Module 18 - Answers
 
Lesson 1
 
 Answer 1
 
18.1.1   The area under the curve between x = 0 and x = 5 is .
 
 Answer 2
 
18.1.2   The area under the curve f(x) = x2 between x = 0 and x = b is given by .
 
 Answer 3
 
18.1.3  

The area function associated with f(x) = x3 is .

 
 Answer 4
 
18.1.4   The function for the area under f(x) = x4 between 0 and x is .
 
 Answer 5
 
18.1.5  
 
 Answer 6
 
18.1.6   The derivative of the area function A is the curve function f.
 
Lesson 2
 
 Answer 1
 
18.2.1
 
 Answer 2
 
18.2.2
  

Notice that the coefficient of lnx is approximately 1 and the constant is approximately 0, as denoted by scientific notation E-4.

 
 Answer 3
 
18.2.3
 
 Answer 4
 
18.2.4
The derivative of the area function is the curve function, or in other words .
 
 Answer 5
 
18.2.5

The area function increases at an increasing rate. It is concave upward.

 
Lesson 3
 
 Answer 1
 
18.3.1 The derivative of this integral function is sin(x)/x.

 
 Answer 2
 
18.3.2 If , then and . By the chain rule, . Thus, .

[-2, 2, 1] x [-5, 5, 1]

 
 Answer 3
 
18.3.3
 
 Answer 4
 
18.3.4
 
 Answer 5
 
18.3.5   -cos(x) is an antiderivative of sin(x), so the integral equals -cos( ) - (-cos(0))=2.
 
 Answer 6
 
18.3.6
-cos(x2) - (-cos(x))= -cosx2 + cosx
 
 
Self Test
 
 Answer 1
 
The area function is
 
 Answer 2
 
The derivative of the area function with respect to x is 3x2 which is f(x).
 
 Answer 3
 
The graph of the area function has the shape shown below.
 
 Answer 4
 
 
 Answer 5
 
sin(x2) - sin(x)
 

  ©Copyright 2007 All rights reserved. | Trademarks | Privacy Policy | Link Policy