| Module 11 - Answers | ||||
| Lesson 1 | ||||
| Answer 1 | ||||
|
11.1.1
The graph of f in [-4, 2] x [-2, 20].
Critical point(s): x = 0 Local and absolute minimum of 0 at x = 0. Local maximum of 16 at x = 4 and 4 at x = 2. Absolute maximum of 16 at x = 4. |
||||
|
|
||||
|
| ||||
| Lesson 2 | ||||
| Answer 1 | ||||
|
11.2.1
V
|
||||
|
|
||||
|
| ||||
| Answer 2 | ||||
|
11.2.2
The figure below shows that
|
||||
|
|
||||
|
| ||||
| Lesson 3 | ||||
| Answer 1 | ||||
11.3.1
When x
|
||||
|
|
||||
|
| ||||
| Lesson 4 | ||||
| Answer 1 | ||||
|
11.4.1
|
||||
|
|
||||
|
| ||||
| Self Test | ||||
| Answer 1 | ||||
|
||||
| Answer 2 | ||||
|
||||
| Answer 3 | ||||
|
Because of symmetry, the midpoint of the width of the rectangle will be at
|
||||
| Answer 4 | ||||
Thus,
|
||||
| Answer 5 | ||||
|
||||
| Answer 6 | ||||
|
The area function a(x) is continuous on [0,
|
||||
| Answer 7 | ||||
|
The maximum area of approximately 1.12219 occurs where the first derivative is zero, x
|
||||
|
|
||||
|
©Copyright 2007 All rights reserved. | Trademarks | Privacy Policy | Link Policy |