

4 −47 −0.0470 0.9978

5 −9 −0.0090 0.9999

(e) For Simulation 1 in the straight-up bets, the return is −$63. If this is a result of
n wins, then −63 = 35n+ (999−n)(−1), so that 36n=936 or n=26.

For a profit, return 35n+(999−n)(−1) > 0 or n>999/36=27.75. Hence, you need
to win at least 28 times out of 999 to make a profit.
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(f) We have 5 runs of 999 bets with means R1, R2, . . . ,R5. Then, for the first run,

999R1 =
999∑
i=1

Ri,

and similarly for each run. If we add up these 5 equations, we have

999(R1 +R2 +R3 +R4 +R5) =
4995∑
i=1

Ri,

i.e. the right-hand-side is the sum of the returns from all 5 runs. Dividing both
sides by 4995, we have

R1 +R2 +R3 +R4 +R5

5
=

1

4995

4995∑
i=1

Ri,

that is, the mean of the means is the overall mean, as required.

The same does not work for the variance, because the mean in the overall variance
is the overall mean, whereas the mean in each individual variance is the individual
mean. The sum of the variances does not turn into the variance of the overall sum
because of the square in each term.

The mean from all 5 runs of the straight-up bets in (d) combined is 0.023, while
the mean from all 5 runs of the red/black bets combined is −0.031.

(g) The theoretical mean in both cases is −0.027. We see from the straight-up results,
both individual and combined, that there is considerable variation from this value,
as we would expect given the large variances. We would need to carry out a lot
more bets before the experimental values will approach the theoretical value.

In the red/black case, the individual results, and especially the combined result,
are reasonably close to the theoretical value. Again, we would expect this, given
the small variances in this case.

2. (a) P (throwing a 6 on a die) = 1/6.

For a large number of throws, we’d expect no of 6s / no of throws → 1/6.

Similarly, the Law of Averages states:
If the probability of an event is p and the event occurs x times in n trials,
the ratio x/n→ p as n→∞.

(b) A sample run of COINTOSS is shown below.

(c) From four runs of the program, it took 439, 124, 277 (the above run) and 57 tosses
respectively before the value of H/N remained within 0.05 (10%) of the limiting
value of 0.5.
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2.20 Gambling Tactics

Question 1 Bold play vs cautious play

The scenario is that you have $9, but this by itself is of no use to you. Payday is tomorrow,
but tonight you need $20 for a movie/meal/drink or whatever.

As you are passing the casino, you decide to bet the $9 to try to get it to $20. If you lose
the $9 you walk home, but if you get your bankroll to $20 you are going to enjoy a night out.
Suppose also that you have decided to bet on red/black at roulette and that the minimum
table bet is $1.

Is cautious play or bold play preferable?

(a) Bold Play

Use the program LABRLTTE/LBRLTECE. This program simulates a European roulette
wheel, with 37 numbers (0 – 36). Your starting bank is $9.

• Bet the maximum you have to in order to reach your target. That is, on your first
bet place $9. Bet on red or black. If you win, then your next bet is $1, as that
is all that is required to get you to $20. In general, bet as much as you can or as
much as you need to reach your target in one bet, whichever is smaller.

• Run this program 20 times and record the number of times you reached your target
of $20.

(b) Cautious Play

You can also simulate cautious play with LABRLTTE/LBRLTECE, betting $1 each time,
but even with a starting bank of $9, it could take a lot of bets to reach $20 or $0, and
therefore a long time. It’s quicker to use the WALK/WALKCE program.

In the WALK/WALKCE program, A (you) wins 1 (from the bank B) with probability
p or loses 1 (to B). The program continues until either A reaches 0 (you lose) or B
reaches 0 (and therefore A reaches 20 and you win). The final I value tells you just how
many bets it took for this to occur.

• Run WALK/WALKCE, setting A’s capital to 9 and B’s to 11.

• Set the probability of a win to 18/37.

• Run the program 20 times and record the number of times A reached the target
of 20.

(c) When you have completed (a) and (b), put your results up on the board, so we can get
some pooled data. Comment on what you would expect the results to be, based on the
theory. Compare the theory with what your group obtained and with the overall class
results.
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Question 2 Systems betting

The claim is that the Martingale and Labouchere systems are dangerous in that they can
produce a long string of small wins which don’t prepare you for the massive loss which is
around the corner. Now you will run some simulations so you can check this for yourself, and
also see how Martingale and Labouchere systems differ from their reverse systems.

(a) Use the program GAMBLSYS/GBLSYSCE to compare the outcomes of five different
betting strategies:

(i) betting the same amount each time;

(ii) Martingale;

(iii) reverse Martingale;

(iv) Labouchere (sequence 1,2,3,4); and

(v) reverse Labouchere (sequence 1,2,3,4).

For each system, set the starting bank to $100, the probability of a win to 18/37 and
the maximum number of bets to 100.

– Run each system 10 times.

– For each simulation, record the minimum, maximum and final bank of the player
(press enter after the graph is plotted to see these numbers, and enter again
to return to the main menu). Note that you are allowed to go negative in these
simulations. In reality, you would have lost your money.

– When you have completed all the simulations, put your results on the board.
Comment on the differences apparent between the five systems, both from your
results and the pooled class results.

(b) Complete one copy of the handout tree diagram below for each of the Martingale and
Labouchere systems. For Labouchere, use the sequence {1, 2, 3, 4}, so the initial bet is
5 units. For Martingale, start with a bet of 1 unit.

(i) Fill in the amounts bet, won and lost at each stage, and the return for each branch.
Write the returns under the Return column. As a check, the returns should add
up to 0.

(ii) Let p denote the probability of a win, so that q = 1−p is the probability of a loss.
Write down the probability of each return on your diagram in terms of p and q.
Write this under the Probability column.

(iii) Multiply each term in the Return column by the corresponding term in the Prob-
ability column and total these. This gives you the expected return E[R].

PTO
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(iv) In a similar way, the expected amount bet E[B] can be calculated.
For the Martingale system, it is

E[B] = 4p3 + 15p2q + 22pq2 + 15q3.

For the Labouchere system it is

E[B] = 20p3 + 61p2q + 76pq2 + 26q3.

Don’t do it now, but after the lab you should try to verify these results.

(v) Evaluate E[R] and E[B] for the Martingale system when p=18/37 (roulette).
What percentage of E[B] is E[R]?

(vi) Evaluate E[R] and E[B] for the Labouchere system when p=18/37.
What percentage of E[B] is E[R]?

(vii) Comment on the results in (v) and (vi).
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SYSTEM:

Return Probability

↓ ↓

Win

Win Bet

Lose

Win Bet

Win

Lose Bet

Lose

Win Bet

Win

Win Bet

Lose

Lose Bet

Win

Lose Bet

Bet Lose

Win

Win Bet

Lose

Win Bet

Win

Lose Bet

Lose

Lose Bet

Win

Win Bet

Lose

Lose Bet

Win

Lose Bet

Lose

Total 0

E[R] =

E[B] =

E[R] is % of E[B].
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Instructors’ Guide

This lab was used in a course in which gambling, gambling strategies and gambling systems
were used as a vehicle to teach probability to first-year university students. The lab relies on
some knowledge of several well-known gambling systems, which are discussed in the Appendix
at the end of this section, as is some of the background to bold vs cautious play. The TI-
84/CE programs LABRLTTE/LBRLTECE, WALK/WALKCE and GAMBLSYS/GBLSYSCE are
available at www.YYY.

Solutions

1. (a) Clearly the numbers will vary here, but the general result should be clear, especially
if class data are pooled. You should allow time for the pooled results to be discussed
by the class and conclusions drawn.

In 20 trials of bold play, the $20 was reached 8 times.

(b) In 20 trials of cautious play, the $20 was reached 6 times.

According to the theory (see the Appendix), with the odds of winning (18/37) in the
house’s favour, bold play should be the better strategy.

2. (a) Again results will vary, but the pooled class data should allow some conclusions to
be drawn. Again, you should allow time for the pooled results to be discussed by
the class and conclusions drawn.

A table of some results is shown below. Starting bet $100.

Sim Same Amount Martingale Rev Martingale

Number Min Max Final Min Max Final Min Max Final

1 88 104 92 90 149 149 50 108 50

2 84 100 88 −119 136 −119 45 131 46

3 82 104 88 79 152 152 46 127 46

4 84 102 86 −21 106 −21 43 119 43

5 96 104 98 11 150 143 52 211 52

Sim Labouchere Rev Labouchere

Number Min Max Final Min Max Final

1 67 227 182 0 127 0

2 −19 181 −19 0 100 0

3 −2 126 −2 0 113 0

4 −1 185 −1 30 406 92

5 69 210 151 0 221 0
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SYSTEM: MARTINGALE
Return Probability

↓ ↓

Win 1 4 p4

Win 1 Bet 1

Lose 1 2 p3q

Win 1 Bet 1

Win 2 3 p3q

Lose 1 Bet 2

Lose 2 −1 p2q2

Win 1 Bet 1

Win 1 3 p3q

Win 2 Bet 1

Lose 1 1 p2q2

Lose 1 Bet 2

Win 4 2 p2q2

Lose 2 Bet 4

Bet 1 Lose 4 −6 pq3

Win 1 3 p3q

Win 1 Bet 1

Lose 1 1 p2q2

Win 2 Bet 1

Win 2 2 p2q2

Lose 1 Bet 2

Lose 2 −2 pq3

Lose 1 Bet 2

Win 1 2 p2q2

Win 4 Bet 1

Lose 1 0 pq3

Lose 2 Bet 4

Win 8 1 pq3

Lose 4 Bet 8

Lose 8 −15 q4

Total 0

E[R] = 4p4 + 11p3q + 7p2q2 − 7pq3 − 15q4 ≈ −0.19289 if p=18/37.

E[B] = 4p3 + 15p2q + 22pq2 + 15q3 ≈ 7.13697 if p=18/37.

E[R] is −2.7% of E[B], the usual margin for roulette.
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SYSTEM: LABOUCHERE
Return Probability

↓ ↓

Win 5 20 p4

Win 5 Bet 5

Lose 5 10 p3q

Win 5 Bet 5

Win 6 11 p3q

Lose 5 Bet 6

Lose 6 −1 p2q2

Win 5 Bet 5

Win 3 10 p3q

Win 7 Bet 3

Lose 3 4 p2q2

Lose 5 Bet 7

Win 9 2 p2q2

Lose 7 Bet 9

Bet 5 Lose 9 −16 pq3

Win 3 10 p3q

Win 6 Bet 3

Lose 3 4 p2q2

Win 6 Bet 6

Win 8 3 p2q2

Lose 6 Bet 8

Lose 8 −13 pq3

Lose 5 Bet 6

Win 7 3 p2q2

Win 7 Bet 7

Lose 7 −11 pq3

Lose 6 Bet 7

Win 8 −10 pq3

Lose 7 Bet 8

Lose 8 −26 q4

Total 0

E[R] = 20p4 + 41p3q + 15p2q2 − 50pq3 − 26q4 ≈ −0.62126 if p=18/37.

E[B] = 20p3 + 61p2q + 76pq2 + 26q3 ≈ 22.9866 if p=18/37.

E[R] is −2.7% of E[B].
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Appendix

Bold Play vs Cautious Play

In their 1965 book How to gamble if you must, re-published in 1976 under the really catchy
title Inequalities for Stochastic Processes, Dubins and Savage proved the following revealing
theorem.

Suppose a gambler has a fixed target to reach — say to achieve a capital of
$20,000 from an initial $9,000 bankroll. In this scenario it is all or nothing —
the player will keep playing until either he reaches the target or goes bust. What
strategy maximizes the probability that he reach his goal? (We call this an optimal
strategy).

Dubins and Savage proved that

• when the house has an edge, BOLD play is optimal,

• when the player has an edge, CAUTIOUS play is optimal.

By BOLD play, they mean bet your entire bankroll on each bet, or as much as necessary
to reach your goal.

By CAUTIOUS play, they mean bet the minimum amount allowable on each bet.

For example, if you wish to get your capital to $20 from an inital $9, and you are betting on
red-black in roulette (P (win) = 18/37), then adopt BOLD play (minimum bet $1).

• Bet $9 on your first bet. If you lose, that’s it — the fat lady has sung.

• If you win, you now have $18. Bet $1, as this is all you need to reach your target. If you
win, you pack up and go home rich. The same is true if you win at any of the following
stages.

• If you lose the $1, now bet $2.

• If you lose the $2, now bet $3.

• If you lose the $3, now bet $4.

• If you lose the $4, you now have $8. Bet the $8.

• If you win, you’re there. If not, you have nothing.

Caution: Bold play doesn’t guarantee a profit. Nor does it shift the edge in your favour. It
only maximizes the probability you will reach your goal before going broke.

With the aid of a tree diagram, it is possible to work out the probability of losing all your
bankroll. If p denotes the probability of winning a single bet, the probability of losing all the
bankroll is

P (capital reaches zero) = 1− p+ p(1+p)(1−p)4 ×(
1 + p2(1−p)2 +

(
p2(1−p)2

)2
+
(
p2(1−p)2

)3
+ . . .

)

= 1− p+
p(1+p)(1−p)4

1−p2(1−p)2

(
. . .

)
is a GP with r = p2(1−p)2.
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So using p=18/37 for a red-black bet in roulette, we get P (capital reaches zero) = 0.567, or
conversely P (capital reaches $20 ) = 0.433.

We can show that with CAUTIOUS play, the corresponding probability of reaching the $20
target by betting $1 each time is only 0.321 (the Gambler’s Ruin problem).

Gambling Systems

Gambling systems are sets of betting strategies which are often purported to offer you some
edge against the house and increase your chances of winning. The truth of the matter is that
you cannot alter the house margin in roulette, two-up or craps by using a system.47 In
fact far from helping a gambler to better profits, gambling systems have the built-in danger
that they can lead people to bet money they can’t afford to lose.

Let’s now look at four such systems.

The Martingale or Double-Up System

Probably the oldest, easily the most popular, and definitely the most dangerous of all gambling
systems.

Darwin Ortiz, On Casino Gambling, page 173

This system is considered by casino staff as the mark of a true amateur.

The method: Start with a 1-unit bet — say $1.

Double the size of the bet every time you lose.

Whenever you win, your next bet is $1 (or another option is to stop
betting as soon as you score a win).

This applies to all even-money bets such as on red/black in roulette, on
heads/tails in two-up and line bets in craps.

The problem with this is that you end up chasing minute winnings while risking a huge loss.
Consider a table on the Las Vegas strip with a minimum bet of $2 and a maximum of $500.
If you stop as soon as you win, the possible outcomes are:

win $2

lose $2, win $4, (net gain $2)

lose $2, lose $4, win $8 (net gain $2)

lose $2, lose $4, lose $8, win $16 (net gain $2)

lose $2, . . . lose $16, win $32 (net gain $2)

lose $2, . . . lose $32, win $64 (net gain $2)

lose $2, . . . lose $64, win $128 (net gain $2)

lose $2, . . . lose $128, win $256 (net gain $2)

lose $2, . . . lose $128, lose $256: can’t bet $512 as this exceeds the table limit
(net loss $510)

That is, with 8 consecutive losses, you have lost $510, chasing a $2 profit! With this system,
when you win you win small; when you lose, it’s big-time!

47I’m excluding Blackjack here; a ‘basic’ Blackjack strategy can improve your return and a card-counting
strategy can give you an edge over the house — but the latter is a very demanding, complicated strategy
based on the run of cards already in play. See for example Blackjack for Profit by Jady Davis or, the vastly
more complicated, Professional Blackjack by Stanford Wong. The system strategies I’m referring to in this
section are not specific to any game.
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The Labouchere or Cancellation System

Popularized by Henry Labouchere (1831 – 1912), an English world traveller, member of Par-
liament and gambler. Invented by French mathematician the Marquis de Condorcet (1743 –
1794).

The method: Write down a sequence of four numbers — e.g. 1, 2, 3, 4.

Bet the sum of the first and last numbers in the row — 5 the first time.

Each time you lose a bet, you append the amount of that bet to the end
of the sequence; each time you win, cross out the first and last numbers
in the sequence. Continue betting the sum of the first and last numbers
in the sequence.

When you succeed in crossing out all the numbers, you have a net profit
equalling the total of your original sequence of numbers.

To illustrate this system, let’s consider some possible outcomes, starting with the sequence 1,
2, 3, 4.

Outcome Number Sequence Bet Result Accummulated
Gain/Loss

1234 5 Win 5 + 5
1

{
23 5 Win 5 + 10

1234 5 Lose 5 − 5

12345 6 Lose 6 − 11

2

{
123456 7 Win 7 − 4

2345 7 Win 7 + 3

34 7 Win 7 + 10

In both cases, we do in fact end up winning $10.

The problem with the system, however, is that, like the Martingale system, it can end up
winning a small amount of money for the player very often, but occasionally losing a huge
amount which outweighs the winnings.

A computer simulation of 160,000 spins of the roulette wheel found the following:

Player wins the target of $30 twenty out of twenty-one times played.

Player loses an average of $1012 once in twenty-one times played.

This gives a net loss of $412.

The system works 95.2% of the time, BUT STILL LOSES MONEY.
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The Reverse Martingale System

This is a mirror image of the Martingale System.

The method: Start with a 1-unit bet — say $1.

Double the size of the bet every time you WIN.

Whenever you lose, your next bet is $1.

The comparison between the Martingale system and the Reverse Martingale can be best
expressed as follows:

The Martingale system is an example of a multiplicative system — where the wagers rise
rapidly with increasing losses; it offers a high probability of a small win and a small probability
of a large loss.

The Reverse Martingale system has the wagers rising rapidly with increasing winnings; it
offers a high probability of a small loss and a small probability of a large win.

The Reverse Labouchere System

This proceeds as for the Labouchere, except that every win results in appending that bet to
the sequence and every loss results in cancelling the first and last numbers in the sequence.
Like the Reverse Martingale, it offers a high probability of a small loss and a small probability
of a large win. Two possible outcomes follow.

Outcome Number Sequence Bet Result Accummulated

Gain/Loss

1234 5 −5 −5
1

{
23 5 −5 −10

1234 5 −5 −5

23 5 +5 0
2

{
235 7 −7 −7

3 3 −3 −10

Final Notes

Systems thrive despite their drawbacks for one reason: because people who try them find they
are winning most of the time (e.g. 95% of the time!), they declare the system works. Either
they haven’t yet hit the wall with a bad session or they have only assessed their performance
in terms of percentage wins instead of overall gain/loss.

The Reverse Labouchere is the system reputedly used by Norman Leigh’s syndicate — Thir-
teen against the bank — with great success in the European casinos. Without having read the
book, I expect the syndicate must have been consistent ‘small’ losers before their big wins.
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2.21 Kangaroo Management

Adapted from Stimulating Mathematical Interest with Dynamical Systems by M.B. Durkin,
The Maths Teacher 89, 242–24 (1996).

Aim

The main purpose of this lab is to help you appreciate the way in which discrete non-linear
dynamics can be applied to problems in the ‘real world’.

Introduction

You are hired by the State Forestry Department, with your main task to assist in the man-
agement of the kangaroo population in a remote forest called Hamt Reserve. The possibility
of culling of kangaroos in the reserve is under consideration.

The kangaroo population in the reserve is given by the Discrete Logistic Model, a difference
equation,

Pn+1 = 1.8Pn − 0.8(Pn)2, (1)

where Pn is the number of kangaroos in the reserve at the end of year n in tens of thousands,
i.e. one unit of P equals 10, 000 kangaroos. At the end of 2005, there were 8000 kangaroos in
the reserve (P0 =0.8).

The first task

As a training exercise, management asks you to model and report on a scenario containing
several events that would affect the kangaroo population.

Write a short report on the outcome of the following scenario. The report should include a
mathematical analysis with calculations, tables and/or graphs to substantiate your conclusions.

The scenario

• If there were no natural disasters in 2006, what would the kangaroo population be at
the end of 2006? Do this and the following calculations manually (without a program)
using Eq. (1).48

• Unfortunately, at the end of 2006, there was a short but fatal outbreak of the dreaded
rootoxis which kills around 4000 kangaroos. What would the population of kangaroos
be at the end of 2007? When would the kangaroo population recover to more than 9000
kangaroos if there were no more natural disasters?

• Following the rootoxis epidemic, on Christmas Day 2008 there was a forest fire in a
nearby forest which resulted in 2000 kangaroos from that forest migrating into Hamt
Reserve. What would the population of kangaroos in Hamt Reserve be at the end of
2009?

• After these two events, there were no more natural disasters. What would the kangaroo
population be after a long time? The number here is the limiting capacity or maximum
sustainable population of the reserve.

48Calculator hint : Store the initial population in memory P and repeatedly execute the calculation
1.8P− 0.8P2 →P by pressing enter the required number of times. Make sure you understand why this
works.
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Effect of culling

Impressed by your previous report, management has now put you in charge of undertaking
a feasibility study into whether culling of kangaroos is necessary/desirable in Hamt Reserve.
Your analysis will be a crucial factor in the decision-making process.

Write a report addressing the following questions. Again, a mathematical analysis including
calculations, tables and/or graphs is required to substantiate your conclusions. Add an execu-
tive summary for your boss, summarising your findings and making suitable recommendations.

1. What is the modified form of Eq. (1) if H kangaroo units are culled each year?

We assume here, for simplicity, that all the kangaroos are killed close to the end of the
year, otherwise the killing of the female kangaroos in particular would affect the number
of births and deaths, and consequently the growth rate.

2. What would happen if 720 kangaroos were culled each year (H=0.072), a value used in
a nearby reserve? Assume the initial population is that given above for the year 2005,
P0 =0.8. What is the long-term population?

What if the initial population were P0 =0.3? P0 =0.095?49

3. What would happen if 2400 kangaroos were culled each year (H=0.24)? Assume again
that P0 =0.8. What is the long-term population?

What if the initial population were P0 =1? P0 =1.5?

4. What about H=0.2? It turns out50 that this is the largest number of kangaroos which
could be culled annually without the kangaroos dying out in Hamt Reserve. Note that
the initial population must be larger than 0.5. What is the long-term population in this
case?

LOGISTIC/LGSTCE

Use: Run the program. Select KANGAROOS. Input the appropriate parameters at the
prompts (0< u(0)< 1 for the bacteria). The program plots population versus cycle number
(time). Use the arrow keys to trace the graph or press enter to return to the main menu.

When the program has finished, choose QUIT from the main menu. Here you can either keep
the equations for manual plotting (e.g. with a different window ; Option 1) or you can have
the equations and other settings deleted (Option 2). If you choose Option 1, when you have
finished rerun the program, QUIT and select Option 2 to tidy up.

49The LOGISTIC/LGSTCE program (available at www.YYY ) might help here.
50Experiment and see
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Instructors’ Guide

The calculation of the population Pn can be done manually on a calculator51 or by using the
built-in sequence grapher, depending on the sophistication of your students and the type of
calculator they have. To do the time plots, it is desirable to use the sequence grapher.

The LOGISTIC/LGSTCE program (available at www.YYY ) sets up the sequence grapher for
the problem here.

Solutions

We have the logistic difference equation for the kangaroo population52

Pn+1 = 1.8Pn − 0.8(Pn)2,

with P0 =0.8 corresponding to the (end of) year 2005.

Using this and incorporating the rootoxis outbreak in 2006 by subtracting 0.4 (4000 kangaroos)
from the 2006 population, we have the following number of kangaroos in subsequent years.

Year n Pn Number of kangaroos

2005 0 0.8 8000

2006 1 0.928−0.4=0.528 5280

2007 2 0.7274 7274

2008 3 0.8860 8860

2009 4 0.9668 9668

The number of kangaroos has recovered to 9668 by the end of the year 2009.

If we include the migration of 2000 kangaroos at the end of 2008, we have the following
numbers.

Year n Pn Number of kangaroos

2008 3 0.8860+0.2=1.0860 10, 860

2009 4 1.0113 10, 113

2010 5 1.0022 10, 022

2011 6 1.0004 10, 004

2012 7 1.0001 10, 001

2013 8 1.0000 10, 000

The population in the reserve at the end of 2009 would be 10, 113. In subsequent years, the
population declines to the carrying capacity or maximum sustainable population of 10, 000,
the population after a long time.

51Faster if you store the initial population in memory P and repeatedly execute the calculation
1.8P− 0.8P2 →P by pressing enter the required number of times.

52The sequence grapher on the TI-84Plus writes Pn in terms of Pn−1, so it is necessary to rewrite the
difference equation as Pn = 1.8Pn−1 − 0.8(Pn−1)2 if you use this method. The CE does both.
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Effect of culling

1. If H kangaroo units are killed each year, this number is subtracted from the value for
Pn+1 that we calculated above, giving the difference equation

Pn+1 = 1.8Pn − 0.8(Pn)2 −H.

2. With H=0.072 and an initial population of 0.8 units, the long-term population will be
0.9 units or 9000 kangaroos.

We find that53 if the initial population is greater than 0.1 kangaroo units, the population
will tend toward a stable value of 0.9. If the initial population is less than 0.1 kangaroo
units, the population will tend to 0.

3. With H=0.24, the population will die out, no matter what the initial population.

4. With H = 0.2, the long-term population will be 0.5 units or 5000 kangaroos, the max-
imum sustainable population with this level of hunting, provided that the initial pop-
ulation is greater than 5000. If the initial population is less than 5000, the population
will die out.

If this level of hunting were chosen, any natural disaster that killed more than a few
kangaroos after the population had levelled off at 5000 would bring the population to
below 5000, and it would therefore die out; there is no margin for error. In practice, a
smaller value than 2000 would be chosen for the number of kangaroos killed annually,
thereby leaving a margin to allow for natural disasters.

53Theory helps a lot here, but you can reach the same conclusions by experimenting with numbers on your
calculator. Using the LOGISTIC/LGSTCE program should help with this.
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2.22 Epidemic

The population on an idyllic Pacific island is stable at N=200. The daily birth rate per capita
b=0.00001 is balanced by an equal death rate. The island’s post office employs five people54

who are all clustered round when a Christmas hamper is opened for customs inspection.
Unfortunately, the white powder in the hamper is not artificial snow. Within a short time, all
five workers are infected with a mysterious bacterium, and the resulting severe disease starts
to spread to others.

You are the only person on the island with some knowledge of epidemiology, gained from
Maths in Year 12. The island’s Chief Medical Officer needs to know how many people might
need to be treated for the virus and whether to call for emergency hospital facilities. The
island’s hospital can cope with at most 50 patients at any one time. The CMO asks for your
help in predicting the course of the epidemic.

Based on the post-office experience, you assume that the incubation period is less than 1 day.
If the mean infectious period is 1/α, where α has to be guessed/estimated, a possible set of
difference equations governing the spread of such a disease is

Sn+1 = Sn − βSnIn + bN − bSn (1)

In+1 = In + βSnIn − bIn − αIn (2)

Rn+1 = Rn − bRn + αIn, (3)

where Sn, In and Rn are, respectively, the number of susceptible persons, number of infected
persons and number of recovered persons after n time intervals and β is a constant to be
determined. The time interval is 1 day.

Question 1 The initial model

(a) Show that S+I+R is a constant.
Hint Use mathematical induction: show that Sn+1+In+1+Rn+1 = Sn+In+Rn.

If this is true, we only need to calculate Sn and In; Rn is given by Rn=N−Sn−In.

(b) Assuming that the terms involving births and deaths can be neglected because of the
relatively short duration of the epidemic, write down the two simplified equations for S
and I (the model).

(c) For your initial modelling, you need to estimate α and β. Based on other similar diseases,
you take the mean infectious period 1/α to be 5 days, so that α= 0.2, and β= 0.0025.
These values will have to be reviewed after a few days, once you have some data on the
course of the disease on the island.

• How will the disease run its course according to your model? Plot Sn and In against
n to find out, with S0 =195 and I0 =5. Details on how to do this are given below.

• How many days will it take before the disease dies out (I <1)?

• When will the peak of infection occur?

• How many people avoid catching the disease?

54The island’s economy is based around issuing stamps, banking and processing asylum seekers.
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– From the simplified equation for In+1 above, the maximum value of I occurs (In+1 =
In) when S = α/β. Compare this value with the value you obtained from your
graph. Why might they not be exactly the same?

Question 2 The improved model

After a week, you have some actual data on your epidemic. You find that the mean infectious
period is actually 4 days, not 5, and that after a week there are 30 infected persons, that is
I8 =30.

(a) Experiment with different values of β to find its true value for the island epidemic —
for each β value, use either a graph and trace or table (easier) to find I8 until you
match the actual value (or as close to it as possible).

(b) When you have found the best β value, sketch the graphs of Sn and In against n and
use them to predict, hopefully more accurately than from the initial model, how many
days it will take before the disease dies out (I <1) and when the peak of infection will
occur. Will the hospital be able to cope? How many people will avoid catching the
disease?

Sequence Graphing

Population Modelling 2: Logistic and Epidemic Models55 has an introduction to discrete mod-
els, in particular the Discrete Logistic Model.

The TI-84/CE calculator has three built-in sequences u,
v and w (on the 7 , 8 and 9 keys). To access

them, press mode ; select SEQ (fifth line on the CE,

fourth on the 84) with the cursor and press enter . Se-
lect 1 decimal place as well (third/second line).

Now press y= and you will see where to define the sequence functions.

TI-84Plus: The sequences u(n) and v(n) are defined in terms of u(n−1), v(n−1), etc. The
simplified equations for S and I written in this form are

Sn = Sn−1 − βSn−1In−1 = Sn−1
(
1− βIn−1

)
.

In = In−1 + βSn−1In−1 − αIn−1 = In−1
(
1 + βSn−1 − α

)
.

With Sn→u(n), In→v(n), α→A and β→B, the equations in calculator variables are

u(n) = u(n−1)
(
1−Bv(n−1)

)
.

v(n) = v(n−1)
(
1 +Bu(n−1)− A

)
.

55in Volume 2 of Mathematics on a TI-84/CE, available at www.XXX

174



2.22 Epidemic 2 LABS REQUIRING A TI-84/CE

Enter these equations into the calculator as shown below. Set nMin=0, that is we start with
S0 and I0. Then S1 is the S value after 1 day, etc. The initial conditions are contained in
u(nMin) and v(nMin); note the curly brackets here.

In SEQ mode, the X,T, θ, n key now gives n,

the independent variable for the sequence func-
tions. You can’t use the letter N.

TI-84CE: The sequences can be input in the original simplified form (note the top line in
the figure). Set nMin=0, that is we start with S0 and I0. Then S1 is the S value after 1 day,
etc. The initial conditions are contained in u(0) and v(0).

u(n+1) = u(n)
(
1−Bv(n)

)
.

v(n+1) = v(n)
(
1 +Bu(n)− A

)
.

Time plots

Press 2nd format and select Time as shown below.56 The X axis is n (time in days), the

Y axis S and I.

The final step before plotting is to choose a window . As well as the usual window settings
for the X and Y axes, we have to specify nMax, the maximum n value we want.

Start by plotting 30 points, corresponding to running the system through 30 days. Note that
we must also set Xmax to 30.

As N = 200 is the maximum value for both S and I, setting Ymax to 200 seems like a good
starting point. Yscl = 50.

56uv would give a phase plot
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Store the values of α and β in memories A and B respectively. Press graph to plot graphs of
S and I versus n.

Adjust the window , if necessary, until the graphs more or less fill the screen.

Use trace to explore the values. You can go directly to the point with a particular n value
by just typing in the n value and pressing enter .

Adjust nMax and Xmax (both corresponding to Tmax) in window so that the disease runs
its full course (I <1).

You can also see the values of S and I in a table by pressing table
(

2nd graph
)
.

If the n values in the table don’t start at 1 and/or don’t increment in steps of 1, fix this in
tblset

(
2nd window

)
.
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Instructors’ Guide

The calculations for this lab can be done by hand (using an ordinary calculator), but the
availability of sequence plotting makes life a lot easier and more visual.

1. (a) We are given S0 = 195, I0 = 5 and, as the recovery period is of the order of days,
R0 =0. Therefore S0+I0+R0 =N=200.

Assume that Sn+In+Rn=N . Adding the three given equations gives

Sn+1 + In+1 +Rn+1 = Sn + In +Rn + b
(
N − (Sn + In +Rn)

)
= N by our assumption.

Therefore, by induction, S+I+R=N and is constant.

(b) The two simplified equations are obtained by omitting any terms containing b.

Sn+1 = Sn − βSnIn

In+1 = In + βSnIn − αIn = (1−α)In + βSnIn

To write these for the TI-84, replace n by n− 1.

(c) α=0.2, β=0.0025. A suitable window is (Yscl = 50)

with the resulting graph of I and S vs time in days:

For these values of α and β (using trace on the calculator graph),

• the disease runs for 44 days (I44<1)

• the maximum I, the peak of infection, of 52 occurs at n=14, i.e. after 14 days.

• the value of S at Imax is 76.9, close to the theoretical value α/β=80.
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2. A mean infectious period 1/α= 4 gives α= 0.25. We are given I8 = 30. The value of
β=0.00281 gives I8 =30.

For these values of α and β (again using trace ):

• the disease runs for 37 days (I37<1);

• the maximum I of 44 occurs at n=13, i.e. after 13 days; the corresponding value of
S, S=81.5, is again close to the theoretical value α/β=89 (after 12 days, S=93);

• the hospital therefore copes;

• 25 persons (S37) avoid catching the disease.
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3 Labs for which a TI-84/CE is useful

3.1 Siting a School — An Exercise in Mathematical Thinking

Aims

• To promote the appreciation and use of mathematical thinking and its applications.

• To illustrate themes in introductory Linear Algebra

– the algebra-geometry link
– how maths responds to practical problems
– how the methods and problems of maths are extended.

• To practise a little using vectors.

• To learn about a famous problem.

Procedure

This lab will lead you through a series of questions and problems. At each stage you should
puzzle over the material and discuss it as a group. Then all help the scribe write up your
proposals, arguments and solutions before you move on to the next stage.'

&

$

%

The general problem

Three villages A, B and C each have 30
children. They decide to build a school at
P for all the children to attend.

Where should the school be placed so that
the shortest total length of road is built?

Mathematically: given points A, B, C find
the point P so that the total distance s =
sA + sB + sC is a minimum.

Question 1 Preliminary thoughts

Discuss how you might go about solving or exploring the problem, without going into the
details. Strategies?

What things might the point P depend on? e.g. size — if we magnify up the triangle ABC,
does P move?

Would a rule for finding P depend on the shape of the triangle ABC?

What makes this problem hard? easy?

Stop! Write up your thoughts before going on.'

&

$

%

This problem has a long history. P is sometimes called the Fermat point because
we know that Fermat (1601 –1 665) posed the problem like this:

Given a triangle ABC, find the point P so that s, the sum of the distances
from P to the corners, is a minimum,

and Torricelli (1608 – 1647) solved it (as well as inventing the barometer).

I think it is a hard problem because the point can move around in two dimensions
— in modern terms, we have to find two coordinates.
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Question 2 Finding a conjecture

Mathematicians often explore a difficult problem in different ways to come up with a guess
at the answer, or conjecture, which they then try to prove correct.

Idea 1 Look at some simple special cases

If we make ABC an isosceles triangle with AC =BC, symmetry suggests (correctly)
that P is on the line joining C to the mid-point of AB. Finding P is now a straight-
forward one-variable Calculus problem. Here are some examples for you to observe.

Idea 2 Use Archimedes’ approach

In his book The Method, Archimedes described how he used mechanical problems and
devices to discover mathematical results (the beginning of the analogue-computer idea).
For our problem we can use the Varignon Frame, invented by Pierre Varignon (1654 –
1722), which works like this:

On a smooth horizontal surface, holes are made at the triangle corners A, B and C.
A string goes through each hole. On top of the surface, the three strings are knotted
together at K. Below the surface, the strings hang down with equal weights tied at the
end of each one.

If the arrangement is disturbed (tapped gently), the device will always come back to an
equilibrium; the position of K then gives the Fermat point P .

We come to the reason later, but for now, look at the models and observe what happens.

Action: Use your observations from Ideas 1 and 2 to make a guess or conjecture about
the General Problem (as on page 179) where no special triangle shape is assumed. What
characterises the point P?

Stop! Write up your ideas before going on.
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I hope you found that the angles θA, θB and θC made at P were always equal to 120◦.'

&

$

%

Perhaps you wondered what happens if an angle in the triangle becomes bigger than
120◦. A very clever or lucky guess would have given this (correct) conjecture.

For any triangle:

• if no angle in the triangle is > 120◦, the required point P is the one
inside the triangle making θA = θB = θC = 120◦;

• if an angle is>120◦, point P is located at the corresponding corner.

Remarkably this result does not depend on the size or shape of the triangle.

Our next job is to PROVE that the conjecture is correct. We will concentrate on the inter-
esting case where no angle is greater than or equal to 120◦.

We could look for a proof of the mathematical problem as stated on page 179. However, it
is interesting to consider the Varignon Frame some more: why does it work and why does it
give 120◦ angles?

Question 3

Imagine a smooth horizontal surface with holes drilled in it at the points A, B and C of the
triangle you are interested in: an ideal Varignon Frame. Through each hole there are strings
of lengths LA, LB and LC , tied together in a common point K.

On the end of each string, under the surface, is tied a weight of say 30 grams (as there are 30
children in each of the original villages).

Use the following argument to prove that the point K moves to the required minimizing point
P . Given

• the potential energy of each weight is −30× g× distance below the surface, where g is
the gravitational constant (note the minus);

• this mechanical system comes to a resting or equilibrium state when the total potential
energy E is a MINIMUM.

Method: Write down a formula for E in terms of the string lengths LA, LB and LC , and the
lengths sA, sB and sC on the surface. Remember LA, LB and LC are fixed, but sA, sB and sC
can vary. Relate s=sA+sB+sC to the minimizing of E, and so explain why the mechanical
method works.

Stop! Work as a group! Write up your ideas.
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The Varignon Frame DOES give the correct angles — now to a general proof.

Question 4

Think of the knot where the strings meet at K as a little particle. The tension due to the
equal weights pulls on the particle with forces of equal magnitude T along each string. When
the system is in equilibrium there is no nett force acting on the particle.

That means the TOTAL force acting in any direction is zero.

As in the diagram below, define unit vectors â, b̂, ĉ pointing from K to A, B and C respec-
tively.

Write the total force vector acting at K in terms of T and those unit vectors.

Now get an equation involving the unit vectors by saying that total force = 0.

That equation tells us about the angles. There are two options.

Algebraic: Take the dot product of the equation with â, then with b̂, then with ĉ. You
should now have three equations involving cos(θA), cos(θB) and cos(θC). Use them to deduce
each angle must be 120◦,
or

Geometric: Draw a diagram to show how the vectors add to 0. What sort of a triangle do
you get? Does that give information about angles? So what must θA, θB and θC be?

Careful write-up now done?

Question 5

Write a few comments about this lab and what things you think it might have illustrated for
you or taught you.

What mathematical questions remain? How does the work extend?

If you have breezed through the lab, you could consider one of these extensions.

1. How would you change the problem if the 90 children were distributed as 10, 30 and 50
over the three villages. Minimize something else? The total distances travelled by all
the children? But how to do it?

2. Suppose there were four villages forming a rectangle.

How to place the school and the roads?
Could your result for the triangle case help?

This lab is a tiny introduction to an enormous and important topic in Applied Mathematics
dealing with optimised-network planning.
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Instructors’ Guide

The Varignon frame, made from a cardboard box as shown in the photograph, was taken to
the lab for students to experiment with while pondering Question 2.

Solutions

2. Although not required for this lab (it could be), it is useful to show that, for an isosceles
triangle at least, s is minimised when the angles between the strings are 120◦.

Consider the isosceles triangle shown below.

The total length s is given by

s(x) = h− x+ 2
√
a2+x2, using symmetry and Pythagoras,

with 06x6h. This is a continuous function on a closed domain, so the global minimum
of s must exist and lies either at a critical point of s or at an endpoint of the domain.

ds

dx
= −1 +

2x√
a2+x2

,

which is defined for all x. Any critical points must therefore occur where the derivative
is zero.

ds

dx
= 0 ⇒ 2x√

a2+x2
= 1

⇒ 2x =
√
a2+x2

⇒ 4x2 = a2 + x2

⇒ 3x2 = a2

⇒ xcr =
a√
3

x > 0.

There is only one critical point, xcr=a/
√

3.

Now s′′=2a2/(a2+x2)2 is always positive, so the function s is everywhere concave up. As
s is continuous and has only one critical point: that point must be a global minimum.

tan(θ/2) = a/xcr = a/(a/
√

3) =
√

3. Therefore, θ/2 = 60◦, so that θ = 120◦.

Therefore, at this global minimum, the angles between the three lines at P are each
120◦.
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3. The potential energy of the system is given by

E = −30g(LA−sA)− 30g(LB−sB)− 30g(LC−sC)

= −30g(LA+LB+LC) + 30g(sA+sB+sC)

= −30g(LA+LB+LC) + 30gs.

Therefore E is a minimum (and the system comes to its equilibrium state) when s is a
minimum, as we require in our problem.

4. The total force acting at K is zero, so that

T â + T b̂ + T ĉ = 0,

giving, as T 6= 0,
â + b̂ + ĉ = 0.

Taking the dot product of this equation with â, b̂ and ĉ respectively, and using the
results â · b̂ = cos(θC), â · ĉ = cos(θB) and ĉ · b̂ = cos(θA) gives us the 3 equations

1 + cos(θC) + cos(θB) = 0

cos(θC) + 1 + cos(θA) = 0

cos(θB) + cos(θA) + 1 = 0.

Solving these equations gives

cos(θA) = cos(θB) = cos(θC) = −1

2
,

that is, all angles are 120◦.

Geometrically, because the force vectors add to zero, the vector diagram gives a triangle.
The triangle is an equilateral triangle because all sides are the same length, T . The
internal angles of the triangle are then each 60◦, with the angles θ, the supplements of
the internal angles, each 120◦.
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3.2 Messing about (with Vectors) in Boats

Aims

• To practise using vectors.

• To see how vectors are applied physically.

• To learn how measurements lead to “inverse problems”.

• To see the link between “the number of unknowns” and the “pieces of information
available”.

Procedure
In this lab you will be led through a series of exercises and questions. At each stage
you should record your work on the exercises and your answers to the questions. If you
feel uncertain, check the answer with a lab instructor before you go on — but do have a
good ponder over things before you rush to the answers. Ask for help if you cannot get
answers.

This lab is about boats and their speed and the speed of water; the ideas are exactly the
same when applied to planes, air speeds and wind speeds, but I thought you might visualise
the boats better.

Question 1 The situation

A river is 100 m wide and the boat begins at
the origin using these axes . . .
Assume the river has the same speed w
everywhere, so the water velocity is w = wi.

Relative to the water, the boat has velocity b and speed b= ||b||.
Relative to the ground the boat has velocity v, speed v= ||v||.
Let’s begin by checking the basics. The boat starts from the origin 0.

(a) If b = 40 m/min, the river is still (w = 0) and the boat goes directly across the river,
what is (i) the vector b; (ii) the vector v; (iii) the time taken to cross the river?
Write the vectors in terms of i and j.

(b) If b=0 and w=30 m/min, what is v and where is the boat after 2 minutes?
Don’t forget to write down the explanation for your answer.

Now we go on to the general case where b and w are both non-zero. The velocity v relative
to the ground depends on both b and w.

If you find trouble with this, try a little experiment: let the table top be the “ground”
and use a piece of paper as the “river”; then draw a line on the paper as the boat moves
with velocity b and someone can move the paper to simulate the river velocity w. Try
w= 0, then non-zero.
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Question 2

(a) What is the general formula for v in terms of b and w?

(b) As an example, suppose the boat is headed across the river with b= 40j and the river
flows with speed 30 m/min.

What are the velocity v and speed v?

How long does the boat take to cross the river?

Where does the boat reach the other side?

How far has it travelled?'

&

$

%

The above problems are typical “direct problems” and they are the ones we most com-
monly solve. You were given velocities and asked what happened to the boat. Inverse
problems start with what happened and then ask what was going on to get there. This
is actually very common in science and engineering.

An example
Direct problem: Given the thermal expansion properties of mercury and the temperature,
how high does a column of mercury rise up a tube.
Inverse problem: Given the height of mercury in this tube (thermometer), what is the
temperature? (Of course we solve that one by calibration.)

Inverse problems can be very tricky — do we have enough information to figure out
what is going on? how accurate must our information be? and so on. We now explore
those things using our river and boat example.

Question 3 An inverse problem

(a) Case 1
If b=20 m/min, w=10 m/min and the boat is steered so that it actually travels straight
across the river (so that v = vj), what is the angle α between b and v?
Draw a vector diagram.

(b) Case 2
The boat leaves the origin and reaches the other bank at x = 75 m, y = 100 m after
5/3 min.

How far did the boat travel?

What was the speed v?

Find v in terms of i and j.

Hint : Write v = v cos(θ)i+ v sin(θ)j and look at the boat path to get cos(θ) and sin(θ).
Be careful to label the correct angle as θ.

(c) Let’s continue with Case 2. You have found v, and I now tell you that the river speed
is w=34 m/min.

What is the boat velocity b?

What is the boat speed b?
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Draw a picture to show what is happening, but you will probably find it easier to
calculate b by letting b= b1i+ b2j and use the algebraic equation linking b, w and
v that you found in 2(a).

Question 4 Measuring boat speeds

Suppose we want to measure our boat’s speed b, perhaps to check its speedometer. In general
we will not know the water speed w, so we shall need to eliminate it from our final
equations.

(a) Suppose we head directly downstream 200 m
from A to B with b1 = bi and it takes 1 min.

What is v1?

Now we make the return journey in 2 min.
(The boat water speed is still b of course.)

What are b2 and v2?

Write down two vector equations, eliminate w and find b. How many unknowns were
there? How many pieces of information were measured?

(b) In my next try at measuring a boat’s speed, I time the boat as it goes directly across
the river and find it takes t1 =5/6 min. Remember w=wi, but I do not know w, i.e. I
know the direction of the river’s flow but not its speed.

What is v1? (Remember: the boat goes directly across.)

Can you find the boat speed b? If not, why not?

Explain using: (i) equations
(
it is useful to put b= b1i+ b2j, so b=

√
b21+b22

)
; and

(ii) diagrams.

Would it help if I timed the return journey straight across the river?

You should have found that you can find the boat’s speed in (a) but not in (b). Make sure
you have explained clearly why.

Question 5

We have seen that steering the boat directly down the river and back enables us to measure its
speed, but going directly across does not work. Now let’s move to the next level of generality:
suppose the boat goes diagonally across the river and back.

Do you think we will now be able to deduce the value of the speed b? Why?

Hopefully you said yes! We can check this out nicely using a geometric approach.

First, I want you to follow through the following direct-problem working, then you will be
asked to modify it to solve the inverse problem.

Suppose we go across the river from O to C and back and measure times t1 and t2. Then v1

will be in the direction OC and have magnitude OC/t1; v2 will be in the opposite direction,
CO and have magnitude OC/t2. We have two vector diagrams for velocities.
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Remember b1 and b2 both have length b, the speed we want, and the direction of w is known
to be i.

Now I want you to join v1 and v2 together at the point D and form a triangle EFG as below,
i.e. join together the above two triangles using their common side w.

Now join the midpoint M of EG to F .

(a) Actually, instead of doing that I could
have said, find the midpoint M of EG,
draw the line through M and perpendic-
ular to EG, and you will find it goes to
F . Why is that so?

Now we are ready to tell someone how to deduce the boat speed b, after they have timed
diagonal journeys across and back.

(b) Write out instructions for finding the boat speed b. Use your own words and remember
you are telling someone exactly what they must do — think of it as writing a manual.
Show how their diagram should look at each stage.

One possible outline would be:

Calculate the two vectors v1 and v2 and join them together at D, so that EDG is a

straight line with
→
DE=v2 and

→
DG=v1.

Draw a horizontal line (i.e. in the i direction) through . . . . . . . . . . . . . . . .

Next, find M , the . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Through M , draw a line . . . . . . . . . . . . . . . . . . . . . . . . . .

Denote by F the point given by . . . . . . . . . . . . . . . . . . . . .

Now you can measure the length of . . . . . . . . . . . . to get the boat speed b.
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Question 6 The grand finale!

If I am in open water, I will not even know the direction of w. (In a plane, we will be flying
from O to C and back without knowing details of the cross-wind.)

Before you read on: do you think the scheme in 5(b), where we go from a point O to a point
C and back, still works? Think about it. Discuss it. Write down your comments.

(a) Very generally: where is the difficulty? How many unknowns are there and how many
pieces of information are given by the measurements?

Let’s see if we can identify the difficulty very clearly using our geometric approach.

We can still measure v1 and v2, form the line EDG and draw in the perpendicular line
through midpoint M .

We still know that there is a point F somewhere on that last line
so that FE = FG= required speed b.

(b) What does the
−−→
DF represent?

So why does FE=FG=b give the speed still?
But do we know the length or direction of DF?
So can we actually draw in DF and then find b?
What do you suggest we need to do? (Be polite!)

So how DOES the general case work?

So that you are not driven crazy wondering about it, this is how the general case works. This
solution was given by Von Mises about eighty years ago as a way of measuring aircraft speed
when the wind speed and direction are unknown. I’ll write it out for a boat as before: water
velocity w, as well as boat speed b, unknown.

Travel a triangular course ABC measuring the three times taken. This will give v1 in direction
AB, magnitude AB/t1; v2 in direction BC, magnitude BC/t2; v3 in direction CA, magnitude
CA/t3.

As before we join the v vectors together at a point D (see below). Now we know that there is
a vector diagram using v = b+w for each case and, as before, we could put those all together
so that F is the end of the water flow vector w (see below), but to actually do that we need
to know w! And we do not know it.

The course The measured velocities The v = b + w vector diagrams
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If only we knew F , we could then measure FH, FJ or FK, and they would all give us the
wanted boat speed b.

But wait, FH, FJ and FK all have the same length b, so points H, J and K lie on a circle
centre F . Got it!

Draw the measured vectors
−−→
DH = v1,

−→
DJ = v2

and
−−→
DK=v3.

Now draw a circle through the points H, J and
K: its radius will be the required boat speed b
.

Just a nagging doubt: is there only one circle you can
draw through three given points A, B and C? i.e. is
our answer unique?
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Solutions

1. (a) (i) b = 40j; (ii) v = 40j; (iii) to cross takes 100/40 = 2.5 minutes.

(b) The boat drifts down the river with speed 30 m/min, so that after 2 minutes it is
at x=60, y=0.

2. (a) v = b+w.

(b) Left-hand figure below. Velocity v = 30i+ 40j; speed = ||v|| = 50 m/min.
The boat reaches the other side after 2.5 minutes at x=2.5×30=75m.
It has travelled 125m.

3. (a) Right-hand figure above. Because we have a right-angled triangle, the sine of the
angle between b and v is 10/20 = 0.5. Therefore the angle α is π/6 radians or 30◦.

(b) Left-hand figure below. The boat travels 125m. The speed ||v|| is 125/(5/3) = 75
m/min. Since cos(θ)=3/5, sin(θ)=4/5 and v=75, we get v = 45i+ 60j.

(c) Right-hand figure above. We now have w = 34i, and since v = b+w, we have b
= v−w = 11i+ 60j. Boat speed b = ||b|| =

√
112 + 602 = 61 m/min.
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4. (a) As the speed in travelling A to B is 200 m/min, v1 = 200i, with b1 = bi.

As the speed in travelling B to A is 200/2 = 100 m/min, v2 = −100i, with
b1 = −bi.
The two equations are v1 = b1 + w or 200i = bi + wi

and v2 = b2 + w or −100i = −bi + wi
.

Solving these gives b = 150 m/min.

There are two unknowns, b and w. Two pieces of information were measured, the
times of the journeys.

(b) As the boat goes directly across, the direction of v1 is j.

The speed is 100/(5/6), so ||v1|| = 120 m/min. Therefore v1 = 120j.

(i) To find b we need b, as b = ||b||.
Now our basic vector equation gives v = b+w, so that b = v1− w.
If we let b = b1i+ b2j, this equation gives us

b1i + b2j = 120j − wi.

So we know b2 =120. But we do not know b1, as b1 =w, and we are not given
the water speed w.
Because b = ||b|| =

√
b21 + b22, this means we cannot find b.

(ii) We know what the vector diagram looks like but we do not know how long to
make w, so we cannot draw in b and calculate its length.

No, we gain no new information by timing the return journey.

5. (a) Because EF and FG both have length b, we have an isosceles triangle. Therefore,
because FM bisects EG, it is perpendicular to it.

(b) Calculate the two vectors v1 and v2, and join them together at D, so that EDG

is a straight line, with
−→
DE = v2 and

−→
DG = v1.

Draw the horizontal line (i.e. in the i direction) through D.

Next find the midpoint of the line EG.

Through M , draw a line perpendicular to EG.

Denote by F the point of intersection of the lines drawn above through M and D.

Now you can measure the length of FE or FG to get the boat speed b.
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6. (a) There are really three unknowns — the water speed and direction and the boat
speed b. However, we only have two pieces of information — the times of the
journeys.

(b)
−→
DF represents the water velocity w.

FE=FG= b still gives the water speed, because the v = b+w vector diagrams

can be drawn in as before.
−→
FG still gives b1 and

−→
FE still gives b2.

We do not know the length or direction of
−→
DF because we are not given w.

No we cannot actually draw in DF to then find b.

We need more information. A triangular course will do the job, as explained on
the last page of the lab.
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3.3 Epidemics, Airline Routes and Assignment Problems

Aims

• To become more familiar with matrix notation.

• To become more familiar with matrix multiplication.

• To see how matrices organise data.

• To see how simple matrix manipulations aid our thinking and analysis of various prob-
lems.

Do Questions 1 and 2 first, then ask the lab instructor for Question 3. The maximum
mark you can get for 1 and 2 only is 7/10.

Each of these problems should really take no more than 30 minutes. Get to work — use the
“group power” — ask for help if needed.

Question 1 Epidemics: direct and indirect contact with a contagious disease

In this example we show how data about diseases can be stored in matrices and how matrix
multiplication can be used to model the spread of a contagious disease. Suppose that 3
individuals have contracted such a disease. This group has contacts with 5 people in a second
group. We can represent these contacts, called direct contacts, by a 3×5 matrix. An example
of such a matrix is given below.

Direct-Contact Matrix: first and second groups

A =

 0 1 0 0 1

1 0 0 1 0

0 0 0 1 1


We set aij = 1 if the ith person in the first group has made contact with the jth person in
the second group. For example, the 1 in the 2,4 position, i.e. a24 =1, means that the second
person in the first (infected) group has been in contact with the fourth person in the second
group. So row numbers refer to people in the first group and column numbers refer to people
in the second group.

(a) Which members of Group 1 was Member 5 of Group 2 in contact with?

(b) What does the sum of all the elements in column 1 represent? in column k?

(c) What does the sum of all the elements in row 1 represent? in row p?
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Now suppose that a third group of 4 people has had a variety of direct contacts with individuals
of the second group. We can also represent this by a matrix.

Direct-Contact Matrix: second and third groups

B =


0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1


bij =1 if member i of the second group has made contact with member j of the third group.
So that b21 =0, which means that the second person in the second group has had no contact
with the first person in the third group.

We now analyse how the disease might spread from the infected Group 1 to Group 3.

(d) What does a21b13 + a22b23 + a23b33 + a24b43 + a25b53 represent in terms of Member 2 in
Group 1 passing the disease to Member 3 in Group 3?

(e) So what does the matrix C =AB represent and tell us? Explain why it is called the
indirect- or second-order-contact matrix.

(f) Calculate C for the A and B given above (by hand).

(g) Which member of the third group is most likely to get the disease? (Perhaps the
answer to a problem like (b) is relevant here.)

Who would you expect not to get the disease? Explain your reasoning.

Perhaps it would help to construct a
diagram of the groups. Draw a line
to represent a contact.

Group 1 Group 2 Group 3�� ��1 �� ��1 �� ��1�� ��2 �� ��2 �� ��2�� ��3 �� ��3 �� ��3�� ��4 �� ��4�� ��5
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Question 2 Airline routes: graphs and matrices

In the last question we finished with a diagram. We often start with a network or graph
(vertices + joining edges) and analyse it using matrices.

Here is an airline route map. Arrows indicate how planes fly between the four cities.

The matrix M summarises the route data.

mij =1 means a plane flies directly from City i to City j
mij =0 means there is no service directly from i to j.

M =


0 1 1 0

1 0 1 0

× × × ×
× × × ×



(a) Complete rows 3 and 4 of M .

(b) How can we interpret the matrix

M 2 =


2 0 1 1

1 1 1 1

0 2 2 0

2 0 1 1

?

Explain in terms of the route map.

Hint : If S = M 2, then

sij = mi1m1j +mi2m2j +mi3m3j +mi4m4j.

What does it mean if one of these product terms is one? or zero?

(c) Calculate M +M 2.
Are there any zeros in your result? What does this tell you about this airline network?
Is there anything special about column 3? How would that help the airline with its
boast “we can always get you to City 3”?
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Question 3 Assignment problems

These problems turn up in many forms: assigning workers to jobs, equipment to worksites,
players to team positions, even grooms to brides (marriage brokers or matchmakers) and so on.
Here is an example, with a little introduction to the systematic treatment of the Assignment
Problem.

The situation

A college intends to install air-conditioning in three of its buildings during a one-week spring
break. It invites three contractors to submit separate bids for the work involved in each of the
three buildings. The bids it receives (in 1000-dollar units) are listed in the following table.

Bids

Bldg Bldg Bldg
1 2 3

Contractor 1 57 96 37

Contractor 2 47 87 41

Contractor 3 60 80 36

Each contractor can install the air-conditioning in only one building during the one-week
period, so the college must assign a different contractor to each building.

The problem

Decide which building each contractor should be assigned to in order to minimize the total
cost (sum of the corresponding bids).'

&

$

%

Definitions

The cost matrix for this problem is the 3×3 matrix

 57 96 37

47 87 41

60 80 36

.

For a 3×3 cost matrix, an assignment is a set of 3 matrix elements, no two of which lie
in the same row or column.

The cost of an assignment is the sum of the 3 entries.

An optimal assignment has the smallest cost.

PTO
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Your tasks

(a) Explain why that definition of assignment makes sense for our example. What does it
correspond to in our case? What would it mean if there was more than one element
chosen in a row? or a column?

(b) How many possible assignments are there?

Here is one.
We can indicate assignments with circles.
It uses the 1,2, the 2,1 and the 3,3 elements
and its cost is 96+47+36=179.


57 ©96 37

©47 87 41

60 80 ©36


(c) Find the costs and the optimum for the possible assignments in our example.

Don’t grumble — it’s simple arithmetic and a little each if you work as a group.

Go back to the original application: which contractors should do which job?

(d) Obviously such a process starts to get even more tedious and time consuming (even
for a computer) when the size of the problem increases beyond 3×3. Time for some
mathematical thinking! Here is a relevant result. (Perhaps if it seems very obvious or
you have time at the end you might comment on it and on why it is true.)�

�

�

�
Theorem: If a number is added to or subtracted from all of the entries of any
one row or column of a cost matrix, an optimal assignment for the resulting cost
matrix is also an optimal assignment for the original cost matrix.

How might that help? Well, a cost matrix with non-zero elements but with lots of zeros
in it is easy to analyse — if one assignment has a cost of assignment equal to zero, it is
certainly the best. Try it.

Take the cost matrix in this example and

first, take the smallest element in each row away from all elements in that row,

second, take the smallest element in each new column away from all elements in
that column.

What do you get? Can you spot a zero-cost assignment? Is it the same as your original
assignment?

Remarks

• The idea of generating “equivalent problems” is one we used for linear equations.

• The method you just used is called The Hungarian Method. It may involve more steps
than the ones you had to make.
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Solutions

1. (a) Member 5 of Group 2 was in contact with Members 1 and 3 of Group 1 (look at
the 5th column).

(b) The sum of all the elements in column k is the total number of contacts Member
k of Group 2 had with members of Group 1.

(c) The sum of all the elements in row p is the total number of contacts Member p of
Group 1 had with members of Group 2.

(d) a2jbj3 = 1 if Member 2 of Group 1 had contact with Member j of Group 2 and
Member j of Group 2 had contact with Member 3 of Group 3. Otherwise a2jbj3 is
zero. j = 1, 2, 3, 4, 5.

So the sum gives the number of times Member 2 of Group 1 and Member 3 of
Group 3 interact through intermediate contacts with members of Group 2.

(e) C displays all the indirect contacts.

cij is the number of indirect contacts between Member i of Group 1 and Member
j of Group 3.

(f) C =

 0 1 0 0 1

1 0 0 1 0

0 0 0 1 1




0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

 =

 0 0 0 2

1 0 1 0

1 0 0 1

.

(g) Adding up the columns gives the total number of indirect contacts between mem-
bers of Group 3 and Group 1:

Member 1 has 2 indirect contacts

Member 2 has 0 indirect contacts

Member 3 has 1 indirect contact

Member 4 has 3 indirect contacts.

Member 4 is most likely to catch the disease, but Member 2 should not.

Group 1 Group 2 Group 3�� ��1 �� ��1 �� ��1�� ��2 �� ��2 �� ��2�� ��3 �� ��3 �� ��3�� ��4 �� ��4�� ��5

The lines (to be put in) show the paths or
links from Group 1 to Group 3.
There is no path from Group 1 to Member
2 of Group 3. But there are paths for the
others.
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2. (a) M =


0 1 1 0

1 0 1 0

1 0 0 1

0 1 1 0

.

(b) Put S =M 2. Then S = [sij], with sij = mi1m1j+mi2m2j+mi3m3j+mi4m4j.

Each term tells us about the possibility of going from City i to City j via an
intermediate city, e.g. mi2m2j tells us about going from City i to City 2, then from
City 2 to City j. If both of these are possible routes, we get mi2m2j = 1× 1 = 1.
If either is not a possible route, we get 0.

So the elements of M 2 tell us how many routes there are between the cities when
we travel through an intermediate city.

(c) M+M 2 =


2 1 2 1

2 1 2 1

1 2 2 1

2 1 2 1

.

All cities are linked using either a direct flight or with one change of flight at an
intermediate city. Some cities can be reached from others in more than one way.
City 3 can always be reached in 2 ways (column 3), so if there is a problem on one
route, City 3 can still be reached by another route.

3. (a) Two entries in a row would mean a contractor was doing two jobs, and that is not
possible.

Two entries in a column would mean that a building is being air-conditioned by
two contractors, which is not what we want.

This definition of assignment gives us a different contractor for each building, as
we require.

(b) We can let Contractor 1 do any one of the 3 buildings.

Then Contractor 2 can be sent to either of the remaining 2 buildings.

Contractor 3 does the building not taken care of so far.

So the total number of possibilities is 3×2×1=6.

PTO
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(c)

�� ��57 96 37

47
�� ��87 41

60 80
�� ��36



�� ��57 96 37

47 87
�� ��41

60
�� ��80 36


 57
�� ��96 37�� ��47 87 41

60 80
�� ��36


cost = 180 cost = 178 cost = 179 57
�� ��96 37

47 87
�� ��41�� ��60 80 36


 57 96
�� ��37

47
�� ��87 41�� ��60 80 36


 57 96
�� ��37�� ��47 87 41

60
�� ��80 36


cost = 197 cost = 184 cost = 164

The optimum assignment is the last one, using the 1, 3, the 2, 1 and the 3 ,2 ele-
ments.

So we should get Contractor 1 to work on Building 3, Contractor 2 to work on
Building 1 and Contractor 3 to work on Building 2.

(d)
 57 96 37

47 87 41

60 80 36

→
 20 59 0

6 46 0

24 44 0

→
 14 15 0

0 2 0

18 0 0

 .
 14 15
�� ��0�� ��0 2 0

18
�� ��0 0

 is optimum.

201



3.4 Transformations and Matrices 3 LABS USING A TI-84/CE

3.4 Transformations and Matrices

Aims

• To practise matrix manipulations.

• To explore the use of matrices for describing geometric operations.

• To learn about symmetry.

• To see how a different area of algebra can be developed.'

&

$

%

Preamble

Suppose that a transformation T changes a position vector r1 into r2.

We can describe this algebraically using column vectors r1 =

[
x1
y1

]
and r2 =

[
x2
y2

]
The transformation T is represented by a matrix T such that r2 = Tr1.

If it exists, T−1 will transform r2 back into r1, i.e. r1 = T−1r2.

If it takes two transformations to get from r1 to r2, and if the one represented by T 1 is
done first and the one represented by T 2 is done next, then r2 = T 2T 1r1.

A summary sheet is on page 207 — have a quick look before you begin.

Don’t forget to explain with words and pictures how it all works.

Question 1 Setting the scene

It is often said that no two snowflakes are the same and that is clear in the little sample shown
below. But there are some similarities. Describe what it is that the snowflakes below appear
to have in common.
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Question 2 Using the algebra–geometry link

Two rotation matrices can be multiplied in any order to get the same result, i.e. they “com-
mute”. How about a mixture of rotation and reflection matrices?

(a) Draw a diagram to see whether rotating a vector by 45◦ and then reflecting it in the y
axis gives the same vector as doing the reflection first, then the rotation. Just pick one
or two vectors and see what happens to them.

(b) So, do you expect[
−1 0

0 1

][
1√
2
− 1√

2

1√
2

1√
2

]
=

[
1√
2
− 1√

2

1√
2

1√
2

][
−1 0

0 1

]
?

Explain your reasoning by identifying the geometric operations represented by these
matrices and referring back to your answer in (a). Then check it out by doing the
multiplications.

Question 3 Manipulating some matrices

We now work with the following set of four matrices:

I =

[
1 0
0 1

]
A =

[
0 −1
1 0

]
B =

[
−1 0

0 −1

]
C =

[
0 1
−1 0

]
.

(a) Work out the multiplication table for M 1, M 2, where M 1 and M 2 can be any of the
four matrices.

Calculator? No! Easy by hand. Think: what must the product be where I is involved?

M 1 I A B C

M 2

I

A

B A ← e.g. CB=A

C

(b) (i) Does every product give I, A, B or C?

(ii) Explain how you can use your table to find inverses for A, B and C.
What are A−1, B−1, C−1?
Is it true that the set contains the inverses of all matrices in it?

(iii) Is it true that (M 1M 2)M 3 = M 1(M 2M 3), no matter how you choose M 1, M 2

and M 3? Hint : do you need to check all cases or is there a particular property of
matrix multiplication you can refer to?

(c) What is ACBC?
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Question 4 Broadening your algebraic horizons a little

Now we define a GROUP. Then we (i.e. you) will find an example, and after that we will find
out why groups are important in Mathematics and Science.'

&

$

%

Definition A group is a set of elements I, A, B, C, D, . . . with a rule for combining
any pair of them — in our case we shall call it multiplication — for which the following
four properties are satisfied:

(i) there must be an identity element I so that IQ = Q for any element Q in the set;

(ii) the inverse of every element must also be in the set;

(iii) multiplication is associative, i.e. Q(RS) = (QR)S for any elements Q,R and S in
the set; and most important of all

(iv) multiplying together any two elements in the set must always give an element in
the set.

(a) If the set of elements is the set of matrices in Question 3 and “multiplication” is the
usual matrix multiplication, do they form a group? Explain how you check all four
properties, referring back to Question 3 and the table as necessary.

(b) If the set is reduced to just {I,B}, do you still have a group? Give reasons.

(c) If the set is reduced to {I,A,B}, do you still have a group? Give reasons.

Question 5 Appreciating the importance of groups

So who cares about groups? Well, people interested in algebra and mathematical structures
do, but people involved in chemistry, physics and other sciences also need to use them. Let’s
see if we can understand why.

(a) Identify the matrices A, B and C given in Question 3 with particular rotation matrices
R(α).

(b) By thinking about what happens to any vector when repeatedly acted upon by I, A,
B or C (and in particular four times by A), why do you think this group is called “the
cyclic group of order 4”, denoted C4? Explain. Drawings needed?

(c) Now look at the swastika shown below in Figure 1. Choose any point on it and draw in
the position vector. Show what happens when you multiply that vector by each of the
elements of our group C4.

204



3.4 Transformations and Matrices 3 LABS USING A TI-84/CE

(d) What happens if you act on the whole swastika with any of those transformations
(rotations). What changes? Or is it left looking unchanged? Explain/report on your
reasoning.

(e) Can you do any reflections (e.g. through the x or y axes, or the lines y=x or y=−x)
to leave the swastika looking the same? Give an example of what happens.

(f) The swastika is obviously symmetric in certain ways and now we can state this in a
precise mathematical way: “the symmetry group of the swastika is C4”. What do you
think that means? Perhaps you can answer by writing down how you would explain it
to a fellow student.

Keep going! Do Question 6 and at least read through Question 7. It will be treated as a
bonus question if I find this lab is a little long. But do leave a little time for Question 8.

Question 6 Another symmetry group

The symmetry group for the letter H, as in Figure 2, has elements

I =

[
1 0
0 1

]
R2 =

[
−1 0
0 −1

]
Mx =

[
1 0
0 −1

]
M y =

[
−1 0

0 1

]
.

Explain what that means! If you have spare time, you could construct the multiplication
table for this group.

Question 7 Lots of symmetry

(a) The square (Figure 3) and letter X (Figure 4) are obviously more symmetrical than the
swastika. What extra “symmetry operations” can you do to them which will leave them
looking the same?

(b) A more symmetric figure will be described by an extended group. What does that mean?

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
The different types of atoms, molecules, crystals and other structures found in nature have a
variety of symmetry properties; groups are the mathematical things we use to describe and
classify them, and to explore their properties.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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Question 8 Summarizing

Think about what you have been doing in this lab. What do you think the key points have
been? What have you discovered? How would you now answer Question 1?

Supplementary Question

Question 9 Extending to three dimensions

Suppose we now go to three dimensions and position vectors r =xi+ yj + zk, which are

represented by column vectors

 x
y
z

.

You may need to draw some pictures and do some “experiments” using pens, rulers, etc as
vectors and axes.

(a) What geometric operations do these three matrices represent algebraically?

M =

 1 0 0
0 1 0
0 0 −1

 P =

 1 0 0
0 1 0
0 0 0

 R =

 cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1



(b) What does P do to all the vectors

 1
2
t

, where t can be any number?

Can you use that fact to decide whether P has an inverse?

Perhaps you need to re-read the Preamble and think what P−1 is suppposed to do.

Give an algebraic argument to support your answer about the existence of P−1.
Hint : Perhaps you could think about the bottom row produced when P multiplies any
3×3 matrix and recall which matrix must be produced when P multiplies its inverse.
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Matrices Representing Geometric Operations on Vectors

ROTATIONS

R(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]

R(α)

[
r cos(θ)
r sin(θ)

]
=

[
r cos(θ+α)
r sin(θ+α)

]
r2 = R(α)r1

r1 = R−1(α)r2

Inverse: R−1(α) = R(−α).

Products: If r2 = R(α)r1 and r3 = R(β)r2, then r3 = R(β)R(α)r1 = R(α+β)r1.

Products commute: R(β)R(α) =R(α)R(β).

Examples: R
(π

4

)
=

[
1√
2
− 1√

2

1√
2

1√
2

]
R
(π

3

)
=

[
1
2
−
√
3
2

√
3
2

1
2

]
.

REFLECTIONS

Reflection in x axis: Mx

[
x
y

]
=

[
1 0
0 −1

] [
x
y

]
=

[
x
−y

]

Reflection in y axis: M y

[
x
y

]
=

[
−1 0

0 1

] [
x
y

]
=

[
−x
y

]

Reflection in line x = y: Mx−y

[
x
y

]
=

[
0 1
1 0

] [
x
y

]
=

[
y
x

]

Reflection in line x = −y: Mx+y

[
x
y

]
=

[
0 −1
−1 0

] [
x
y

]
=

[
−y
−x

]

Each reflection matrix is its own inverse.
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Instructors’ Guide

Solutions

2. (a)

A different order of operations generates a different result.

(b) These are the matrices representing the reflection and rotation in (a).
The answer in (a) suggests order of multiplication is important.[

−1 0

0 1

][
1√
2
− 1√

2

1√
2

1√
2

]
=

[
− 1√

2
1√
2

1√
2

1√
2

]
[

1√
2
− 1√

2

1√
2

1√
2

][
−1 0

0 1

]
=

[
− 1√

2
− 1√

2

− 1√
2

1√
2

]

3. (a) Work out the multiplication table for M 1M 2.

M 1 I A B C

M 2

I I A B C

A A B C I

B B C I A

C C I A B

(b) (i) Yes.

(ii) For each matrix, look up the matrix giving I as the product in the table.
A−1=C, B−1=B, C−1=A. All inverses are in the set.

(iii) This is the associative property for matrix multiplication.

(c) AC (BC)=ACA =A (CA)=AI=A.

4. (a) Yes, all 4 properties check out. The solutions to Question 3 show this.

(b) We only have to check properties (ii) and (iv), as the other two properties follow
from (a): I B=B, BB=I, B−1=B.

(c) No, because AB=C, and C has been removed from the set.
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5. (a) A=R (90◦), B=R (180◦), C=R (270◦)=R (−90◦).

(b) Operating with any of these matrices 4 times gets back to where we started, for
example A4=I.

(c) We get another point on the swastika.

(d) Nothing changes. We always end up with the original swastika.

(e) No, it looks different, e.g. reflect in the x axis to get

(f) The operations described by C4 are those that leave the swastika unchanged and
so they describe its symmetry.

6. You can do the operations represented by those matrices — rotation by 180◦, reflection
in the x or y axes — on the letter H and it is not changed.

That group describes the symmetry of the letter H.

7. Reflections in the x and y axes and in the lines y = x and y = −x leave � and ×
unchanged.

9. (a) Matrix M represents reflection in the xy plane — it changes the sign of the z
component of a vector.

Matrix P projects a vector onto the xy plane — it makes the z component of a
vector zero.

Matrix R represents a rotation by an angle α about the z axis.

(b) P

 1
2
t

 =

 1
2
0

.

P projects any vector of the form

 1
2
t

 onto the vector

 1
2
0

 in the xy plane.

Clearly this operation cannot have an inverse, because an infinite number of vectors

are transformed to

 1
2
0

 by P . If P−1 existed, it would transform

 1
2
0

 back to

only one of these.

If P had an inverse, PP−1=I. However, the bottom row of P is all zeros and so
cannot multiply any matrix to produce a 1 in the bottom row of the product, as
is required to produce I.
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3.5 Complex Numbers, Populations, Matrices and Eigenvalues

Aims

• To practise manipulating complex numbers.

• To link up with some work on matrices.'

&

$

%

Preamble

Remember that we have three representations of a complex number

a+ib r(cos θ+i sin θ) a point in the complex plane

We can move between these representations to solve problems in different ways and
to visualise our working.

For matrices, [
a b
c d

] [
x
y

]
=

[
ax+ by
cx+ dy

]
.

If w is an eigenvector of M with eigenvalue λ, then Mw=λw.

Details on using a TI-84/CE with complex numbers can be found in Complex Numbers in
Volume 3 of Mathematics on a TI-84/CE.57

Question 1

Earlier in the course, we studied Linear Algebra and solved equations using real numbers.
That part of Mathematics extends very naturally to equations involving complex numbers, and
this problem gives you a little insight into that.

(a) Let u0 =

[
1
0

]
and un+1 = Mun, with M =

[
1 −1
1 1

]
.

Thinking of vectors as

[
x
y

]
, plot in the xy plane the vectors u0, u1, u2, u3, u4.

Describe in words what seems to be happening to the vectors.

We could explain this result by going back to our work on matrices as operators, but
let’s see if we can use a different approach, exploiting some of our other results in order
to develop a formula for un.

(b) Verify, i.e. check by seeing that they do actually satisfy Mw=λw, that

w1 =

[
1
−i

]
and w2 =

[
1
i

]
are eigenvectors of M with eigenvalues λ1 =1+i and λ2 =1−i.

57available at www.XXX
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(c) Write the eigenvalues in the form λ1 = r(cos θ+ i sin θ) and λ2 = r(cos θ− i sin θ) =
r
(

cos(−θ)+i sin(−θ)
)
, so r is the modulus and the arguments are θ and −θ (in radians

of course).

We knew the eigenvalues had to come out as a pair like that didn’t we? Of course! The
characteristic equation giving the eigenvalues is a polynomial and complex zeros of poly-
nomials always come in conjugate pairs. Previously our examples had real eigenvalues.

(d) Now find numbers a and b so you can write u0 = aw1+bw2. Then we will be able to
use the laws of matrix algebra to write Mu0 = aMw1 + bMw2.

(e) Now the big step! Remembering that if w is an eigenvector of M with eigenvalue λ,

then Mnw = λnw, prove that un = Mnu0 = rn
[

cos(nθ)
sin(nθ)

]
, where r and θ are the

modulus and angle you found in (c).

Remember the easy way to raise a complex number to the power n?

(f) Using polar coordinates R, β, so that

un =

[
xn
yn

]
=

[
Rn cos(βn)
Rn sin(βn)

]
,

explain how your answer in (e) con-
firms your observations in (a).

Notice that we began with a real (as opposed to complex) problem in (a), and in (e) we
have derived a general real answer. However, we made use of complex numbers to get
to that answer. This is another example of the strange value of complex numbers that
emerged 500 years ago when people were learning to solve cubic equations.

Question 2

We can now move to two topics: an understanding of some of our previous results in popu-
lation modelling and then a look at classifying behaviour in linear problems.'

&

$

%

Finding eigenvalues

det
(
M−λI

)
= 0 gives the eigenvalues λi of M .

And determinants are found using the rules∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣− b1 ∣∣∣∣ a2 c2
a3 c3

∣∣∣∣+ c1

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣
or an expansion using other rows or columns.
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(a) A population of young and adults was seen to evolve from year n to year n+1 according
to [

yn+1

an+1

]
=

[
0 b
m s

] [
yn
an

]
,

where b is birthrate, m is maturing rate and s is survival rate for adults. Previously
we saw how populations grow or decline, depending on whether the dominant (real)
eigenvalue is> 1 or< 1. Show that such an ultimate growth or decline must occur for
the above population model, as b, m and s are all positive numbers and so there can be
no complex eigenvalues.
Hint : Find a formula for λ and show it always gives real answers.

(b) In the lab Population Models: Matrices and Eigenvalues, you explored how populations
evolved when they had age structure (e.g. young, adults and seniors), and the transitions
were described by Leslie matrices. For the case with

T =

 0 0 8
0.5 0 0
0 0.25 0

 ,
you found oscillations in the population as it evolved. Here are two examples of plots
of the total population.

What do you think this means about the eigenvalues of T ? Check your guess by finding
them.

(c) Because the characteristic equation for eigenvalues is a polynomial and we now know
what roots of polynomials can be, we can actually classify all behaviours of linear matrix
problems. To finish this lab, let’s do a little of that for 2×2 matrices.

We saw that real eigenvalues can be associated with scaling vectors — stretching or
shrinking them. Our example in Question 1 above shows that complex eigenvalues can
also introduce vector rotations.

Sketch out what sort of different diagrams you would have got in (a) if it had turned
out that the modulus of the complex eigenvalues satisfied

r>1 or r=1 or r<1

(Just put a spot for the ends of the vectors.)

Indicate also on other sketches the effects of finding larger and smaller θ values.
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Instructors’ Guide

Solutions

1. (a)
Each multiplication by M rotates the vector
by π/4 and increases its length by

√
2.

(b) Mw1 = M

[
1
−i

]
=

[
1 + i
1− i

]
=
(
1 + i

) [ 1
−i

]
= λ1w1.

Mw2 = M

[
1
i

]
=

[
1− i
1 + i

]
=
(
1− i

) [ 1
i

]
= λ2w2.

(c) The modulus of λ1 and λ2 is
√

2. The argument of λ1 is arctan(1)=π/4 and that
of λ2 is arctan(−1)=−π/4. Therefore,

λ1 =
√

2
(
cos
(π

4

)
+i sin

(π
4

))
λ2 =

√
2

(
cos

(
−π
4

)
+i sin

(
−π
4

))
=
√

2
(
cos
(π

4

)
−i sin

(π
4

))
.

(d) Setting u0 = aw1+bw2 and solving the two simultaneous equations for a and b
gives u0 = (w1 +w2)/2.

(e) We have, with r=
√

2, θ=π/4 and using de Moivre’s theorem,

un = Mnu0

=
1

2

(
Mnw1 + Mnw2

)
=

1

2
λn1w1 +

1

2
λn2w2

=
1

2

(
r
(

cos θ+i sin θ
))n

w1 +
1

2

(
r
(

cos(−θ)+i sin(−θ)
))n

w2

=
1

2
rn
(

cos(nθ)+i sin(nθ)
)
w1 +

1

2
rn
(

cos(−nθ)+i sin(−nθ)
)
w2

=
1

2
rn
(

cos(nθ)+i sin(nθ)
)
w1 +

1

2
rn
(

cos(nθ)−i sin(nθ)
)
w2
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=
1

2
rn
((

cos(nθ)+i sin(nθ)
) [ 1
−i

]
+
(

cos(nθ)− i sin(nθ)
) [ 1

i

])

=
1

2
rn
[

2 cos(nθ)
2 sin(nθ)

]

= rn
[

cos(nθ)
sin(nθ)

]
.

(f) We have Rn = rn, so that R is multiplied by r =
√

2, and βn = nθ, so that β
increases by θ=π/4, each time n increases by 1. Increasing n by 1 corresponds to
multiplying un by M , as we did in (a).

2. (a) We find that λ =
(
s±
√
s2+4bm

)
/2. As s2 + 4bm > 0, we always have real

eigenvalues.

(b) The total population is oscillating, indicating that the eigenvalues of T are complex.
In the first case, the modulus of the dominant eigenvalue is 1 because the amplitude
is constant; in the second case, the modulus is larger than 1 because the amplitude
is increasing.∣∣T − λI

∣∣ = 0 leads to λ3−1=0. Hence, we obtain a pair of complex eigenvalues,
each with modulus 1:

λ = 1, cis(2π/3), cis(4π/3)

= 1, −1

2
+

√
3

2
i, −1

2
−
√

3

2
i.

(c) Diagrams like

When θ is smaller, each rotation is less, so the dots are closer together.
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3.6 Using Probability to Model Championship Tennis

Adapted from Championship Tennis as a Probabilistic Modelling Context by Peter Galbraith,
Teaching Mathematics and its Applications 15 (4): 161–166 (1996).

Introduction

We are familiar with the common practice of radio and television commentators relaying
statistics in the course of a match.

For example, ‘Graf is hitting 73% of first serves into play’ or ‘Seles is only winning 50% of
her second serves’.

This upsurge in statistical interest has led to the publication of all kinds of analytical informa-
tion regarding match play. The Australian newspaper published the data in the table below
relating to the women’s final in the 1995 US Open, in which Steffi Graf defeated Monica Seles
7–6 (8–6) 0–6 6–3.

Note that it’s NOT necessary for you to understand all the details in the table.

Final Statistics: US Open Women’s Final 1995

Statistic Graf Seles

First serves in 73% 72%

Aces 7 8

Double faults 4 4

Wins from first serve,
given first serve is in 72% 69%

Wins from second serve 73% 50%

Winners (including aces) 24 38

Unforced errors 32 42

Break points converted 17% 50%

Total points won 96 95

In this lab you will:

• use some of the data in the table to estimate the probability that Graf/Seles wins a
service point ;

• use these service-point results to estimate the probability that Graf/Seles wins a service
game;

• use these service-game results to estimate the probability that Graf wins a set 6–3 when
serving first, as in the final set of the 1995 US Open; and

• write a brief interpretation of some of your calculations.
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You might like to review Useful Results on page 219 before starting the questions.

Question 1 Probability of winning a service point

Let p be the probability of a player winning a service point.

Let r be the probability that a player’s first serve is ‘in’.

Let f be the probability that a player wins a service point if her first serve is ‘in’.

Let s be the probability that a player wins a service point on her second serve, i.e. the
probability that a player wins a service point, given her first serve is ‘out’.

(a) Use the data in the table above to estimate r, f and s for Seles and for Graf.

(b) Use the above definitions and the Law of Total Probability to show that the probability
of winning a service point is given by

p = rf + (1−r)s = rf + s− rs.

Draw a tree diagram.

(c) Now use your results in (a) and (b) to obtain estimates for Seles’ and Graf’s probabilities
of winning their service points.

(d) Hence find q, the probability of losing a service point, for Seles and Graf.

(e) Clearly both players would like to increase the probability of their winning a service
point. Investigate (and explain) what happens to p for each player if she concentrates
on one particular aspect of her serve:

(i) getting more first serves in, that is increasing r, say by 0.05;

(ii) improving her second serve, that is increasing s, say by 0.05.

What would you recommend to each player?

Some Assumptions

In order to model outcomes of games, we assume that elite players such as Graf and Seles
exhibit a level of consistency, i.e.

• the probability of winning/losing a service point remains constant from point to point;

• each point may be considered to be independent of the preceding point.

You might like to think about whether these assumptions are valid.
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Question 2 Probability of winning a service game

A player can win a service game ‘to 0’ (called winning ‘to love’) or ‘to 15’ or ‘to 30’ or ‘to 40’.
That is, if a player wins her service game, her opponent could have scored ‘0’ or ‘15’ or ‘30’
or ‘40’. (If both players reach ‘40’, it is called ‘deuce’.)

We can calculate the probability of winning a service game ‘to 15’ using the negative binomial
distribution (page 219) as follows.

P (wins service to 15 ) = P (server wins 3 of 1st 4 points and wins next point)

= P (server wins 3 of 1st 4 points)× P (server wins point)

=

(
4

3

)
p3q × p

= 4p4q,

as P (wins service point) = p, P (loses service point) = q, and the number of wins on 4 serves
is distributed binomially with 4 trials and probability of success p.

It can be shown that (see the article cited on page 215)

P (wins service to 40 ) =
20p5q3

1−2pq
.

(a) Using the derivation of P (wins service to 15 ) as a guide, calculate the probabilities of
winning a service game ‘to 0’ and ‘to 30’.

(b) Use the above results and Useful Result 2 to find an expression for the probability of
winning a service game in terms of p and q. Check your expression using the values
p = 0, 1

2
, 1.

(c) Hence estimate Seles’ and Graf’s probabilities of winning their service games.
Answers (to 2 significant digits): 0.81; 0.93.

PTO
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We can use our results in Questions 1 and 2 to estimate probabilities of the outcomes of
various sets in the 1995 US Open Women’s Final. Here is one example.

Question 3 Probability that Graf wins a set 6–3, serving first

Use your result in 2(c) to calculate the probability that Graf wins the deciding set 6–3, given
that she served in the first game of the set. Answer : 0.31 (to 2 significant digits).

Some Hints

• Let pG and pS be the probabilities that Graf and Seles win their respective service
games.

• We have, using Useful Result 1,

P (Graf wins 6–3 ) = P (Graf leads 5–3 and Graf wins the next game)

= P (Graf leads 5–3 )× P (Graf wins the next game).

Note that the score after the previous (eighth) game must have been 5–3. If it had been
6–2, Graf would have already won the set.

• How can Graf be leading 5–3?

– In these eight games, each player has four service games.

– There are four ways in which Graf can be leading 5–3. Note the use of the binomial
distribution (page 219).

– One way is for Graf to win 4 service games, win one Seles service game and lose 3
Seles service games.

∗ That is, Graf wins all 4 of her service games (with probability p4G) and Seles
wins 3 of her 4 service games

(
with probability

(
4
3

)
p3S qS

)
.

∗ Thus P (Graf wins 4 service games, wins one Seles service game and loses 3
Seles service games ) =

(
4
3

)
p3S qS p

4
G.

– Another way is for Graf to win 3 out of 4 service games, win 2 Seles service games
and lose 2 Seles service games.

∗ That is, Graf wins 3 of her 4 service games
(
with probability

(
4
3

)
p3G qG

)
and

Seles wins 2 of her 4 service games
(
with probability

(
4
2

)
p2S q

2
S

)
.

∗ Thus P (Graf wins 3 service games, wins 2 Seles service games and loses 2
Seles service games) =

(
4
3

)
p3G qG ×

(
4
2

)
p2S q

2
S.

– Now you work out the probabilities for the other two ways, and hence (using Useful
Result 2) P (Graf leads 5–3 ).

Scenario

Monica Seles and Steffi Graf agree to participate in a special New Millennium charity tennis
match here. Your lab group is chosen to be the statistical advisors to the SPORT Television
commentary team. By considering ANY of your calculations in this lab, write a couple of
sentences to be used by the SPORT commentators in their preliminary discussion of the
match.
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Useful Results

1. P (A ∩B) = P (A)P (B) if A and B are independent.

2. P (∪Ai) =
∑
P (Ai) when all the Ai are mutually exclusive.

3. The Law of Total Probability : If events E1, E2, . . . form a partition of sample space S,
then for any event A,

P (A) =
∑

P (A ∩ Ei) =
∑

P (Ei)P (A|Ei).

4. The binomial distribution: If X is the number of successes in n independent Bernoulli
trials (only two outcomes: success or failure) with probability of success p on each trial,

P (X=k) =

(
n

k

)
pkqn−k k = 0, 1, . . . , n.

5. The negative binomial distribution: If N is the number of attempts needed to achieve
k successes in a sequence of Bernoulli trials, then

P (N = j) = P (k−1 successes in the first j−1 trials)P (success on the jth)

=

(
j−1

k−1

)
pk−1q(j−1)−(k−1) · p

=

(
j−1

k−1

)
pkqj−k j = k, k + 1, . . . .
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Instructors’ Guide

Solutions

1. Probability of winning a service point

(a) Seles: r=0.72 f=0.69 s=0.5. Graf: r=0.73 f=0.72 s=0.73.

(b) P (wins service point)

= P (wins service point on 1st serve) + P (wins service point on 2nd serve)

= P (wins service point/1st serve in)× P (1st serve in) + Law of

P (wins service point/1st serve out)× P (1st serve out) Total Probability

= f × r + s× (1−r).

Therefore, p = rf + (1−r)s = rf + s− rs, as required.

(c) Using (a),

P (Seles wins service point) = 0.72× 0.69 + (1−0.72)× 0.50

= 0.6368.

P (Graf wins service point) = 0.73× 0.72 + (1−0.73)× 0.73

= 0.7227.

(d) P (loses service point) = 1− P (win service point), so that

P (Seles loses service point) = 1−0.6368 = 0.3632.

P (Graf loses service point) = 1−0.7227 = 0.2773.
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(e) We have p = rf + s− rs.

Seles: r=0.72, f=0.69, s=0.5.

Fix f = 0.69 and r = 0.72 s = 0.5 ⇒ p = 0.6368

s = 0.55 ⇒ p = 0.6508

Fix f = 0.69 and s = 0.5 r = 0.72 ⇒ p = 0.6368

r = 0.77 ⇒ p = 0.6463

Therefore, increasing s (the probability of winning a second serve) by 0.05 increases
p more than by increasing r (the probability that the first serve is ‘in’) by 0.05.

Graf: r=0.73, f=0.72, s=0.73.

Fix f = 0.72 and r = 0.73 s = 0.73 ⇒ p = 0.7227

s = 0.78 ⇒ p = 0.7362

Fix f = 0.72 and s = 0.73 r = 0.73 ⇒ p = 0.7227

r = 0.78 ⇒ p = 0.7222

Therefore, increasing s by 0.05 increases p more than by increasing r by 0.05. In
fact, for Graf, increasing r by 0.05 actually reduces p.

If students have covered partial differentiation, they can derive the following general
results.

∆p ≈ ∂p

∂s
∆s = (1−r)∆s ∆p ≈ ∂p

∂r
∆r = (f−s)∆r

Putting in the respective numbers for the two players gives, for Seles,

∆p ≈ 0.28∆s ∆p ≈ 0.19∆r,

showing that, for an equal increment of r and s, p increases more when s is in-
creased.

For Graf, ∆p ≈ 0.27∆s and ∆p ≈ −0.01∆r, again confirming our findings above.

Therefore, Seles and Graf should concentrate on increasing s, that is improving
their second serves.

We could also look at the effect of increasing f , the probability of winning a
first serve given that it is ‘in’. Clearly r and f are not independent. Interesting
discussion?
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2. Probability of winning a service game

(a) Following the derivation of P (win serve to 15 ) in the lab sheet,

P (wins serve to 0 ) = P (server wins all 4 service points)

= p4 (special case of negative binomial distribution).

P (wins serve to 30 ) = P (server wins 3 of 1st 5 points and wins next point)

= P (server wins 3 of 1st 5 points)× P (server wins point)

=

(
5

3

)
p3q2 × p (negative binomial distribution)

=

(
5

3

)
p4q2

= 10p4q2.

(b) The probability of winning a service game is the sum of the probabilities of the
different ways that a player can win a service game (Useful Result 2).

P (wins service game) = P (wins service game to 0 or 15 or 30 or deuce)

= p4 + 4p4q + 10p4q2 +
20p5q3

1−2pq
.

Note: P (wins service game) =


0 when p = 0

0.5 p = 0.5

1 p = 1

.

(c) For Seles, p= 0.6368 from 1(d), so that q= 1−p= 0.3632. Putting these values in
the above expression gives

pS = P (Seles wins service game) ≈ 0.81.

For Graf, p = 0.7227 from 1(d), so that q = 0.2773 and

pG = P (Graf wins service game) ≈ 0.93.

The simplest and least-error-prone method of calculating the above numbers is to
store the values of p and q in memories P and Q of the calculator, then type out
the expression for P (wins service game) in terms of P and Q and evaluate it. Store
the other set of values for p and q and use the recall facility on the calculator to
evaluate P (wins service game) for the other player.
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3. Probability that Graf wins a set 6–3, serving first

To find P (Graf leads 5–3 ), we use two results: Useful Result 1 and the binomial distri-
bution.

P (Graf wins 4 service games and Seles wins 3 out of 4 service games)

=

(
4

3

)
p3S qS p

4
G.

P (Graf wins 3 out of 4 service games and Seles wins 2 out of 4 service games)

=

(
4

3

)
p3G qG ×

(
4

2

)
p2S q

2
S.

P (Graf wins 2 out of 4 service games and Seles wins 1 out of 4 service games)

=

(
4

2

)
p2G q

2
G ×

(
4

1

)
pS q

3
S.

P (Graf wins 1 out of 4 service games and Seles wins 0 out of 4 service games)

=

(
4

1

)
pG q

3
G × q4S.

Therefore, using Useful Result 2, we have

P (Graf leads 5–3 ) =

(
4

3

)
p3S qS p

4
G +

(
4

3

)(
4

2

)
p3G qG p

2
S q

2
S +

(
4

2

)(
4

1

)
p2G q

2
G pS q

3
S

+

(
4

1

)
pG q

3
G q

4
S.

By substituting pS =0.81, qS =0.19, pG=0.93, qG=0.07, we obtain

P (Graf leads 5–3 ) ≈ 0.335.

Therefore, using Useful Result 1, we have

∴ P (Graf wins 6–3 ) = P (Graf leads 5–3 )× P (Graf wins next game)

(her service game)

≈ 0.335× pG

≈ 0.335× 0.93

≈ 0.312.
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Aims of labs

To give students the opportunity to

1. come to a greater depth of understanding of the course material through:
the problems chosen; the time spent on these problems; being able to
get help from both their peers and staff.

2. be exposed to and raise their ability/confidence to tackle, in groups,
problems of greater complexity and difficulty than we could expect them
to tackle individually.

3. practise oral and written mathematics-related communication skills.

4.1 Lab organisation

• Lab work will be in groups, usually of four people. Each group will be expected to work
together on a set of questions handed out at the beginning of the lab.

• For the first lab, you will be in a randomly assigned group. For the remaining labs, you
will then be asked to form your own groups, which will remain the same for the rest of
the semester.

• For the labs you will need a calculator each, pens, pencils, rulers, paper to write on and
at least one copy of the text and/or lecture notes per group.

• Each group will be required to produce a lab report by the end of each lab session. We
expect the group to work together and one person to scribe. Questions scribed by
someone other than the original scribe will not be marked. The job of scribing
should rotate week by week among the members of the group. We keep a record of who
scribes each lab.

• Each member of the group must sign his or her name at the end of the report.

• Lab reports will be collected at the end of the lab, marked and returned with comments,
usually by the next lab period. Each member of the group will receive the group mark
for the lab. Each lab will be worth 2% of your final mark. You will also receive a mark
for how you contributed to the group (see Formal Groupwork Evaluation).
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4.2 Lab reports

• The lab report should be a thoughtful, well-written and neatly organised document that
summarises both your experiences in the lab and what you learned as a result of that
experience. The questions in the lab sheets will help to guide you as to what to do (and
should be answered), but you should feel free to make any observations or comments
that you think are appropriate. We will be giving you some guidance in writing lab
reports.

• We expect reports to be written in proper English, with correct spelling and appropriate
punctuation. Any mathematics should read as English sentences when the symbols are
read out. Lab reports not written in this manner are likely to be viewed less than
favourably by the marker. There is no fixed format for lab reports, but some of the
points below may help you in your writing up.

• Introduction: This summarises briefly what the lab is about and how you are going
to tackle it in the report. Sometimes it is easier to write the Introduction at the end,
though it should of course come first in your report.

• Graphs: The calculators take all the hard work out of these. In the questions, the
words plot or graph means graph it on your calculator. The words sketch or draw mean
sketch it in your report. We don’t expect a work of art or accuracy down to the micron
level: a reasonable sketch on ordinary paper showing labelled axes with scales and the
salient features of the graph is fine. Graphs should also have a short caption explaining
what they are about.

• Calculations: If you do some calculations, present them succinctly. Explain briefly
what you did, perhaps by writing out one typical calculation in full.

• Data: Summarise any data you collect in a succinct, easy-to-grasp form such as a table
or a diagram with labels. Keep in mind that we are interested in your answers, thoughts
and analysis, rather than in lots of numbers.

• Conclusions: We’d like to see these and will often prompt for them in the questions.
They should be the inferences that you draw from your data and calculations. Here is
your chance to show that you understood the purpose of the lab, saw patterns in the
data and gained significant insights.

4.3 What the mark on your lab report means

Marks are given for completeness and correctness of answers, and for presentation. By pre-
sentation, we mean things like

• appropriate use of figures, tables, graphs, equations and explanatory remarks

• answers in clear and complete English or mathematical sentences

• descriptive and meaningful sentences to guide a reader through the report

• graphs with scale marks on the axes and labelled axes and curves

• data succinctly summarised in tables

• legible writing.
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GRADE MARK STANDARD REQUIRED

High Distinction > 8.5 Excellent presentation. Virtually every question done,

answered well, clearly and correctly. Outstanding.

Distinction 7.5 – 8 Presentation very good. Clear answers. Most questions

done with few errors. Very Good.

Credit 6.5 – 7 Good presentation. Many questions done, with most done

fairly well. Pretty reasonable to fairly good.

Pass 5 – 6 Adequate presentation. Reasonable number of questions

attempted. More right than wrong.

Barely acceptable to just OK.

Fail < 5 Poor presentation. Many errors. Many questions not

answered at all. Awful.
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4.4 Sample lab reports — good vs poor

Exercise: For the following lab, two reports were handed in.

1. Critique each report for its

– Readability: Can it be read as a stand-alone document? i.e. without either
continually referring to the lab questions or knowledge of the complete worked
solution.

– Clarity: Can you understand (relatively easily) what’s been said and done?

– Completeness: Has the report completely answered all questions?

– Correctness: Are the explanations and calculations correct?

– Presentation: Is the material well organised? Is it easy to find things?

Basically, a good report would be clear and informative to a student who missed the
lab for some reason.

2. According to the above criteria, identify at least six things that make the better of the
two reports better.

Lab X: Snow White and the Seven Dwarves revisited
— was the prince a hero or just lucky?58

The problem

According to the tale of Snow White and the Seven Dwarves, Snow White collapsed comatose
to the ground immediately after eating the poisoned apple given to her by her wicked step-
mother, the queen. The dwarves found her one hour later. After three days, Snow White’s
condition remained unchanged. Fearing her dead, the dwarves carried her to the centre of the
forest where they left her in a glass coffin. Seven days after she had eaten the apple, a prince
happened by and Snow White awoke to his kiss. Was the kiss magical or was the prince just
lucky?

Additional information

Assume that

• the concentration C of the drug in Snow White’s bloodstream as a function of time t
can be modelled by the equation C(t) = ate−bt for some positive constants a and b.

• the drug reached the minimum effective concentration in the minimum time allowable
physiologically, 30 seconds according to the medicos.

58Based on an after-dinner Maths-conference speech by Ansie Meiring.
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Report 1

Lab X

Given C(t) = ate−bt

C(1) = C(73)

ae−b = 73ae−73b

73e−72b = 1

−72b = ln(1/73)

b =
ln(73)

72
= 0.05959

C(tr) = Cmin = C(1/120)

atre
−0.05959tr = a

1

120
e−0.05959/120

tre
−0.05959tr = 0.008329

Plotting on calculator and using TRACE, tr = 166 = 6.92 days.

Snow White was better before the prince arrived so there was nothing magical about his kiss.
He was just lucky!!
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Report 2

Lab X: Snow White and the Seven Dwarves revisited — was the prince a hero or
just lucky?

Introduction

The concentration C of the drug in Snow White’s bloodstream was given by

C(t) = ate−bt (1)

for some constants a and b, so we plotted this function for some sample values of a and b,
and found it always had the basic shape shown in Fig. 1 below.

Figure 1: Concentration of drug in Snow White’s blood as a function of time. Note that the
time axis is not to scale so that the relevant points may be seen clearly.

After discussing the problem for a while, we came to the conclusion that the prince would
have been a hero if the concentration of the drug was still above its minimum effective value
when he found Snow White. However, if it had fallen below its minimum effective value when
he found her, then Snow White would have been just resting peacefully at the time and so
his kiss would have just woken her from normal sleep. The problem thus reduces to: “Is the
time shown at the point A in Fig. 1 before or after 7 days have elapsed?”

Assumptions

In order to solve the re-posed problem, we need to determine the exact shape of the curve,
i.e. we need to determine the constants a and b in Eq. (1). To do this, we need some points
on the curve C(t).

From the given information, we will assume that:

1. Cmin =C(1/120), where Cmin is the minimum effective concentration of the drug, and
this is reached when t=1/120 hour (i.e. 30 seconds). Note that we have set t=0 to be
the time when Snow White ate the apple and that the unit of time has been chosen to
be hours.

2. From the fact that Snow White’s condition was unchanged 3 days after the dwarves
found her, we will assume that C(1)=C(73) (3 days = 72 hours and the dwarves found
her 1 hour after she ate the apple).
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Calculations

From Eq. (1), Assumption 2 implies that

ae−b = 73ae−73b

⇒ 73e−72b = 1

⇒ −72b = ln(1/73)

⇒ b =
ln(73)

72
≈ 0.05959. (2)

Now let the recovery time tr be the time when C has fallen back to Cmin, its minimum effective
value. Therefore, from Assumption 1 above,

C(tr) = Cmin = C(1/120)

⇒ atre
−btr = a

1

120
e−b/120

⇒ tre
−btr ≈ 0.008329, (3)

using b from Eq. (2) above.

Equation (3) cannot be solved algebraically, so we used our TI-84 calculators to obtain a
numerical solution. Plotting Y1 = Xe−0.05959X and Y2 = 0.008329 on our calculators with an
appropriate window and zooming in, we found that the two curves intersect near t = 166
hours. Using the intersect function in the CALC menu of our calculator, we found the two
curves to intersect at tr≈166.15 hours or approximately 6.92 days. Thus after seven days, C
will have dropped below Cmin, and the drug will no longer be effective.

Conclusions

Our investigations have shown that some plausible assumptions lead to the conclusion that
after seven days, the concentration of drug in Snow White’s bloodstream would have dropped
below its minimum effective amount. Therefore, when the prince found her, Snow White
would have just been sleeping naturally. His kiss therefore, was not magical. He was just
lucky!!
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4.5 Groupwork

Objectives of learning in groups

• To promote learning by communication and interaction between the group members.

• To stimulate critical thinking.

• To promote learning by increasing the motivation of group members.

• To give group members the opportunity of expressing and clarifying their own ideas.

• To allow group members to pool and pass on information.

• To enhance oral communication skills.

• To allow group members to take more responsibility for their own learning.

Some benefits of doing mathematics in groups

Students find that they

• learn by explaining mathematics to their group in their own terms and consequently
often develop a deeper understanding of the mathematical concepts through having to
talk about them

• persist longer on a tough problem when they are working together (i.e. they don’t give
up as quickly)

• are better motivated and more productive because of the presence of others

• realise that a group discussion often generates a variety of ways of solving a problem
and that a group solution may be better than that which any individual could have
produced

• discover that their peers often have similar difficulties in mathematics

• become more willing to test their ideas and more willing to explore new ways of solving
old problems

• become more willing to attempt a solution to a problem that they don’t immediately
know how to solve.

'
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Over and above the value working in a group has on your learning in Maths, many
of the above objectives lead to skills which are highly valued in the workforce. Many
jobs in the workplace are either too big or too complex to be handled effectively by
any one person. Hence the need to be able to tackle problems cooperatively in a group
and to communicate solutions effectively to others. Employer groups are continually
complaining that new graduates lack oral and written communication skills, and lack the
ability to work effectively in teams.
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Formal groupwork evaluation

Rationale

One characteristic of the most effective groups is that they periodically review how they
are functioning and performing as a group, with the aim of improving their performance.
To encourage you to do the same, we will give you help in improving your performance as
group members, and once each semester there will be a formal evaluation of your groupwork
performance. These evaluations will count for 2% of your total mark.

Procedure

You will be asked to rate your performance and the performance of the other members of your
group, using the criteria and evaluation scheme shown on the next page. Your Groupwork
Evaluation mark will be the mean of the total mark given to you by yourself and by each of
the other members of your group. Individual evaluations will be completely confidential.

Is this a fair and valid assessment procedure?

Some concerns have been expressed as to the fairness and validity of this assessment scheme.
We think it is fair and valid; the points below say why.

• Assessment of groupwork performance is better done by students than by staff, because
it is the students in a group who know best how well each member is contributing to
the performance of the group. Educational research has shown that, for some sorts of
assessment tasks, provided students are given clear guidelines on what and how to mark,
and their marking is monitored, they can assess each other just as well as a member of
staff can, and in this case probably better. The information on the following page gives
clear guidelines on what and how to mark. We check the marking, and will not accept
unreasonably high or low marks, so the procedure is monitored.

• To allow for bias or differing standards of marking, we take the mean of marks given to
a person by themselves and every other member of the group. If the marks vary wildly
from person to person, we investigate the discrepancy and re-evaluate where necessary.

• From our perspective (with a few exceptions which we dealt with), this scheme has
worked well in the past, and we believe the procedure to be reasonable and fair. Student
surveys have also shown that a significant number of students find the feedback they
have received from these evaluations to be quite helpful.

232



Groupwork Evaluation Sheet Your The names of the other
name members of your group

Use the following five-point scale to evaluate the

performance of yourself and the other members

of your group. Use only integers 1 – 5.

5 = excellent (done regularly / is effective /

stands out in a positive way)

3 = okay (done sometimes / reasonable, but

room for improvement / doesn’t stand out)

1 = poor (done rarely, if at all / needs lots of

improvement / stands out in a negative way)

Lab participation

1. Contributes regularly to group discussions.

2. Involved in all aspects of completing the lab.

Oral communication skills

3. Explains ideas / concepts well.

(Explains things logically, clearly, simply.)

4. Is prepared to listen to others.

(Interrupts only for clarification; listens well: uses

ideas of others as a springboard for further ideas.)

Leadership

5. Helps keep the group “on task” and “on track”.

(Refocusses the group after some socialising;

leads and structures discussions; suggests

“plans of attack”.)

6. Encourages all group members to contribute.

(Doesn’t let one member of the group dominate;

doesn’t tolerate non-contributors.)

7. Monitors the work of the scribe.

(Checks clarity of expression; suggests and checks

appropriate use of tables/graphs/figures/. . . .)

Supportive of group members

8. Values the learning of all group members.

(Doesn’t leave anyone behind; helps others to

understand.)

9. Maintains positive working relationships.

(Provides positive feedback to others; supports

innovation; criticises the ideas of others

constructively, not personally.)
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4.6 Instructors’ guide

First lab

1. As students walk in, they are given a number and a Lab Manual.

2. Students find their seat in the room according to the number they are given.

3. Introduce lab instructors.

4. Explain what labs are about (Lab Manual).

5. Explain that they are in random groups in this lab, but for the remaining labs they
should choose their own groups (in which they will remain for the rest of the semester).

6. Hand out the lab and ‘set them loose’.

Second lab

1. Form their own groups if not already done.

2. Briefly explain why we think working in groups is a good idea (more details in the Lab
Manual for them to read at their leisure) and that we’ll be stopping with 15 minutes to
go so that we can discuss what makes an effective group effective.

3. Set them loose on the lab.

4. Reminder : Finishing up in 5 minutes.

5. What makes an effective group effective?

Discussion

• To students: You’ve now had experience with working in a group in a lab and un-
doubtedly most of you have had other experiences of working in groups. Some groups
are more effective than others. What we’d like you to do now is, for the next 5 minutes,
discuss with the other members of your group, what you think makes an effective group
effective. Jot down your conclusions and at the end of the 5 minutes, we’ll pool your
ideas.

• Five minutes later: Ask a variety of groups for one idea that they came up with.
Write on the OHP or whiteboard. Keep asking until no new ideas are forth coming.

• Point out the key themes and tell students: “We’ll distil these ideas and remind you
about them during the semester”. Tell them they’ll be asked to evaluate each other on
how effectively they work together as a group later in the semester. More details to be
given about this in the next lab.
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Third lab

1. Distribute notes on conclusions from the What makes an effective group effective? dis-
cussion.

2. Discuss the groupwork-evaluation questions.

Later lab

1. Students to come out to the front to fill in a Groupwork Evaluation Sheet. They are
not to discuss with each other how they fill this in. Scores which are wildly inconsistent
or totally unrealistic (from our perspective) will be investigated by a lab instructor.

2. Results to be returned next lab.

End of semester

Review how the scheme worked and whether any changes need to be made.

235



5 PROGRAMS

5 Programs

5.1 Copying programs

From the website

You will need either TI Connect or TI Connect CE for this. If your TI-84 has a mini-
USB port,59 use TI Connect CE, otherwise use TI Connect. Both are available for free at
education.ti.com. Click on Downloads and follow through.

To copy a program from the website, open up/unzip the program folder on the website and
drag the program you want (see Section 5.3 Program Protection below) onto your desktop or
into another folder.

Connect your calculator to your computer with the appropriate cord and start TI Connect
or TI Connect CE.

TI Connect CE

TI Connect CE should recognise your calculator. The screenshot below60 shows TI Connect
CE, set up for program transfers, with a TI-84 Plus calculator connected.

Click on the central icon of the three icons in the left-hand column; this is for transfers between
computer and calculator.61 As in the screenshot above, the contents of your calculator should
be shown.

On the left of the second row of icons at the top of the screen is an icon for copying programs
from your computer; click on this, select the desktop or folder where you have copied the
program, then click on the program (screenshot over the page). Click on Open (bottom right
of the screen) and follow the prompts to complete the transfer.

59all CE and 84Plus calculators except for some early model 84Plus
60taken from a PC running Windows 7
61The top icon is for downloading calculator screen shots, the bottom icon for editing programs.
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TI Connect

Click on TI Device Explorer. A window for your calculator should open, showing you what’s
on it (figure on the next page).

Click on the + sign next to Program to show the unarchived programs on the calculator.
To see the archived programs (see Section 5.2), click on the + sign next to Program under
Flash/Archive.

Drag the program from your desktop or folder where you have copied the program onto the
calculator window, and the transfer should happen.

TI Connect will also work with the mini-USB cable and both calculator types but is slower
and lacks the program editor of TI Connect CE.
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From another calculator

Do this using the link key
(

2nd X,T,θ,n
)
. This gives a menu like that below left (TI-84CE).

The receiver moves the cursor to RECEIVE with the right arrow (below centre) and presses
enter . This needs to be done before the sender transmits.

The sender presses 3 (Prgm...), selects the program(s) to be sent with the cursor and enter

(above right), moves the cursor to TRANSMIT with the right arrow and presses enter to start
transmission.

If a program is already on the receiving calculator, you will get a menu of options.

Press quit on both calculators to return to the Home screen.

Group programs

Sometimes, several programs are grouped together in a group file, for example when a program
has several subroutines. This ensures that, when you copy the group file to your calculator,
you have all the necessary programs.

To recover the individual programs, press mem
(

2nd +
)

(above left), scroll down to
Group... and press enter . Here you can create a new group file or ungroup an existing one
(above centre). The latter is what we need here. Move the cursor to UNGROUP and press
enter . The group file you have just copied to your calculator should be listed here (above
right). Press the number against its name and all should happen. If you already have some
of the programs on your calculator, a menu will appear giving you options.
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5.2 Archiving and unarchiving

Programs on your calculator can be either in main memory (RAM), and available to run and
edit, or archived (ARC) and not available to run (except on the latest CE) or edit. Archived
programs are indicated by an asterisk in the program list.

To unarchive (or archive) a program, press mem
(

2nd +
)

2 (Memory Management)

(above left) and 1 (All...) (above centre). You will see a list there of everything on your
calculator, starting with the programs (above right). To unarchive a program, move the cursor
onto it and press enter ; the asterisk should disappear. To archive it, press enter , which just
toggles between the two states.

Press quit to return to the Home screen.

5.3 Program protection

Programs in the PROTECTED folders have been locked or protected. This means they can
be run and deleted but not altered in any way. Programs in the other, corresponding, folders
are not protected.

Alteration usually happens when the user stops a program using on but then (inadvertently)
selects GoTo instead of Quit. Any subsequent key presses will alter the program, meaning it
will not work as it should or at all. This is the greatest source of frustration in a class. The
only cure is to copy the program again from someone else.

Using the protected version of the program means that this cannot happen. Recommended
for use in class.

The downside of protecting a program is that the program cannot be read and perhaps
modified on purpose. That is why both protected and unprotected programs are provided.
The only way of knowing whether a program on your calculator is protected is to try to edit
it; the calculator won’t let you if it is.

Protecting and unprotecting a program is done in the editor of TI-Connect CE (but not TI-
Connect). The editor is the bottom symbol in the column of three symbols on the left-hand
side of the TI-Connect CE screen. Once a program is displayed, there is a box to click on to
protect/unprotect it.
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