CABRIGEOMETRY® II

Important

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this equipment. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

Permission to Print

Permission is hereby granted to teachers to reprint or photocopy in classroom, workshop, or seminar quantities the pages or sheets in this work that carry a Texas Instruments copyright notice. These pages are designed to be reproduced by teachers for use in their classes, workshops, or seminars with the accompanying Cabri Geometry II software, provided each copy made shows the copyright notice. Such copies may not be sold and further distribution is expressly prohibited. Except as authorized above, prior written permission must be obtained from Texas Instruments Incorporated to reproduce or transmit this work or portions thereof in any other form or by any other electronic or mechanical means, including any information storage or retrieval system, unless expressly permitted by federal copyright law. Address inquiries to Texas Instruments Incorporated, 7800 Banner Drive, Dallas, TX 75251, M/S 3918, Attention: Manager, Business Services.

TI Product and Services Information

For more information about TI products and services, contact TI by e-mail or visit the TI calculator home page on the world-wide web.

```
e-mail address: ti-cares@ti.com
internet address: http://www.ti.com/calc
```

[^0]
Guidebook for Macintosh ${ }^{\circledR}$, Windows ${ }^{\circledR}$, and MS-DOS ${ }^{\circledR}$

Dive into Geometry

About Cabri Geometry II

Cabri Geometry II lets you construct and explore geometric objects interactively. Jean-Marie Laborde and Franck Bellemain developed Cabri Geometry II at the Institut d'Informatique et Mathématiques Appliquées de Grenoble (IMAG), a research lab at the Université Joseph Fourier in Grenoble, France, in cooperation with the Centre National de la Recherche Scientifique (CNRS) and Texas Instruments.

Texas Instruments, the publisher for Cabri Geometry II in the United States and Canada, is pleased to bring computer-based geometry to classrooms. The geometric foundation of this easy-to-use software encourages exploring and conjecturing-from simple shapes to advanced projective and hyperbolic geometry.

About the Developers

Jean-Marie Laborde is founder and Research Director of Laboratoire de Structures Discrètes et de Didactique (LSD2), a research laboratory within IMAG. He graduated in mathematics at Excole Normale Supérieure in Paris in 1969. He earned a Ph.D. (Thèse d'État) in computer science at the University of Grenoble in 1977. Jean-Marie began work on the Cabri II project in 1981 as an environment for graph theory. He has devoted his research efforts to the use of geometric methods for the study of different classes of graphs, especially hypercubes.

Franck Bellemain earned a Ph.D. in mathematics at the Université Joseph Fourier in 1992. He began work on the Cabri II project in 1986 and is responsible for writing several versions of the software for Macintosh, PC-compatible, and Japanese computers. His research and thesis have been devoted to the use of technology in the classroom.

Cabri Geometry II Features

- Includes interactive analytic, transformational, and Euclidean geometry.
- Allows intuitive construction of points, lines, triangles, polygons, circles, and other basic objects.
- Translates, dilates, and rotates geometric objects around geometric centers or specified points plus reflection, symmetry, and inverse of the objects.
- Constructs conics easily, including ellipses and hyperbolas.
- Explores advanced concepts in projective and hyperbolic geometry.
- Annotates and measures figures (with automatic updating).
- Uses both Cartesian and polar coordinates.
- Provides for user display of the equations of geometric objects, including lines, circles, ellipses, and coordinates of points.
- Allows the user to create macros for frequently repeated constructions.
- Lets the teacher configure tool menus to focus student activities.
- Checks geometric properties to test hypotheses based on Euclid's five postulates.
- Hides objects used in constructions to reduce screen clutter.
- Differentiates objects through the use of paint-like color and line palettes.
- Computes a locus continuously.
- Illustrates the dynamic characteristics of figures through animation.
- Allows the user to save drawings and macros to disk.
- Opens geometry constructions created on the TI-92.
- Provides one square meter of full-size work space, and prints the 8.5 by 11.0 inches (21.59 by 27.94 cm) drawing area.
About this Guidebook vi
CHAPTER 1: LEARNING THE BASICS 1-1
First Steps 1-2
Constructing Objects 1-10
CHAPTER 2: USING THE MENUS 2-1
File Menu 2-2
Edit Menu 2-5
Options Menu 2-7
Help Menu 2-12
CHAPTER 3: USING THE POINTER TOOLBOX 3-1

Pointer 3-2
Rotate 3-3
Dilate 3-4
Rotate and Dilate 3-5
CHAPTER 4: USING THE POINTS TOOLBOX 4-1

Point 4-2
Point on Object 4-3
Intersection Point(s) 4-4
CHAPTER 5: USING THE LINES TOOLBOX 5-1

Line 5-2
Segment 5-4
Ray 5-5
Vector 5-6
Triangle 5-7
Polygon 5-8
Regular Polygon 5-9
CHAPTER 6: USING THE CURVES TOOLBOX 6-1

Circle 6-2
Arc 6-3
Conic 6-4
CHAPTER 7: USING THE CONSTRUCT TOOLBOX 7-1

Perpendicular Line 7-2
Parallel Line 7-3
Midpoint 7-4
Perpendicular Bisector 7-5
Angle Bisector 7-6
Vector Sum 7-7
Compass 7-8
Measurement Transfer 7-9
Locus 7-11
Redefine Point 7-13
Redefine Object 7-14
CHAPTER 8: USING THE TRANSFORM TOOLBOX 8-1

Reflection 8-2
Symmetry 8-3
Translation 8-4
Rotation 8-5
Dilation 8-6
Inverse 8-7
CHAPTER 9: USING THE MACRO TOOLBOX 9-1
ㄴ f
How to create a macro 9-2
Initial Object 9-3
Final Object 9-4
Define Macro 9-5
CHAPTER 10: USING THE CHECK PROPERTY TOOLBOX 10-1

Collinear 10-2
Parallel 10-3
Perpendicular 10-4
Equidistant 10-5
Member 10-6
CHAPTER 11: USING THE MEASURE TOOLBOX 11-1

Distance \& Length 11-2
Area 11-3
Slope 11-4
Angle 11-5
Equation \& Coordinates 11-6
Calculate 11-7
Tabulate 11-11
CHAPTER 12: USING THE DISPLAY TOOLBOX 12-1

Label 12-2
Comments 12-3
Numerical Edit 12-5
Mark Angle 12-7
Fix/Free 12-8
Trace On/Off 12-9
Animation 12-10
Multiple Animation 12-11
CHAPTER 13: USING THE DRAW TOOLBOX 13-1

Hide/Show 13-2
Color 13-3
Fill 13-4
Thick 13-5
Dotted 13-6
Modify Appearance 13-7
Show/Hide Axes 13-8
New Axes 13-9
Define Grid 13-10
INDEX INDEX-1

The Cabri Geometry II Guidebook contains user information about the Cabri Geometry II software. It provides descriptions, procedures, illustrations, and examples for using the software features on Macintosh computers, and Windows ${ }^{\text {TM }}$ and MS-DOS ${ }^{\circledR}$-based PCs.

- Many of the procedures, illustrations, and examples are virtually the same for the different computer types. Significant differences between the Macintosh, Windows, and DOS versions are identified for your convenience.
- Most of the illustrations are from the Macintosh version; several are from the Windows and DOS versions. Due to space limitations, we could not show every illustration for each version. Therefore, some illustrations in this guidebook may be slightly different on your computer.
- Key names are shown in small capital letters such as CTRL for the Control key and ESC for the Escape key. The return key on the Macintosh and the ENTER key on the PC keyboard perform the same function. In this guidebook, "Press ENTER" means to press either ENTER or RETURN.

Structure

The Cabri Geometry II Guidebook contains the following chapters and appendices:

- Chapter 1 describes the basic operations for using Cabri II, starting with checking system requirements for installing the software, through constructing objects, to saving and printing a construction file.
- Chapter 2 describes the Cabri II menus and provides step-by-step procedures for using them.
- Chapters 3 through 13 describe the Cabri II tools and provide step-by-step procedures for using them. Each chapter discusses a specific group of Cabri II tools.

Definitions

The following definitions will help you in your understanding of this guidebook.

point	When used as an instruction, point means to place the screen pointer on top of the object you wish to select.
click	Click means to press and release the mouse button quickly, usually when pointing to a specific location
double-click	Double-click means to click the mouse button twice in succession.
drag	Drag means to point to the object you want to drag, press and hold the mouse button to select the object, and move the screen pointer to a new location. Release the mouse button to stop dragging.
modify	When used as an instruction, modify means to change the appearance, size, location, or orientation of the object.
marquee outline	Marquee outline is the outline of an object in animated dots, similar to a movie marquee.
marquee rectangle	Marquee rectangle is the selection rectangle that appears when you drag with the Pointer tool from an unoccupied location in the drawing window. When you release the mouse button, objects that lie completely within the rectangle are selected.

Chapter 1: Learning the Basics

This chapter provides descriptions and examples of basic operations in Cabri Geometry II. Becoming familiar with these items will enhance your usage. Differences between the Macintosh, Windows, and MS-DOS versions are explicitly described where applicable. For convenience, DOS will be used in the remainder of this guidebook to mean MS-DOS.

The following topics are discussed:

FIRST STEPS	CONSTRUCTING OBJECTS
Checking system requirements	Pointers that guide you
Installing Cabri Geometry II	Creating and selecting points
Starting Cabri Geometry II	Handling ambiguities
Optimizing your Macintosh system	Determining dependent and independent
configuration	objects
Changing your Macintosh system	Dragging
configuration using Cabri Geometry II	Using the Undo/Redo command
Using Cabri Geometry II on a network	Deleting objects
The Cabri Geometry II window	Changing the appearance of objects
Accessing on-line help	Labeling objects
About menus and toolboxes	Scrolling the drawing window
	Saving and printing

First Steps

Checking system requirements

Macintosh DOS

- Macintosh Classic or better.
- DOS-compatible computers (PCs), 386 or better, and running MS-DOS 3.3 or later.
- System 6.0 or later.
- 1 Mb available RAM for a Macintosh Classic. (Memory requirements will be greater for color or larger monitors than on the Classic.)
- Hard disk with 1.2 Mb available for program and demonstration files.

EGA, VGA, SVGA video adapter and a color monitor.

- 3 Mb RAM (minimum) memory installed.
- Hard disk with 2.5 Mb available for program and demonstration files.
- Mouse, or an equivalent pointing device.

Windows 3.1

- 386 PC or better required; 486DX recommended.
- PC must be in 386-Enhanced mode with Virtual Memory enabled.
- VGA, SVGA video adapter and a color monitor.
- 6 Mb RAM (minimum) memory installed.
- 7 Mb available hard disk space for program,

Windows 95

- 386 PC or better required; 486DX recommended.
- VGA, SVGA video adapter and a color monitor.
- 6 Mb RAM (minimum) memory installed.
- 2 Mb available hard disk space for program and demonstration files. demonstration files, and system extensions.
- Mouse, or an equivalent pointing device.
- Mouse, or an equivalent pointing device.

Installing Cabri Geometry II

Macintosh	DOS
1. Create a folder named Cabri II on your hard disk.	1. Insert the Cabri Geometry II DOS diskette in your floppy disk drive.
2. Insert the Cabri Geometry II Macintosh diskette in your floppy disk drive.	2. At the DOS prompt, enter: A: \backslash I NSTALL or B: \backslash I NSTALL, and then follow the screen prompts.
3. Double-click on the Installer on the diskette and follow the directions on the screen.	
Windows 3.1	Windows 95
1. Insert the Cabri Geometry II for Windows diskette \#1 in your floppy disk drive.	1. Insert the Cabri Geometry II for Windows diskette \#1 in your floppy disk drive.
2. From Program Manager, click on RUN and enter A: \backslash SETUP, and then follow the screen prompts.	2. Click on START/RUN and enter A: \backslash SETUP, and then follow the screen prompts.

Installing Cabri Geometry II on a network

If you have purchased the network license for Cabri Geometry II, you may run the software on your network. Use network procedures that are compatible with your network to install Cabri Geometry II. See your Macintosh, Windows, or DOS User's manual or your network documentation for more information, if necessary.

Note: Cabri Geometry II is supplied on high-density diskettes. If your computer will not accept these diskettes, call, 1-800-TI-CARES and a service representative will supply you with low density diskettes.

Installing Cabri Geometry II on a network (continued)

Macintosh and DOS

1. Install Cabri Geometry II on the network server using the instructions given on the previous page.
2. Run the program from the server the first time, and enter the requested information.
3. To run Cabri Geometry II on each network client, go to the directory on the network server where the Cabri Geometry II application is installed. Macintosh users may double-click on the Cabri II icon; DOS users may run Cabri2.exe to start the program.

The procedure described below, for Windows users, allows multiple client computers to run Cabri Geometry II using the application software installed on the network server. Each client computer is provided with the necessary system files to run Cabri Geometry II and a shortcut icon that is linked to the application file on the network server.

Windows 3.1 and Windows 95

1. Install Cabri Geometry II on the network server using the instructions given on the previous page. In the Select Destination screen, you must select a directory that will be accessible from each client computer on the network.
2. Temporarily copy setup.exe and setup.w02 from the installation diskettes to the same directory in which you installed Cabri Geometry II in step 1.
3. On each network client, go to the directory on the network server that contains setup.exe and double-click to on this file to run the setup program.
4. In the Select Destination Directory screen, click on the Browse button and select the same directory that you used in step 1 . Make sure the correct directory is displayed at the top of the window. You may edit the path, if necessary, and then click on OK. Ignore the message that the directory already exists.
5. In the Select Components screen, deselect the first three components. The installation program will determine if the fourth component is necessary for Windows 3.1x users.
6. When Cabri Geometry II has been installed on all client computers, delete the two files that were temporarily copied to the network server in step 2.

Starting Cabri Geometry II

Macintosh	DOS
You can use one of four methods to start the	Type CABRI and press ENTER from the DOS
software on a Macintosh:	prompt directory where the Cabri Geometry II - Use Open in the Finder.
- Double-click on the Cabri II icon.	(Optional) Add the Cabri directory to your DOS
- Double-click on any Cabri Geometry II	path to open Cabri Geometry II from any construction file, tool configuration file, or directory.
macro file.	
- Drag and drop any construction file onto	
the Cabri Il icon (System 7 users only).	

Windows

Double-click on the Cabri II icon.

Optimizing your Macintosh system configuration

If you are starting Cabri Geometry II on a Macintosh for the first time, you may need to make some adjustments to make Cabri Geometry II compatible with your Macintosh computer system configuration

Graphics intensive programs require a large amount of memory to operate. The amount of memory required directly relates to the size of your monitor and to the number of colors chosen to represent graphical elements. Cabri Geometry II may require more memory than other applications due to its interactive nature. Cabri Geometry II can assist you in optimizing your system.

If you see a warning message from the Finder, you need to make some adjustments to your system configuration. This message indicates the amount of memory needed to run Cabri Geometry II efficiently on your computer with your current configuration.

Click the OK button to proceed (Cabri Geometry II does not start). Then close any applications or windows that are currently open. This frees the memory that these applications are using.

To change the amount of memory allocated to Cabri Geometry II, first make sure the Cabri Il icon is selected. Then, from the Finder, select Get Info in the File menu. Once the Get Info window appears, decrease the application memory size to a value that is compatible with your computer.

If you are using System 7, an optional method is to use Virtual Memory to increase the amount of memory available to applications. See your Macintosh User's manual for more information.

The previous dialog box indicates the amount of available memory on your computer. You may also select About this Macintosh in the Apple menu for the same information.

Changing your Macintosh system configuration using Cabri II

If you open Cabri Geometry II and the memory allocation on your Macintosh is not optimal, the following dialog box appears. We recommend that you allow Cabri Geometry II to select optimal parameters for your system automatically or that you select them using the Manual button.

You may wish to quit and modify the settings yourself if you are familiar with the memory and monitor control panels.

If you select the Automatic button, Cabri Geometry II computes the optimal settings for your computer and then quits. The number of colors may change in the process of optimizing your configuration. Double-click on the Cabri Geometry II icon for the changes to be applied to Cabri Geometry II.

If you select the Manual button, Cabri Geometry II continues to the optimization dialog box (see example on the next page) that allows you to optimize your configuration as you want. Read the items in the Current Settings field first, and then manipulate the other fields as described below the example. (You can also access the following dialog box by pressing the OPTION key when starting the software.)

Status:	The status indicates whether or not Cabri Geometry II can run with the current settings.
\# Screen Colors	The number of colors used to display objects is directly related to the amount of memory required to execute Cabri Geometry II. You can click on the up or down arrow buttons in this field to change the number of screen colors. Check the Status field to determine if these values are acceptable. Click on OK to continue.
Memory Setting	The amount of memory available and the number of colors displayed determine the number of objects that can be constructed. You can click on the up and down arrow buttons in this field to change the amount of memory allocated to Cabri Geometry II. The value on the left indicates the amount of memory required to run Cabri Geometry II on your computer in black and white. The value on the right indicates the amount of memory currently available on your computer. Check the Status field to determine if these values are acceptable. Click on OK to continue.
\# Objects	The amount of memory available is directly related to the number of objects that can be constructed. Click on this button to optimize the number of objects that can be constructed. If memory is limited, Cabri Geometry II will probably suggest that fewer colors be used to construct more objects. For optimal performance, Cabri Geometry II attempts to allocate enough memory to construct at least 300 objects.
\# Colors	The number of colors used to display objects is directly related to the amount of memory required to execute Cabri Geometry II. Click on this button to optimize the number of colors displayed. If you use other applications regularly that require 256 colors, you may wish to optimize the number of colors. Given limited memory, this decreases the number of objects that you can construct.

The Cabri Geometry II window

The illustration below shows the Cabri Geometry II window. This window contains the essential elements of the Cabri Geometry II software. A description of each element follows the illustration.

Note: The screen shown below illustrates the Macintosh version. Screens on Windows and DOS systems are similar but slightly different.

Elements of the Cabri Geometry II window

Drawing Window
Menu bar

This region is where you build geometric constructions.
The menu bar contains common graphic user interface menus for file management and editing, together with Cabri Geometry II options.

Toolbar

Attribute icons

Help Icon? ?
(Macintosh)

Help menu option
(Windows, DOS)
Selection pointer

Close box

Zoom box
(Macintosh, Windows)

Size box

(Macintosh, Windows)
Scroll bars
(Macintosh, Windows)

The toolbar contains tools for building constructions. Eleven toolboxes reside on the toolbar (see illustration below). To access a toolbox, press and hold the mouse button on the icon. The items in that toolbox appear.

The attribute icons are not displayed unless you select the Show Attributes command in the Options menu on the menu bar. These allow you to modify the appearance of objects. You can create an attribute palette (tear-off menu) by dragging an icon from the attribute icons to the drawing window.

Clicking on the help icon ?? creates a help window at the bottom of your screen that contains useful help messages for each command. Clicking on the ?? again removes the help window.

Clicking on the Help menu option and selecting Help or pressing the F1 key toggles the help window ON and OFF.

The selection pointer is the primary tool for selecting menus and building constructions. The shape of the pointer changes according to its current operation and location.

The close box closes the window and creates a dialog box that allows you to save your work if you have not done so.
The zoom box toggles the size of the window between the current size and the full screen size.

Dragging the size box to a new location resizes the drawing window.

Clicking in the scroll bars or on the scroll arrows moves the contents of the drawing window vertically or horizontally.

About menus and toolboxes

Operations are grouped by type in the pull-down menus located on the menu bar and on the toolbar. Once a tool is selected, it remains active until you select another tool. If the icon of the tool you want is shown on the toolbar, select it by clicking once on the icon. Commands in the menu bar must be selected each time they are used.

Descriptions of the Cabri Geometry II menus and toolboxes follow:

MENUS	
Apple (Macintosh only)	Apple menu items or the Cabri Geometry II logo screen.
File	Commands for opening, closing, saving, or printing constructions. Edit or replaying constructions.
Options	Commands for tool configurations, hide/show attributes, preferences, or setting software defaults (Macintosh only).
Window (Windows) Standard Windows display options. Help (Windows, DOS)	Help options.
TOOLBOXES	Tools for ...
Pointer	Selecting or for free-hand transformations.
Points	Constructing points.
Lines	Constructing linear objects.
Curves	Constructing circles, arcs, or conics.
Construct	Euclidean geometry constructions.
Transform	Transformational geometry.
Macro	Making macros. New macros become part of this toolbox.
Check Property	Checking properties of constructions based on Euclidean geometry.
Measure	Measurements or calculations.
Display	Annotating your constructions or animating objects.
Draw	Changing the appearance of objects or displaying the coordinate system.

Accessing on-line help

Macintosh DOS

- Access on-line help by clicking on the help icon ?? in the menu bar of the Cabri Geometry II drawing window.
- A window appears at the bottom of your drawing that contains information about the tool currently selected.
- Select additional tools to see their help information.
- Remove the help window by clicking on the help icon again or by clicking on the close box in the help window.
- The close box appears when you click in the help window.

Windows

- Access on-line help by clicking on the Help menu option in the menu bar of the Cabri Geometry II drawing window and selecting Help.
- A window appears at the bottom of your drawing that contains information about the tool currently selected.
- Select additional tools to see their help information.
- Remove the help window by clicking on the help icon again.

Pointers that guide you

Several types of pointers exist to help guide you through your constructions. The pointers are illustrated below.

Pointer	Cursor looks like...	
arrow	The pointer is in the toolbar, menu bar, or scroll bars.	
cross hair	The Pointer tool is active.	
construction pencil	A construction tool is active.	
selection pencil	A construction tool is active and a point can be placed on an object.	
pointing hand	A point can be selected.	
selection hand	An object is dependent or to show the intermediate stage between selecting an object and dragging.	
dragging hand	An object can be moved.	
open hand	The command key (Macintosh) or the cTRL (DOS) is pressed.	
grasping hand	She window can be scrolled using the	

Creating and selecting point*s

All objects are constructed using one or more points. You create or select points when a tool is active. In general, the order of operation is to select a construction tool from the toolbox, and then to create or select the required points that define the tool.

A point is created by a single click of the mouse. You can create points in unoccupied space when the construction pencil © cursor is visible. You can create a point on an object or at the intersection of two objects when a cursor message appears and the pointer changes to the selection pencil $\mathbb{\square}$ cursor. The following examples illustrate how to create and select points.

Example 1: Creating the perpendicular bisector of two points

1. Select the Perpendicular Bisector tool from the Construct toolbox.
2. Move the to any place in the drawing window and click (not hold down) once.

A flashing point appears on the window, indicating that this point has been selected for the construction.
3. Move to another place and click again.

A second point appears as well as the perpendicular bisector of the segment connecting these two points. (Note: The segment does not appear.)
If the pointer is near a valid object, a cursor message is displayed. In some cases, it is sufficient to select only one object to define a construction, as the next example demonstrates.

Example 2: Creating the perpendicular bisector of a side of a triangle

1. Select Triangle from the Lines toolbox.
2. Move the to any place in the drawing window and click. Move to a second location and click, and then to a third location and click.

A triangle appears in the drawing window with the three points selected as vertices.
Note: Depending on the speed at which you constructed these three points, the sides of the triangle might appear during the construction. Try doing this slowly and watch the triangle materialize.
3. Select Perpendicular Bisector from the Construct toolbox.
4. Move the cursor as follows so that the message Perpendicular bisector of this side of the triangle appears.

When the cursor is in unoccupied space in the drawing window, the appears. Move the cursor near a side of the triangle. The cursor changes from the © to the $s^{\sin }$ with the message Perpendicular bisector of this side of the triangle. (If the cursor is near a vertex of the triangle, the cursor message This point appears.)

Click once, and the perpendicular bisector of the side of
 the triangle appears.

Handling ambiguities

When two or more objects simultaneously occur at the location of the pointer, the magnifying glass Q cursor and the cursor message Which object? appear. Press and hold down the mouse to see the options in a dialog box. Select an object by pointing to the appropriate choice in the box and releasing the mouse.

When multiple objects are present, they are listed in the order in which they were created. Selecting an object causes it to display in marquee outline. You can move (drag) it to a new location if it is an independent object and the Pointer tool is selected. Click in unoccupied space to deselect the object. If you are using a construction tool, the object is selected for the construction.

Determining dependent and independent objects

All objects are created using one or more points. The manner in which you create an object determines whether it is dependent or independent of the object. This distinction becomes very important with respect to dragging objects. An example of this distinction is given after the section "Dragging."

A point constructed by itself is called a basic point.
An independent object is an object created using only basic points. Independent objects can be moved (dragged) but not modified directly. By moving the basic points used for their construction, you can modify them indirectly.
A dependent object is an object constructed using an independent object (or another dependent object). Dependent objects cannot be moved (dragged) or modified directly. You can move or modify them indirectly by moving the basic points or independent objects responsible for their existence.

The more elaborate a construction becomes, the more difficult it can be sometimes to distinguish these types. However, the Cabri Geometry II software will assist you.

Dragging

Dragging objects is valuable for generating conjectures. You can modify an object by dragging all or part of it to a new location. Whether or not an object can be changed depends directly on how it was created.

You can drag (move) a basic point to a new location, modifying, in turn, any object constructed using it. An independent object can be modified with one of the tools from the Pointer toolbox. You cannot alter a dependent object directly by dragging, but you can change it by dragging the basic points used in its construction.

Whenever an object can be dragged, the pointer changes to the selection hand siny momentarily and then to the dragging hand © cursor. When the © is visible, the selected object follows the pointer as you move it.

If your computer's performance is sluggish, you may need to move the pointer to the location you want and wait for the computations to finish with the new characteristics. This is particularly evident when there are many objects in the drawing window.

If the object is dependent (cannot be dragged), the pointer changes to the selection hand sing and then reverts to the cross hair + cursor.

Example 3: Evaluating basic points, independent objects, and dependent objects

1. Construct the perpendicular bisector of a side of a triangle (see Example 2).
(The vertices are basic points, the triangle is an independent object, and the perpendicular bisector is a dependent object.)
2. Basic points:

Select Pointer from the Pointer toolbox.

Move the + near a vertex of the triangle (the cursor changes to the $s^{\text {in }}$ with the message This point).

Press and hold down the mouse button.
The cursor changes to the $s^{\text {sm }}$ and then almost immediately to the ©.

When you drag the point, the triangle changes its size and shape, and the perpendicular bisector changes accordingly.

These results are characteristics of using a basic point.

An inquiry that could be made here is: "When does the perpendicular bisector of one side of a triangle contain a vertex of the triangle?"

3. Independent objects:

Move the + near a side of the triangle (the cursor changes to the $s^{\text {thy }}$ with the message This triangle).

Press and hold down the mouse button.
The cursor changes to the $\mathrm{s}^{\text {tm }}$ and then almost immediately to the ©.

Continue to hold down the mouse and move the triangle about the drawing window.

The triangle does not change its size or its shape, while the perpendicular bisector moves along with the triangle. The triangle was constructed using three basic points as
 its vertices; therefore, it is an independent object and can be moved.
4. Dependent objects:

Move the + near the perpendicular bisector (the cursor changes to the $s^{\text {sh }}$, with the message This line).

Press and hold down the mouse button.
The cursor changes to the $s^{\text {sm }}$ and then almost immediately back to the + .

The perpendicular bisector cannot be modified directly; it is a dependent object.

Note: You can modify the perpendicular bisector indirectly by dragging the basic points or the independent objects used for its creation.

Example 4: Creating the circumcenter of a triangle

1. Construct the perpendicular bisector of one side of a triangle (see Example 2.)
2. Construct the perpendicular bisector of a second side.

3. Choose Intersection Point(s) from the Points toolbox.

4. Point to one of the perpendicular bisectors (the cursor message This line appears) and click once.

The line changes to marquee outline.
5. Point to the other perpendicular bisector. After the cursor message appears, click once.

The first line returns to solid, and a point at the intersection of the two lines appears. This point of intersection is known as the circumcenter of the triangle.

The vertices of the triangle are basic points. The triangle is an independent object because its existence depends only upon basic points. The perpendicular bisectors are dependent objects because their existence depends upon independent objects (the sides of the triangle). The circumcenter is a dependent object because it was created using dependent objects (the perpendicular bisectors).

In Example 5, we will first create a circle, and then inscribe a triangle. You can move the circle by dragging its center point or modify it by dragging its circumference. The triangle cannot be moved. However, you can modify it by dragging any one of its vertices around the circle.

Example 5: Inscribing a triangle in a circle

1. Choose Circle from the Curves toolbox.

2. Move the to any place in the drawing window and click once.

A flashing point appears.

3. Move the cursor away from the flashing point.

A circle appears with the flashing point as its center.
Click again to finish constructing the circle.
Note: The flashing point changes to solid to indicate the construction is completed.

4. Choose Triangle from the Lines toolbox.
5. Move the to any point of the circle (the cursor message On this circle appears), and click once.
6. Move the cursor to a second and third point on the circle, clicking once at each point.

A triangle becomes inscribed in the circle.
7. Choose Pointer from the Pointer toolbox.
8. Move the + cursor near the center point (the cursor message This point appears).

Press and hold down the mouse button until the © appears, and drag the center point around the drawing window.

Note: The radius of the circle remains unchanged.

9. Move the + near the circumference of the circle (the cursor message This circle appears).

Press and hold down the mouse button until the © appears, and drag the circumference.

Note: The center point of the circle remains fixed while the radius changes, and the vertices of the triangle stay on the circle.
10. Move the + near a vertex of the inscribed triangle (the cursor message This point appears).

Press and hold down the mouse button until the © appears, and then drag the point.

Note: The point can only be moved along the circle.

Using the Undo/Redo command

You can cancel an operation that has just been completed by using the Undo/Redo command in the Edit menu. Only the most recent operation can be undone.
To review additional steps in your construction, see the Replay Construction command in the Edit menu. This command allows you to replay each step of a construction.

Deleting objects

Delete objects by selecting them, and then pressing DELETE or selecting the Clear command in the Edit menu.

Select multiple objects by pressing the mouse in free space and dragging a marquee rectangle around the objects to be deleted. Only objects that are fully enclosed by the marquee rectangle will be deleted. All selected objects are displayed in marquee outline.

Select all objects in the drawing window by using the Select All command in the Edit menu. Then press DELETE or select Clear from the Edit menu. You can also clear the entire drawing window by pressing COMMAND+A (Macintosh) or CTRL+A (Windows, DOS) simultaneously, releasing, then pressing DELETE.

WARNING! When an object is deleted, all objects that depend on that object are deleted as well. It is possible to delete an entire construction by deleting a single point. If you accidentally delete an object, you can recover it by using the Undo/Redo command in the Edit menu.

Example 6a: Deleting objects - Method 1

1. Construct a circle and an inscribed triangle (see Example 5).
2. Select Pointer from the Pointer toolbox.

3. Point to the center point of the circle and click. The center point flashes.

Press the DELETE key.
The point, the circle, and the triangle disappear.

1. Repeat steps 1 and 2 in Method 1, or select Undo/Redo in the Edit menu.
2. Point to the circle and click.

The circle appears in marquee outline.
Press the DELETE key.

The circle and the triangle disappear, but the center point remains.

Example 6c: Deleting objects - Method 3

1. Repeat steps 1 and 2 in Method 1, or select Undo/Redo.
2. Point to the triangle and click.

Press the DELETE key.
The triangle disappears, but the circle, its center point, and the vertices of the triangle remain.

Example 6d: Deleting objects - Method 4

1. Repeat steps 1 and 2 in Method 1, or select Undo/Redo.
2. Point to a vertex of the triangle and click.

Press the DELETE key.
What happened? How does this differ from Method 3?

Changing the Appearance of Objects

You can change the appearance of objects from the Attributes toolbar or the Draw toolbox.
Access the Attributes toolbar from the Hide/Show Attributes command in the Options menu. In the Draw toolbox, use the Fill, Thick, Dotted, or Modify Appearance tools.

To apply attributes from tools in the Draw menu, select the tool, and then select the object to be modified. To use an option from the Attributes toolbar, first select the objects to be modified, and then select the attribute.

Labeling objects

You can label points in two ways - as you create them or with the Label tool in the Display toolbox.
Labeling objects as they are created is intended for quick access and is limited to five alphanumeric characters. Editing is not available at this stage. However, after constructing the object, you can edit the label with the Label tool.

Example 7a: Adding labels during construction

1. Select Triangle from the Lines toolbox.
2. Click on the drawing window. Then type A.

A point appears with a label A beside it.
3. Move the $\mathbb{\mathbb { B }}$, click once, and then type \mathbf{B}.

Another point, a segment connecting the two points, and a label B appear.
4. Move the to a new position, click once, and type C.

The completed triangle appears as well as the label C beside the last point created.

The Label tool in the Display toolbox allows you to attach labels to a point, line, or circle. Once attached to the object, labels cannot be detached. You can position them near the object using the Pointer, and they will retain that position through all modifications to the object.

1. Select Triangle from the Lines toolbox.

2. Construct a triangle on the drawing window.
3. Select Label from the Display toolbox.

4. Move the + near a vertex of the triangle.

The cursor changes to the I-beam X (the cursor message This point appears).

5. Click once and an edit box appears.

Note: (Macintosh only) On the top row are four options that generate pull-down menus: C for font character set, \mathbf{S} for font size, F for font style, and the last box for text
 color.
6. Type a name for the vertex, and then click anywhere outside the edit box.

The box disappears, but the name remains.
7. Repeat for the other vertices.

You can also apply comments to measurements immediately after creating them. Just begin typing characters after creating the measurement.

Example 8: Comments

1. Select Triangle from the Lines toolbox.
2. Construct a triangle and label its vertices \mathbf{A}, \mathbf{B}, and \mathbf{C}.
3. Select Area from the Measure toolbox.
4. Move the cursor to a side of the triangle until it changes to the $\leqslant^{\text {shy }}$ (the cursor message This triangle appears), and click once.

Depending on the triangle and the default settings, a number and units label, such as $4.520 \mathrm{~cm}^{2}$, appears.
5. Begin typing the comment Area of $\mathrm{ABC}=$.

The comment attaches to the left side of the measurement.

6. Select Comments from the Display toolbox.
7. Move the \ddagger near the area (the cursor message Edit this text appears and the cursor changes to the l).

Click once and an edit box appears with the value of the area and the comment entered in step 5 on the text line.
8. Move the cursor between "of" and "ABC" in the text line, and add the word triangle.
The text now reads "Area of triangle $A B C=4.520 \mathrm{~cm}^{2}$."
9. Click on the toolbar or press ESC to make the edit box disappear, leaving the comment on the drawing window.

Scrolling the drawing window

You can scroll the drawing window within a one-square-meter region by three methods:

- Use the Show Drawing command in the File menu to view the entire one-square-meter region in compressed form. You can reposition the active widow, which allows you to work in another section of the drawing. (Note: When you click and hold the mouse button, the grasping hand cursor (x\%) appears.)
- Use the scroll bars on the right and bottom sides of the drawing window (Macintosh only). Clicking on the scroll bars or buttons moves the drawing in a horizontal or vertical direction.
- Press the COMMAND key (Macintosh) or the CTRL key (Windows, DOS), then press down on the left mouse button. The screen scrolls in the direction that you move the pointer.

Saving and printing

You can save a construction to a file at any time using the Save and Save as... commands in the File menu. If the construction has never been saved, these two commands have the same effect.

The Save dialog box allows you to name the construction and to choose the folder where it will be stored. If the construction has already been saved, the Save command is active only if the figure has been modified since the previous save. The new version of the construction replaces the older one.

The Save as... command allows you to save the figure to another folder or name without deleting the older version.

You can print your Cabri Geometry II constructions on a printer. Printed constructions enhance understanding by providing accurate, printed-to-scale manipulatives. The entire one-square-meter drawing or a specified portion can be printed in both black and white, or color.

Chapter 2: Using the Menus

The Cabri Geometry II menus contain standard graphic user interface functions for file management and editing, plus options for Cabri Geometry II. They are located on the menu bar at the top of the Cabri Geometry II window.

The following menu options are available. Each option is discussed in this chapter in detail according to its order on the pull-down menus.

FILE MENU	EDIT MENU	OPTIONS MENU	HELP
New	Undo/Redo	Show/Hide	Help
Open...	Cut	Attributes	(Windows, DOS)
Close ${ }^{1}$	Copy	Defaults... ${ }^{1}$? (Macintosh)
Save	Paste	Preferences...	About (Cabri II...)
Save as...	Clear	Tool Configuration...	
Revert... ${ }^{4}$	Select all	Language ${ }^{5}$	
Show Drawing... ${ }^{4}$	Select all	Font ${ }^{5}$	
Show Page... ${ }^{3}$	Replay Construction	Size ${ }^{5}$	
Page Setup... ${ }^{5}$ Printer Setup... ${ }^{2}$	Refresh Drawing	Style ${ }^{5}$	
Print...			
Quit			

Note: ${ }^{1}$ Macintosh only
${ }^{2}$ DOS only
${ }^{3}$ Windows only
${ }^{4}$ Macintosh, DOS only
${ }^{5}$ Macintosh, Windows only

The File menu contains commands that relate to opening, closing, saving, printing, and viewing Cabri Geometry II constructions.

A description of each item in the File menu as it relates to Cabri Geometry II is given below. Consult your Macintosh, Windows, or DOS User's Guide for more information on the following menu items: New, Open, Close, Save, Save as, Page/Printer Setup, Print, and Quit.

New

Keyboard shortcut: COMMAND+N (Macintosh); CTRL+N (Windows, DOS)
The New command opens a new, blank Cabri Geometry II drawing window. For the Macintosh and Windows versions, the window appears on top of all other windows and is the active window. The window is not assigned a name until you save it using Save or Save as. For the DOS version, only one drawing window at a time is displayed. Therefore, you are prompted to save your current drawing before the new drawing window takes effect.

Open...

Keyboard shortcut: COMMAND+O (Macintosh); CTRL+O (Windows, DOS)
The Open command generates a dialog box for opening an existing construction file, macro, tool configuration file, preference file, or TI-92 file. Use the dialog box to specify the folder and file to open.
A construction file is displayed with the view that was visible when the file was last saved. You can view a summary of the steps used to create the construction interactively by selecting Replay Construction in the Edit menu.

A macro appears in the Macro toolbox and may be used immediately in the construction.
A tool configuration file immediately alters the Cabri Geometry II tool configuration as defined in the file. See Tool Configuration in the Options menu for more information.

A preference file immediately alters Cabri Geometry II preferences as defined in the file. See Preferences in the Options menu for more information.

Close

Keyboard shortcut: COMMAND+W. You also can click in the close box, located on the top left-hand side of the active window in the title bar.

The Close command (Macintosh, Windows) closes the active drawing window. If changes were made to the construction file, the Close dialog box appears and provides the option to save the changes. If the file is new, the dialog changes to the Save dialog box. Cabri Geometry II is still active in your computer's memory after all files have been closed and does not free memory for applications other than Cabri Geometry II.

Save

Keyboard shortcut: COMMAND+S (Macintosh); CTRL+S (Windows, DOS)
The Save command saves the construction in the active drawing window to the file name specified previously. The Save as dialog box appears if the file was not saved previously. The construction remains open and active after saving.
The current view of a construction is saved with the file so that it opens to the same view when reopened. Any macros used in the construction are automatically saved with the file and are available for use in future edit sessions with the saved file.

Save as...

The Save as... command generates a dialog box for saving and naming the construction in the active drawing window. The Save as dialog box provides the interface for saving a new file, saving a file to a new file name, file type, or location, or saving an existing file. Enter the information requested in the dialog box to save the file.

For the Macintosh only, you can save the file as a text file if you wish to view its contents with another program. For example, you can copy data in the Cabri Geometry II table to word processing or spreadsheet files for further analysis using this method.

Revert...

The Revert... command returns the construction to its most recently saved version. This feature is useful if you make modifications to your file that you later want to disregard. Revert is especially useful when demonstrating a construction in the classroom.

Show Drawing... (Macintosh, DOS), Show Page... (Windows)

The size of the drawing window in which you build a geometric construction is one meter by one meter. Show Drawing/Show Page lets you view this entire region. The entire figure, with the exception of text or measurement, is displayed in the following dialog box shown below.

A small window represents the portion of your construction that is visible on your computer screen. The construction cannot be manipulated at this stage, but you can position the window anywhere within the one-square-meter limits of the construction. Drag the window to move it to a new section of your construction. Click OK or Cancel to accept or cancel the operation.

- For the Macintosh, the visible part of your construction can also be moved by clicking on the scroll bars or by dragging the drawing window while pressing the COMMAND key. Pressing the COMMAND key changes the pointer to the open hand $\$^{m} /$ cursor; pressing the mouse button and the COMMAND key changes the pointer to the grasping hand cursor. You can perform either method without accessing the Show Drawing/Show Page command.
- For the DOS versions, the visible part of your construction can also be moved by dragging the drawing window with the grasping hand cursor. Moving the pointer to the drawing window changes the pointer to the open hand ${ }^{\pi m} / \mathrm{cursor}$; pressing the left mouse button changes the pointer to the grasping hand cursor. You can perform either method without accessing the Show Drawing/Show Page command.
- For the Windows version, the visible part of your construction can be moved by also clicking on and then dragging the drawing window.

Page Setup... (Macintosh, Windows)

The Page Setup... command lets you specify the paper size and orientation (landscape or portrait), as well as other options that vary according to the printer.
Note: Cabri Geometry II prints figures to scale. That is, a triangle in your construction will be printed exactly as specified, preserving the length of the sides and the measurement of the angles. If you change the Reduce or Enlarge option from 100%, the exact size of the figure will not be preserved.

Print... (Macintosh, Windows)
The Print command for the Macintosh and Windows versions opens a dialog box that provides several options for printing your construction. After specifying the options you want in Page Setup and Print, click the Print button to send your construction to the printer.
The Placement options... (Macintosh only) lets you position your construction as it will appear on a printed page by dragging the clear page in the screen. The drawing window (your computer screen) is shown for a reference. Select Print labels in Italics to automatically print all labels in italic font.
If your construction requires more than one page, select the Posterize option (Macintosh only) to number each page. You can select the position of the pages by using the pointer to drag the center page (outlined with bold lines) in the drawing region. You can change the number of pages by dragging the boxes in the upper-left and lower-right corners of the print region. This option makes it fun to create very large drawings, which can be taped together.

Printer Setup... (DOS)
The Printer Setup... command for the DOS version lets you select a printer and respective print quality, and to specify the page size (US Letter, US Legal, or A4 Letter) and orientation (portrait or landscape). Click on the selections to see the menu options.
The Printer option lets you select one of the printers listed below. If your specific printer is not in this list, select a printer that may be similar. (Note: The print quality setting that you select may affect the throughput of your printer. Allow ample time for high quality printer settings.)

- IBM/Epson 9 pin • DeskJet 500C (CYM)
- IBM/Epson 24 pin
- DeskJet 500C (RGB)
- Epson Stylus Color
- LaserJet HP
- DeskJet 500
- Proprinter XL

Print... (DOS)

The size of the drawing window in which you build a geometric construction is one meter by one meter. Print lets you view this entire region before printing your construction. The entire figure, with the exception of text or measurement, is displayed.

A small window represents the portion of your construction that will be printed. The construction cannot be manipulated at this stage, but you can position the window anywhere within the one-square-meter limits of the construction. Drag the window to move it to a new section of your construction. Click OK or Cancel to accept or cancel the operation. Clicking on OK sends the screen image to your printer.

Quit

Keyboard shortcut: COMMAND+Q (Macintosh); CTRL+Q (Windows, DOS)
The Quit command closes all open files and quits Cabri Geometry II. It gives you the opportunity to save changed or unsaved files.

Edit Menu

The Edit menu contains commands that relate to modifying the construction sequence, commands for exporting items in the drawing to the clipboard, and commands for selecting and deleting items in the drawing.

Undo/Redo

Keyboard shortcut: COMMAND+Z (Macintosh) or CTRL+Z (Windows, DOS)
The Undo/Redo command lets you undo the previous action or redo the undone action. These commands have a recall of one action only. If you wish to review additional action steps, see Replay Construction on the next page.

The Windows version has an option in the Options/Preferences menu to let you disable the Undo command. Disabling Undo provides for faster manipulation of very large and complex figures.

Cut/Copy/Paste

For the Macintosh and Windows versions, the Cut, Copy, and Paste commands use the Macintosh/Windows clipboard to import and export selected items to and from a construction. For the DOS version, these edit commands use a custom Cabri Geometry II clipboard.

Cut removes the selection from the construction and places it on the clipboard (Macintosh, Windows), or in the file \$CLIPCAB.FIG (DOS).

Copy places the selected objects on the clipboard without removing them from the construction. Additionally, for the DOS version, the selection is saved to a file depending on the type of items that are selected. Copying a construction creates two files $\$$ CLIPCAB.BMP and \$CLIPCAB.FIG. Copying a table that contains data creates the file \$CLIPCAB.TXT. Therefore, to copy and paste a construction or table into another application, such as a word processor or spreadsheet, when using the DOS version, select the objects and click on Copy. Then open the other application and insert the appropriate .BMP, .FIG, or .TXT file to the desired location.

Paste copies the objects from the clipboard into the drawing window that is active. After pasting, the clipboard still contains the objects. Therefore, you can paste them in another location or Cabri file, if you desire. In general, objects can be pasted as many times as available memory allows. One exception is copying the table. Because Cabri Geometry II defines only a single table and the contents of a table are dependent upon other objects, Cabri Geometry II cannot duplicate the table within the software. Further, only the contents of the table (the numerical values) are copied to another application.

Objects are pasted in the same position in which they were copied. If you are pasting to the same Cabri Geometry II drawing from which you cut or copied the objects, they are pasted in the same position but with a small offset in location. The pasted objects are independent of the objects from which they were cut or copied.

Keyboard shortcuts: COMMAND+X (Macintosh) or CTRL+X (Windows, DOS) for Cut, COMMAND+C (Macintosh) or CTRL+C (Windows, DOS) for Copy, and COMMAND+V (Macintosh) or CTRL+V (Windows, DOS) for Paste.

Clear

The Clear command removes selected objects from the construction. This command is equivalent to pressing the DELETE key. Objects are not placed on the clipboard.

Select all

Keyboard shortcut: COMMAND+A (Macintosh) or CTRL+A (DOS)
The Select all command selects every object in a construction. Using Select all and then Clear is an easy way to erase the contents of a construction to start again with a clean drawing.

Replay Construction

The Replay Construction command for the Macintosh and Windows versions replays each step of a construction. You may stop the replay at any step in the construction and begin editing. If you stop the replay before the end of the construction is reached and begin to edit, all subsequent steps in the original construction are nullified. A floating toolbar is generated when this command is selected. Note that the Macintosh version provides several additional buttons.

The Replay Construction command for the DOS version replays each step of a construction when you press the left and right arrow keys on the keyboard. Pressing the right arrow key replays the construction in the forward direction and pressing the left arrow key replays the construction in the reverse direction. Unlike the Macintosh and Windows versions, you cannot edit a construction if you stop the replay before you reach the end of the construction. When you click the mouse at any point during the replay, the entire construction is displayed.

Refresh Drawing

Keyboard Shortcut: COMMAND+F (Macintosh) or CTRL+F (Windows, DOS)
The Refresh Drawing command redraws every object of a construction. In the process of redrawing, undefined elements are removed. Pixels turned on by Trace are removed in this manner.
(Macintosh, Windows) An alternative method for redrawing the construction is to click on the zoom box in the top right corner of the drawing window. This action also causes the window to expand to its logical maximum size. Clicking the box again causes the window to shrink back to its previous size.

The Options menu contains commands that relate to showing attributes of each construction tool, setting defaults, and defining the contents and configuration of the toolbar.

Hide/Show Attributes

The Hide/Show Attributes command hides and shows the attributes toolbar. You can toggle the command from one to the other.

Defaults... (Macintosh only)

The Defaults... command for the Macintosh version provides options that allow you to select default colors and attribute settings for various classes of objects. The defaults can be saved to the Cabri Geometry II preference file. If the Cabri Geometry II preference file is placed in the Cabri Geometry II preferences folder or the system preferences folder, the settings saved in this file will be activated each time you open Cabri Geometry II. The Default Options dialog box is shown below. Click the Factory Settings button to return each default to its factory specification.

Preferences...

The Preferences... command lets you specify particular aspects of the program related to loci, the coordinate system, measurements, and equation formats. A dialog box, as shown on the next page, appears when you select this command. The options are described below the illustration.

The settings specified in Preferences for the Macintosh and Windows versions can be saved to a Cabri Geometry II preferences file. This file also contains the defaults specified using the Defaults command. This file must reside in the Cabri Geometry II preferences folder or your Macintosh system preferences folder for it to be automatically referenced at run time. If more than one Cabri Geometry II preferences file is in either of these folders, Cabri Geometry II will use the first file that it finds. The Cabri Geometry II preferences file and preferences folder are created when a preference file or tool configuration file is saved to disk for the first time.
This menu option in the DOS version is very similar to the Macintosh version. However, only one preference file (cabri2.prf) can exist in the same subdirectory. Additionally, when you select Preferences and save to a file, the new preferences will be used when you start Cabri Geometry II the next time. To change preferences, go back to Preferences and change the settings or set them back to Factory Settings.

\(\left.$$
\begin{array}{ll}\text { Loci options } & \begin{array}{l}\text { This option applies to all loci constructed in the drawing. } \\
\text { The Locus tool performs a linear interpolation of the loci calculated. } \\
\text { Therefore, the more objects in the locus, the smoother it will appear. You } \\
\text { can change this number in this dialog box for the default setting or for a } \\
\text { specific locus by selecting the locus, and then changing the values in this } \\
\text { dialog. You can also change the number of objects in the locus by selecting } \\
\text { the locus, and then pressing + or - on the keyboard to increase or } \\
\text { decrease the number of objects. }\end{array}
$$

Selecting the Link points option connects adjacent points with a solid line.\end{array}\right\}\)| Selecting the Envelope option draws only the envelope of a line as the locus |
| :--- |
| rather than the locus of the line. |

Keyboard shortcut: CTRL+D

Geometry	This Windows-version option lets you select if points should be implicitly defined, and if objects should be drawn to infinity.
Default Styles	This Windows-version option lets you choose colors and font options for all toolbar commands.
System options	This Windows-version option lets you set the following: Bitmap Copy: Enhanced MetaFile format (EMF) for 32-bit versions of Windows for high-quality, smooth lines. \square Supports only bit-mapped format (BMP), which is optional for Windows 95 and required for Windows 3.1x.
	System Pallet: Defines the color palette to use when Cabri is in the background and the palette is changed by another application. \square Cabri colors will change when another option is brought to the foreground. \square Cabri uses only colors present in the default system palette.
	Disable Undo: Undo is enabled. \square Undo is disabled, which provides for faster manipulation of very large and complex figures.
	Cursor Font: Lets you define the display font to use for display indicators.
	- Menu Font: Lets you define the display font to use for menu options.

Tool Configuration...

The Tool Configuration... command allows teachers to configure Cabri Geometry II tools in the toolbar to the aptitude of their class. You can rearrange or remove any tool in the toolbar. You can place a tool configuration file in the preferences folder to automatically open Cabri Geometry II with the tool configuration specified in that file. The following steps show you how to customize your toolbar.

1. Select Tool Configuration in the Options menu.
2. To remove any tool from its current toolbox, select the tool.

The tool becomes attached to the pointer.
3. To relocate the attached tool to an existing toolbox, open any toolbox.

The relocated tool is inserted immediately below a tool that you highlighted with the cursor.
The tool will be copied to the top of the toolbox if you do not highlight another tool.
4. To relocate the attached tool in a new toolbox, click in any empty section of the toolbar. To remove the tool from the toolbar, click on the toolbar trash can.
5. To add spaces between a toolbox or tool, press the spacebar while pressing and holding the mouse button down. You can add up to five spaces between toolboxes or tools.

To remove spaces between a toolbox or tool, press the BACKSPACE key while pressing and holding the mouse button down.
6. Add a password to prevent the tool configuration from being changed inadvertently.
7. Save your new tool configuration. If you save it to a tool configuration file, you can use the same configuration in future sessions of Cabri Geometry II. Otherwise, the configuration is only valid for the current session. If you want to return the tool configuration back to the factory configuration, click on the Factory Settings button.

Languages (Macintosh, Windows)
The Languages command lets you change the language of Cabri Geometry II menus, dialog boxes, messages, and labels. You may change the language at any time during a session.

The Language settings command opens a dialog box that lets you:

- Choose the language to be used the next time you start Cabri Geometry II.
- (Macintosh only) Choose to attach a language to the Cabri Geometry II software. Cabri Geometry II can recognize any language module that is in the same folder. This command integrates the language as part of the Cabri Geometry II software.
- (Macintosh only) Choose to exclude a language from the Cabri Geometry II software.
- If the And save in a file option is selected, the language will be saved in a separate file and can be reattached later.
- If the And save in a file option is not selected, the language will not be available unless you reinstall the software (for core languages) or place a language file in your Cabri folder.

Font (Macintosh, Windows)

The Font command in the Macintosh and Windows versions lets you view the fonts installed on your computer. The $\sqrt{ }$ symbol in the Macintosh version is shown next to the default font. The default font applies to labels, comments, numerical values, and properties. You can specify fonts independently for the Label, Comments, or Numerical Edit tools by first selecting the tool, and then changing the font in this menu. Point to another font to select it as the new default font.
Note: The Windows version dialog box lets you set the font size and style.

Size (Macintosh)

The Size command in the Macintosh version lets you view the font sizes available on your computer. The point sizes in outlined text are sizes that your Macintosh should display without distortion. The $\sqrt{ }$ symbol is shown next to the default size. The default size applies to labels, comments, numerical values, and properties. You can specify size independently for the Label, Comments, or Numerical Edit tools by first selecting the tool, and then changing the size in this menu. Point to another size to select it as the new size. For classroom demonstrations, it is useful to set the default font size at 14 or 18 points.

Style (Macintosh)

The Style command in the Macintosh version lets you view the text styles available on your computer. Text styles are independently applied to text and may be combined. For example, you can specify bold-italic text by selecting each style type separately. The default style applies to labels, comments, numerical values, and properties. You can specify style independently for the Label, Comments, or Numerical Edit tools by first selecting the tool, and then changing the style in this menu.

The Help menu in the Windows and DOS versions, and ?? in the Macintosh version, let you view helpful information about each toolbar icon and information about the Cabri Geometry II software.

Help

Keyboard shortcut: F1 (DOS)
The Help command displays a description of the selected toolbar icon in the Help window at the bottom of the Cabri Geometry II screen. For the Macintosh version, click on ?? to open the Help window.

About (Cabri II)

The About (Cabri II) command displays information about Cabri Geometry II that includes authors' names, copyright notice, and the version number of the software.

Chapter 3: Using the Pointer Toolbox

The Pointer toolbox contains the tools associated with Cabri Geometry II pointer features. These features allow you to select objects and to perform freehand transformations.

The illustration below shows the location of the Pointer toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using Pointer tools, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

The Pointer tool selects or moves objects in a freehand manner.
Press and hold the mouse button in unoccupied space to observe all basic and independent points which display as flashing. You can also double-click on a label, comment, numerical value, or the table to automatically invoke the appropriate edit tool for the object.

Selecting or moving objects

1. Select Pointer from the Pointer toolbox.
2. Selecting: Select an object by pointing and clicking when the cursor message appears for that object.

Select multiple objects by pressing the SHIFT key when selecting objects, or by enclosing them in a marquee rectangle as shown in the example below.

Deselect an object by pointing to an unoccupied location and clicking.

Moving: Move an object by dragging it to a new location.

Note: Sometimes multiple objects cannot be moved concurrently. Dependent objects cannot be moved directly. If a selected object cannot be moved directly, the cursor reverts to the cross hair + instead of the dragging hand © cursor.

Example

Selecting multiple objects using a marquee rectangle:

Rotate

The Rotate tool rotates an object about its geometric center or about a defined point in a freehand manner.

Rotating objects

1. Select Rotate from the Pointer toolbox.
2. Rotating about the geometric center: Select an object (not a point), and drag it in a circular motion.

Note: Pressing the SHIFT key while dragging rotates the object in 15 -degree increments.

Rotating about a defined point: Select a desired rotation point, and drag the object around the point.

Deselect the rotation point by clicking once in free space.
Note: You can rotate an object automatically by using the Animation tool when the Rotate tool is visible on the toolbar. See the chapter "Using the Display Toolbox" for more information about Animation.

Drag object in a circular path.

Select a rotation point.

Drag object in a circular path.

The Dilate tool expands or contracts an object about its geometric center or relative to a defined point in a freehand manner.

Dilating objects

1. Select Dilate from the Pointer toolbox.
2. Dilating about the geometric center: Select an object (not a point), and drag it away from its center to expand, or toward its center to contract.

Note: Dragging an object through its center causes a negative dilation.

Dilating about a defined point: Select a desired dilation point, and drag the object (not the point) in a linear motion.

Note: You can dilate an object automatically by using the Animation tool when the Dilate tool is visible on the toolbar. See the chapter "Using the Display Toolbox" for more information about Animation.

Drag object along a linear path.

Select a dilation point.

Drag object along a linear path.

The Rotate and Dilate tool rotates and dilates an object about its geometric center or a defined point in a freehand manner. See the Rotate tool and the Dilate tool for more information.

Using Rotate and Dilate

Select Rotate and Dilate from the Pointer toolbox.

Note: You can rotate and dilate an object automatically by using the Animation tool when the Rotate and Dilate tool is visible on the toolbar. See the chapter "Using the Display Toolbox" for more information about Animation.

Examples

Freehand rotation and dilation of an object about its geometric center:

Drag object in a circular or linear path.

Freehand rotation and dilation of an object about a defined point:

Select a transformation point.

Drag object in a circular or linear path.

Chapter 4: Using the Points Toolbox

The Points toolbox contains the tools associated with creating or constructing points in Cabri Geometry II. These features allow you to create points anywhere in the plane, on objects, or at the intersection of two objects.

The illustration below shows the location of the Points toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using tools in the Points toolbox, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

The Point tool creates points that can be placed anywhere in the plane, on existing objects, or at the intersection of any two objects.

If you create a point on an object, it remains on that object throughout any changes made to the point or to the object. If a point is at the intersection of two objects, the point remains at the intersection throughout any changes made to the object(s). If you change the objects so that they no longer intersect, the intersection point disappears, but reappears if the objects intersect again.

Creating a point

1. Select Point from the Points toolbox.
2. Move the cursor to any location in the plane where you want a point. When the cursor message appears, click once to create a point. If in free space, a cursor message does not appear.
Note: You do not have to select the Point on Object or Intersection Point(s) tools to create a point on an object or at an intersection.

Modifying a point

Move a point by dragging it to a new location.
You can change the appearance of points using:

Point types toolbar.

- the Defaults option under the Options menu (Macintosh only).
- the Attributes toolbar under the Options menu.
- the Modify Appearance option in the Draw toolbox.

You can construct a point as a $\cdot \bullet \bullet \bullet, \times$, or \circ.
Refer to the chapters "Using the Menus" and "Using the Draw Toolbox" for these features.

The Point on Object tool creates points on any object.

Creating a point on an object

1. Select Point on Object from the Points toolbox.
2. Move the cursor toward the object until a cursor message appears for that object, and then click once.

Point.

Click.

Modifying a point on an object

Move a point by dragging it to a new location. The point always remains on the object.

The Intersection Point(s) tool creates a point at the intersection (or intersections) of any two objects.
An intersection can be defined for only two objects. If more than two objects intersect at the same place (for example, the perpendicular bisectors of a triangle), an ambiguity message appears. If this happens, hold down the mouse button and select the correct object from the list.

If you change the objects so that they no longer intersect, the intersection point(s) disappears, but reappears if the objects intersect again.

Creating an intersection point

1. Select Intersection Point(s) from the Points toolbox.

사 E -
2. Select two intersecting objects.

Points are created at each intersection.

Modifying an intersection point

Intersection points are dependent and cannot be moved.

Example
Intersection of a line and a polygon:

Select polygon and line.

Points are created at each intersection.

Chapter 5: Using the Lines Toolbox

The Lines toolbox contains the tools associated with line features in Cabri Geometry II. These features allow you to construct linear objects and polygons.

The illustration below shows the location of the Lines toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using tools in the Lines toolbox, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

Defined objects in Cabri Geometry II, such as triangles and polygons, can be translated, rotated, or dilated. Refer to the chapters "Using the Pointer Toolbox" and "Using the Transform Toolbox" for more information about these methods.

The Line tool creates a line that extends infinitely in both directions through a point at a specified slope. The slope can be specified in free space or defined by a second point.

Note: You can constrain the slope to 15-degree increments by pressing the SHIFT key when creating or modifying a line.

Creating a line

1. Select Line from the Lines toolbox.
2. Click to create or select the initial point of the line.
3. Specify the slope by positioning the line in the desired orientation and clicking.

When specifying slope, you can create a point on an object, select an existing point, or click in unoccupied space.

Modifying a line

Translate a line without changing the slope by selecting the Pointer tool from the Pointer toolbox. Then using the Pointer:

- For a line constructed with a single point, drag the point.
- For a line constructed with two basic points, grab the line away from the points, and drag.

Note: A line constructed with at least one dependent point (a point attached to another object) cannot be moved using the Pointer without changing the slope.

Change the slope of a line by selecting the Pointer tool.
Then using the Pointer:

- To change a line constructed with a single point, grab the line away from the point and drag. Press the SHIFT key to constrain the slope to 15 -degree increments.
- To change a line constructed with two basic points, drag either of the points.
- Changing a line constructed with a dependent point is relative to the object to which it is attached. You may drag the object or the point, depending on the construction.

Example

The line is attached to a side of the
triangle and the opposite vertex.

The Segment tool creates a segment between two endpoints.
Note: You can limit the slope of the segment to 15-degree increments by pressing the SHIFT key when creating the segment.
Creating a segment

1. Select Segment from the Lines toolbox.

2. Click to create or select the initial endpoint of the segment.

Create the initial point.

3. Move the pointer to the location for the final

Create the final point. endpoint of the segment, and click to create or select the final endpoint.

Example

Select the initial point.

Point to the object.

Create the final point.

Note: See "Regular Polygon" in this chapter for more information on creating the regular pentagon in the above figures.

Modifying a segment

Change a segment by dragging either endpoint.
Translate a segment by grabbing away from the endpoints, and dragging it.

The Ray tool creates a ray defined by an initial endpoint and extending infinitely in a specified direction.

Note: You can constrain the slope to 15-degree increments by pressing the SHIFT key when creating or modifying a ray.

Creating a ray

1. Select Ray from the Lines toolbox.
2. Click to create or select the initial endpoint of the ray.
3. Position the ray in the desired orientation, and click to specify direction and slope.

If the ray is created in free space, a point is not created. If the ray is not in free space, it is attached to a second point.

Modifying a ray

Translate a ray without changing its direction and slope by selecting the Pointer tool from the Pointer toolbox. Then using the Pointer:

- For a ray constructed with a single point, drag the point.
- For a ray constructed with two basic points, grab the ray away from the points and drag.

Change the direction and slope of a ray using the Pointer tool:

- To change a ray constructed with a single point, grab the ray away from the point and drag. Press the SHIFT key to constrain the slope to 15-degree increments.
- To change a ray constructed with two basic points, drag either of the points.
- Changing a ray constructed with a dependent point is relative to the object to which it is attached. You may drag the object or the point, depending on the construction.

Create a point.

Click to specify the slope.

Vector

The Vector tool creates a vector defined by magnitude and direction with a tail (initial endpoint) and head (final endpoint).

Creating a vector

1. Select Vector from the Lines toolbox.
2. Click to create or select the tail of the vector.
3. Move the pointer to the location for the head, and click to create or select the head of the vector.

Modifying a vector
 Modifying a vector

Change a vector by dragging either endpoint.
Translate a vector constructed with two basic points by grabbing the segment away from the endpoints, and dragging it to a new location.
cation.

$$
0
$$

Create the tail.

Create the head.

Triangle

The Triangle tool creates a triangle defined by three points (vertices). A point placed on a triangle can be moved along the entire perimeter of the triangle.

Creating a triangle

1. Select Triangle from the Lines toolbox.
2. Click to create or select the initial vertex.
3. Move the cursor from the initial vertex, and then click to create the second vertex. Repeat to create or select the final vertex.

Create the first vertex.

Create the second vertex.

Create the final vertex.

Modifying a triangle

Move a triangle as an object by dragging one of its sides.
Change a triangle by dragging any of its vertices.
Note: Vertices dependent on other objects may restrict movement or modification of the triangle.

Polygon

The Polygon tool constructs an n-sided polygon of any shape defined by n points (vertices). A point placed on a polygon can be moved along the entire perimeter of the polygon.

Creating a polygon

1. Select Polygon from the Lines toolbox.
2. Click to create or select the initial vertex.
3. Move the cursor from the initial vertex, and then click to create or select the other vertices. To terminate polygon construction, double click or select the initial vertex.

Modifying a polygon

Move a polygon as an object by dragging one of its sides.
Change a polygon by dragging any of its vertices.

니 가붕 서어어 버엉 시쁘

Create the initial vertex.

Create additional vertices.

Select the original point.

Polygon is complete.

The Regular Polygon tool constructs a regular convex or star polygon defined by a center point and n sides (30 or less). A regular polygon consists of congruent sides and congruent angles. A point placed on a regular polygon can be moved along the entire perimeter of the polygon.

Creating a regular polygon

1. Select Regular Polygon from the Lines toolbox.
2. Click to create or select the center point.
3. Move the cursor from the center point, and click to specify the radius of a regular polygon.

The number of sides is displayed at the center point.
4. To create a regular convex polygon, move the cursor clockwise from its current position.

To create a regular star polygon, move the cursor counterclockwise, and click when the regular polygon is the desired size.

Note: If you move beyond 30 sides or 180 degrees from the initial vertex and the center point, a convex polygon becomes a star polygon. A fraction is displayed at the center point. The numerator determines the number of sides; the denominator, the number of times the star has crossed. The maximum star is $30 / 13$; the minimum is $5 / 2$.

Create the center point.

Rotate clockwise.

Pentagon.

Moditying a regular polygon

Move a regular polygon as an object by dragging one of its sides.

Change a polygon by dragging any of its vertices.
Dragging the center point changes the size of the regular polygon since the original vertex is anchored (location dependent).

Example

1. Create the center point.

2. Rotate counter-clockwise.

3. Specify the size.

4. 7/3 star polygon.

The Curves toolbox contains the tools associated with curve features in Cabri Geometry II. These features allow you to create curved objects, including ellipses, parabolas, and hyperbolas.

The illustration below shows the location of the Curves toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using tools in the Curves toolbox, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

Circle

The Circle tool creates a circle defined by a center point and a radius that can be specified in free space, at an existing point, or on an object.

Note: You can constrain the radius to integer values by pressing the SHIFT key while defining or modifying the radius.

Creating a circle

1. Select Circle from the Curves toolbox.

2. Create or select the center point of the circle.
3. Move the cursor from the center point, and click once to set the radius.

If you click in free space, a point is not created. You can also create or select a point.

Create the center point.

Specify the radius.

Modifying a circle

To translate a circle without changing its radius, the circle must be constructed with a single point. Drag the point to translate the circle.

To change the radius of a circle:

- If the circle was created with a single point, grab the circle anywhere on its circumference and drag.
- If the circle was created with a basic point, grab either point on the circle and drag.

Arc

The Arc tool creates an arc defined by three points-two endpoints and a radius (or curvature) point.

Note: By definition, an arc created on a circle has a radius equivalent to that of the circle.

Creating an arc

1. Select Arc from the Curves toolbox.
2. Create or select the initial endpoint of the arc.
3. Move the cursor from the initial endpoint, and click to create or select the curvature point.
4. Move the cursor from the curvature point, and click to create or select the final endpoint.

Modifying an arc

Change an arc by dragging any of its three points.
If an arc is defined by basic points, grab the arc away from the points, and drag it to a new location.

Example

Construct an arc on the circle.

Construct a circle.

Create the initial point.

Create the second point.

Create the final point.

Conic

The Conic tool creates a parabola, hyperbola, or ellipse defined by five points. Each point can assume a new definition, depending on its location on the conic.

Creating a conic

1. Select Conic from the Curves toolbox.

2. Click to create or select the five points.

Note: After placement of three points, the conic is drawn to aid you in placing the remaining points.

Create three points.

Shape with the fourth point.

Complete with the fifth point.

Modifying a conic

Move a conic by grabbing it away from its defining points, and dragging it to a new location. If any of the points are dependent, the conic also changes.

Modify the conic by dragging any of its five points.
Note: Depending on the placement of the points, the conic will be an ellipse, a hyperbola, or a parabola.

Examples

Conics in the coordinate plane:

The Construct toolbox contains the tools associated with construction features in Cabri Geometry II. These features allow you to construct objects in relation to other objects.

The illustration below shows the location of the Construct toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using Construct tools, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

Perpendicular Line
Parallel Line
Midpoint
Perpendicular Bisector

Perpendicular Line

The Perpendicular Line tool creates a line passing through a point and perpendicular to a selected linear object (line, segment, ray, vector, or side of a polygon).

Creating a perpendicular line

1. Select Perpendicular Line from the Construct toolbox.

2. Point to the line, segment, ray, vector, or side of a polygon that will be perpendicular to the constructed line, and click to select.

Select a linear object.

Select a point.

A dependent line is created

Modifying a perpendicular line

Move a perpendicular line by dragging the point through which it passes.

The line cannot be altered directly because it is, by definition, a dependent object.

Example

Select a linear object.

* h_{1} Perpendicular to this direction

Create a point, and the perpendicular line is constructed.

Parallel Line

The Parallel Line tool creates a line that passes through a point and is parallel to a selected linear object (line, segment, ray, vector, or side of a polygon).

Creating a parallel line

1. Select Parallel Line from the Construct toolbox.

2. Point to the line, segment, ray, vector, or side of a polygon that will be parallel to the constructed line and click to select.
3. Designate the point through which the parallel line will pass.

Note: The order of steps 2 and 3 may be reversed.

Select a linear object.

Select a point.

A dependent line is created.

Modifying a parallel line

Move a parallel line by dragging the point through which it passes.

The line cannot be altered directly because it is, by definition, a dependent object.

Example

Select a linear object.

Create a point, and the parallel line is constructed.

Midpoint

The Midpoint tool creates a point at the midpoint of a segment or vector, the side of a polygon, or between two points.

Creating a midpoint

1. Select Midpoint from the Construct toolbox.

2. Point to one of the following and click to select:

Two points (create or select).

-

The side of a polygon.

Modifying a midpoint

Modify a midpoint by modifying its defining objects.

Perpendicular Bisector

The Perpendicular Bisector tool creates a line that is perpendicular to a segment, a vector, a side of a polygon, or between two points, and passes through the midpoint of the selected object.

Creating a perpendicular bisector

1. Select Perpendicular Bisector from the Construct toolbox.

2. Point to one of the following and click to select:

Modifying a perpendicular bisector

A perpendicular bisector cannot be translated directly unless it is constructed between two basic points.
Modifying the defining object causes the perpendicular bisector to change accordingly.

Angle Bisector

The Angle Bisector tool creates a line that bisects an angle identified by three points. The second point defines the vertex of the angle through which the line passes.

Creating an angle bisector

1. Select Angle Bisector from the Construct toolbox.
2. Click to create or select three points that define the angle to be bisected. (The second point selected is the vertex of the angle.)

Select points A, B, and C.

Select points, B, C, and A.

Modifying an angle bisector

An angle bisector cannot be translated directly unless it is defined by three independent points. Modifying the points that define the angle causes the angle bisector to change accordingly.

Vector Sum

The Vector Sum tool creates a resultant vector that is the sum of two selected vectors. The selected vectors do not have to share a common endpoint (tail) and may also be previously defined vector sums.

Creating a vector sum

1. Select Vector Sum from the Construct toolbox.
2. Point and click to select any two vectors.
3. Click to create or select the initial point for the resultant vector.

Modifying a vector sum

A vector sum cannot be modified directly. Modifying either one of the selected vectors causes the vector sum to change accordingly.

Select the first vector.

Select the second vector.

Select a tail point for the vector sum.

The Compass tool creates a circle with a radius equal to the length of an existing segment or the distance between two points.

Creating a circle using Compass

1. Select Compass from the Construct toolbox.

2. Create or select two points or select a segment to define the radius of the circle.

Select a segment.
*
3. Create or select the center point of the circle.

Modifying a circle created using Compass

Modify the radius by dragging one of the defining endpoints.

Translate the compass circle by dragging the center point.

The Measurement Transfer tool creates a point on a ray, on a vector, from the initial point of a polygon, or from another point at a distance proportional to a selected measurement or numerical value. From a point on a circle, the point created is at an equivalent arc length. The direction of the distance or arc length depends on the sign of the selected numerical value.

The magnitude of the measurement transferred is represented without regard to units.

Creating a measurement transfer

1. Select Measurement Transfer from the Construct toolbox.
2. Point to any measurement or numerical value and click to select.

3. To construct:

- a point at a proportional linear distance, select a ray, vector, polygon, or point. If you select a point, a dotted line appears. Position the dotted line as you want it, and click to set the position.

The point created is an equivalent distance from the endpoint of the ray.
3.10 cm *

- a point at a proportional arc length away, select a circle, and then select (do not create) a point on the circle.

Example

Select a numerical value.
$\sqrt{2.5}$ This number
-

Select a point.
2
${ }^{c} \beta \cdots \cdots{ }_{0}$

Position the point and click. The points are 2.5 cm apart.
2.5
-
-

Modifying a measurement transfer

Modify the constructed point by changing the measurement or numerical value. The point cannot be translated directly.

The Locus tool creates a set of objects defined by the movement of a point along a path. When you select a point on a path (object), the locus is completely constructed and is considered a defined object. As such, points can be attached. When you modify an object that defines a locus, the locus is recalculated and continuously displayed to show the effects of the modifications.

With defaults set, a locus is constructed with 30 (Macintosh) or 50 (Windows, DOS) objects equally spaced along the designated path. You can change this setting using Preferences in the Options menu. Choices for connecting locus points and constructing the envelope of a line are also available under Preferences. See "Options Menu" in the chapter "Using the Menus" for more information. As an alternate method for changing the number of objects that define the locus, you can select the locus and then press + or - to increase or decrease the number of objects that define the displayed locus.

Creating a locus

1. Select Locus from the Construct toolbox.

2. Select the object for the locus.

Preconstructed objects.

Select the object.

Select a point on a path.

As its center travels around the first circle, the locus of a second circle through a point on a circle is constructed.

Modifying a locus

Modify a locus by changing its defining objects.
Example

Take the locus of the segment as one of its endpoints travels around the ellipse.

The Redefine Point tool modifies the current definition of any point, as long as the new definition does not create a circular reference.

A circular reference occurs when a point that defines an object is redefined to be on that object. An example is defining the center point of a circle to be a point on the circle. This is not allowed.

Redefining a point

1. Select Redefine Point from the Construct toolbox.
2. Press and hold the mouse down on any point.

A dialogue box appears with the following options:

- Point - redefines the point as a basic point at the same location.
- Point on Object - redefines the point to be on an object.
- Intersection Point(s) - redefines the point to be at the intersection of two objects.
- Transfer to another point - transfers the point to another existing point.

3. Select the desired option. If you selected Point, step 4 is not necessary.
4. Click to select an object compatible with the selected option and to assign its new definition.

Attach an existing segment to a circle.

Select the endpoint.

Click to create a point on a circle.

The segment is attached to the circle.

The Redefine Object tool modifies the current definition of any object. You can redefine a circle, arc, conic, triangle, segment, ray, vector, polygon, or regular polygon.

Redefining an object

1. Select Redefine Object from the Construct toolbox.

2a. If the object is a point, hold the mouse on the point, and then select the new definition.

- Point - redefines the point as a basic point.
- Point on Object - redefines the point to be on an object.
- Intersection Point(s) - redefines the point to be at the intersection of two objects.
- Transfer to another object - transfers and merges the point to another existing point.

2b. If the object is an object, hold the mouse on the object, and then select the new definition.

- Circle, Triangle, Segment, etc. - lets you construct a new object of the same type and automatically transfer the original object to it.
- Transfer to another object - transfers and merges the object to another existing object of the same type.

2c. If the object is a line, hold the mouse on the line, and then select the new definition.

- Line - lets you construct a new line and automatically transfer the original line to it.
- Perpendicular - redefines the line to be perpendicular to another object.
- Parallel Line - redefines the line to be parallel to another object.
- Perpendicular Bisector - redefines the line to be the perpendicular bisector of another object.
- Angle Bisector - redefines the line to bisect an angle determined by three points.
- Transfer to another object - transfers and merges the line to another existing line.

3. Click to select an object compatible with the selected option and to assign its new definition.

Chapter 8: Using the Transform Toolbox

The Transform toolbox contains the tools associated with Cabri Geometry II transformation features. These features allow you to translate, reflect, rotate, and dilate objects according to specified factors and angular values.

The illustration below shows the location of the Transform toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using Transform tools, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

The Reflection tool creates the mirror image of an object reflected across a line, segment, ray, vector, axis, or side of a polygon.

Creating a reflection

1. Select Reflection from the Transform toolbox.

2. Select the object to reflect.
3. Select the line, segment, ray, vector, axis, or side of a polygon to reflect the object across.

Modifying a reflection

Change the reflected image by changing the original object or by modifying the line of reflection. Because it is a dependent object, you cannot change the reflected image directly.

The Symmetry tool reflects the image of an object 180-degree with respect to a point.

Creating a symmetrical image

1. Select Symmetry from the Transform toolbox.
2. Select the object to reflect 180 degrees.
3. Select the point of symmetry.
. Select the point of symmetry.

Select the object to reflect
-

Modifying a symmetrical image

Change a symmetrical image by changing the original object or by moving the point of symmetry. Because it is a dependent object, you cannot change a symmetrical image directly.

Translation

The Translation tool creates the image of an object translated by a specified, previously defined vector.

Translating an object

1. Select Translation from the Transform toolbox.
2. Select the object to translate.
3. Select the vector that defines the translation direction and distance.

Modifying a translation

Move a translated image by dragging the vector head or tail to a new location. The translated image changes according to the changes of the vector or changes to the original object. Because it is a dependent object, you cannot change the translated image directly.

Select the object to translate.

Select the translation vector.

The translated image is created.

Rotation

The Rotation tool rotates an object by a specified angular value with respect to a point.
Note: The angular value may be any measurement or numerical value, regardless of units. The units are presumed to be degrees by the software. A positive angular value rotation is performed in a counter-clockwise direction.

To create specific angles of rotation, please refer to "Numerical Edit" in the chapter "Using the Display Toolbox."

Rotating an object

1. Select Rotation from the Transform toolbox.
2. Select the object to rotate.
3. Select the point of rotation.
4. Select the angular value of rotation.

Modifying a rotation

Change the rotated image by either modifying the figure that defines the angle of rotation, editing the value created by Numerical Edit, moving the rotation point, or changing the original object. Because it is a dependent object, you cannot change the rotated image directly.

4] 1 -

Select the object to rotate.

45°

Select the rotation point. 45°

Select the angular value of rotation.

The rotated image is created

The Dilation tool dilates an object by a specified factor with respect to a specified point.
Note: This factor may be any measurement or numerical value, regardless of units. The value is presumed to be unit-less.

To create specific factors of dilation, please refer to "Numerical Edit" in the chapter "Using the Display Toolbox."
Dilating an object

1. Select Dilation from the Transform toolbox.

2. Select the object to dilate.
3. Select the point of dilation.
4. Select the factor of dilation.

The dilated image is created.
0.5

Modifying a dilation

Change the dilated image by either modifying the figure that defines the factor, editing the value created by Numerical Edit, moving the dilation point, or changing the original object. Because it is a dependent object, you cannot change the dilated image directly.

The Inverse tool constructs an inverse point with respect to a circle and a point, according to the equation $\mathrm{OM} \cdot \mathrm{O} \mathrm{M}^{\prime}=\mathrm{r}^{2}$
where:
M and M^{\prime} are points that lie on a ray with endpoint 0 .

O	$=$	center of circle.
M	$=$	selected point.
M^{\prime}	$=$	inverse point.
$*$	$=$	radius of selected circle.

As the selected point approaches the center point, the inverse point approaches a point at infinity. If M is defined to be on a line passing through the circle, the locus of M^{\prime} constructs a circle that passes through the center of the circle.

If the original point lies in the interior of the circle, the inverse point is constructed in the exterior, and vice versa. The inverse point lies on a ray with the center point as the endpoint.

Creating an inverse point

1. Select Inverse from the Transform toolbox.

2. Create or select a point as the original point.
3. Select a circle.

An inverse point is created.

Modifying an inverse point

Move an inverse point by dragging the point or modifying the circle that defines it. You cannot manipulate an inverse point directly because it is a dependent point.

Chapter 9: Using the Macro Toolbox

The Macro toolbox contains the tools associated with constructing macros in Cabri Geometry II. A macro is a sequence of interdependent constructions. Macros are useful for creating new tools that construct unique objects or perform repetitive tasks.

The illustration below shows the location of the Macro toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for creating macros, including rules and examples, are presented in this chapter in the order in which macros must be created.

How to create a macro

A macro constructs "final" objects based on "initial" objects. Intermediate objects are not constructed. This feature allows easy construction of complex figures and is the primary method for constructing fractals. You can save macros on disk for later use. Macros are automatically saved with any file in which they are used.

To create a macro:

1. Select the initial objects required to define the final object(s).
2. Select the final object(s), and then, if necessary, change the attributes of the object(s) as they will appear in the final construction.
3. Define the macro for inclusion in the Macro toolbox. The macro is then available for use.

Read the following rules, and then refer to the step-by-step procedures that follow them.

Rules for creating macros

- Initial objects must allow the construction of all final objects. Final objects must be determined by the initial objects. A macro must respect the logical structure of the figure as it was constructed.
- An object cannot exist without the points that define it. For example, a triangle cannot exist without its vertices. Therefore, when you select an object as an initial object, the macro is able to refer to the points that define the object.
- When you select Define Macro, a macro generates its final objects with the object's existing attributes. You can change these attributes during an intermediate step before you select Define Macro. In this way, you can hide objects (using Hide/Show in the Display toolbox) that were selected as initial objects.
- Because macros are intended as general purpose construction tools, like those in the Construct toolbox, comments and labels cannot be defined as final objects. You can select measurements and numerical values as final objects, but any text attached will not be duplicated when the macro executes.
- The location of an arbitrary point on an object is determined by a random-number generation. Therefore, the position of the point will be uncertain if it is selected as a final object.
- If the initial objects are different types (for example, lines and circles are different types), they are not used in any order. If the initial objects are the same type, the macro uses them in the order in which they were selected as initial objects.
- The number of objects created by a macro is limited only by available system memory.
- Macros are automatically saved with any construction in which they are used. You can also save macros in a tool configuration file (see Options Menu in the chapter "Using the Menus").
- The first final object you select is considered the primary object of the macro. If a name is entered in the Name for first final object field, it will be the cursor message when the cursor is in the vicinity of the primary object. For the Macintosh, the Name for first final object field is found under the More option in the Macro dialog box. For the Windows and DOS versions, the Name for first final object field is already visible in the dialog box.
- To save multiple definitions for a single macro, select the initial and final objects for the new definition, and save it with the same name. The dialog box generated in Define Macro allows you to select previous macros when saving a macro. For example, you may want to define a macro that constructs a triangle with vertices at the midpoints of an initial triangle, a polygon with vertices at the midpoints of a three-sided polygon, and a triangle with vertices at the midpoints of a three-sided regular polygon. A single macro can perform all of these operations if each case is identified with appropriate initial and final objects and saved to the same macro file.

The Initial Object tool specifies the initial object(s) needed to define the given conditions for a macro. See "Rules for creating macros" for more information.

Specifying initial object(s)

1. Select Initial Object from the Macro toolbox.
2. Click once to select an object.

The selected object displays in marquee outline.
3. (Optional) Click again on the object to deselect it. The object returns to its original outline.

Select initial objects.

The Final Object tool specifies the final object(s) that will result from the initial objects defined for a macro. See "Rules for creating macros" for more information.

Specifying final object(s)

1. Select Final Object from the Macro toolbox.
2. Click once to select an object.

The selected object displays in marquee outline.
3. (Optional) Click again on the object to deselect it.

The object returns to its original outline.

Select final objects.

Select objects.

The Define Macro tool stores a macro in memory. A dialog box appears for you to name the macro. This dialog box is described below. Also see "Rules for creating macros" at the beginning of this chapter.

The Define Macro dialog box

The Define Macro dialog box appears (Macintosh version illustrated) when you select Define Macro after defining valid initial and final objects. Each field is defined below.

Note: The Define Macro dialog box for the Windows and DOS versions is slightly different from the Macintosh version. The first screen is displayed only in the Macintosh version. In the next screen, the Icon font option is different in the Windows and DOS versions.

Name of the construction	Enter a name for your construction or select a previously named macro. To access a previously named macro, point to the arrow on the right-hand side of this field and press and hold the mouse button. The name entered here will appear in the Macro toolbox when you select OK or OK and save.
Icon font: (Macintosh only)	The first letter of the construction name entered above appears in this field. This letter will be used for the icon of the macro in the toolbar. You may select the font of this letter from Roman, Old English, or Fraktur.
Cancel	Click on this button to cancel or disregard the macro definition. Initial and final objects will be deselected.
More/Less: (Macintosh only)	This button is a toggle. Click on it to show More or Less options.

Name for first final Enter the name that you want to appear as a cursor message when the object cursor is in the vicinity of the first object created by the macro.

Help for this macro Enter the message that you want to appear in the help window when the macro is selected.

Save to file

OK / OK and save

This button is a toggle. Click on it to change the OK to OK and save, and vice versa.

Click on OK to save the macro for use in your construction. The macro is not saved to a separate file but is saved with your construction. Once saved, the macro can be used in future Cabri Geometry II sessions.

Click on OK and save to generate a save file dialog that allows you to save the macro to a file you specify. Macros saved to individual files can be recalled in future constructions by using Open in the File menu to open the macro file.

Specifying a macro

1. Select Define Macro from the Macro toolbox.
2. Enter the requested information into the dialog box to save your macro.
If you receive a warning message instead of the dialog box, a problem exists in the definition of initial and final objects. Review "Rules for creating macros" at the beginning of this chapter, and redefine your initial and final objects.

4] ㄷ.

Select a new macro.

Select an appropriate object.

Click to apply the macro.

Chapter 10: Using the Check Property Toolbox

The Check Property toolbox contains the tools associated with Cabri Geometry II property features. These features allow you to check the validity of geometric properties in general. Results are reported in text, which can be edited with the Comments tool located in the Display toolbox.

The illustration below shows the location of the Check Property toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using Check Property tools, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

The Collinear tool evaluates three selected points to determine whether or not they lie on the same line. The results are reported in text.

Checking collinearity

1. Select Collinear from the Check Property toolbox.
2. Select any three existing points.

A marquee box appears after the last selection.
3. Move the pointer to move this box anywhere in the drawing window, and click to display the result.
If you change the points so that the property changes, the displayed text changes accordingly.

Select three points.

Click to place the marquee box.

-

Points are not collinear

The result changes with the construction.

Points are collinear

Parallel

The Parallel tool evaluates any combination of two selected lines, segments, rays, vectors, axes, or sides of a polygon to determine whether or not they are parallel. The results are reported in text.

Check parallelism

1. Select Parallel from the Check Property toolbox.
2. Select any combination of two lines, segments, rays, vectors, axes, or sides of a polygon.

A marquee box appears after the last selection.
3. Move the pointer to move this box anywhere in the drawing window, and click to display the result.

If you change the objects so that the property changes, the displayed text changes accordingly.

Select two linear objects.

Click to place the marquee box.

The result changes with the construction. Objects are parallel

The Perpendicular tool evaluates any combination of two selected lines, segments, rays, vectors, axes, or sides of a polygon to determine whether or not they are perpendicular. The results are reported in text.

Checking perpendicularity

1. Select Perpendicular from the Check Property toolbox.
2. Select any combination of two lines, segments, rays, vectors, axes, or sides of a polygon.

A marquee box appears after the last selection.
3. Move the pointer to move this box anywhere in the drawing window, and click to display the result.

If you change the objects so that the property changes, the displayed text changes accordingly.

H] -

Select two linear objects.

Click to place the marquee box.

Objects are not perpendicular

The result changes with the construction.

Equidistant

The Equidistant tool evaluates any three points to determine whether or not the first point is equidistant from the two remaining points. (If a point is equidistant from the endpoints of a segment, then the point lies on the perpendicular bisector of the segment.) The results are reported in text.

Checking equidistant property

1. Select Equidistant from the Check Property toolbox.
2. Select any three points. (The first point selected is checked relative to the two remaining points.)

A marquee box appears after the last selection.
3. Move the pointer to move this box anywhere in the drawing window, and click to display the result.
The text states whether or not the first point selected is equidistant from the second and third points.

If you change the objects so that the property changes, the displayed text changes accordingly.

Select, in order, points A, B, and C.

Click to place marquee box.

The result changes with the construction.
A.

Member

The Member tool evaluates a point to determine whether or not it lies on an object. The results are reported in text.

Checking membership

1. Select Member from the Check Property toolbox.
2. Select a point.
3. Select any object.

A marquee box appears after the selection.
4. Move the pointer to move this box anywhere in the drawing window, and click to display the result.

If you change the objects so that the property changes, the displayed text changes accordingly.

Select a point and an object.

Click to place the marquee box.

This point does not lie on the object

The result changes with the construction.

This point lies on the object

Chapter 11: Using the Measure Toolbox

The Measure toolbox contains the tools associated with measurement features in Cabri Geometry II. These features allow you to perform different measurements and calculations.

The illustration below shows the location of the Measure toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using Measure tools, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

Distance \& Length

The Distance \& Length tool calculates and displays distance, length, perimeter, circumference, and radius.

The default measurement is displayed in centimetres. You can change its precision by using Numerical Edit in the Display toolbox. Numerical Edit also allows you to change the font, size, style, colour, and units.

You can add a comment to the measurement immediately after creating it by typing the text. See "Comments" in the chapter "Using the Display Toolbox" for more information on adding a comment to a numerical value.

Measuring objects

1. Select Distance \& Length from the Measure toolbox.
2. To measure:

- length, perimeter, or circumference - select an object.
- distance - select two points.
- radius - select the center point and then the circumference.

Select an object.

Length of this segment

The result is displayed.
3.07 cm

Moving measurements

Reposition the measurement by selecting it with the Pointer tool and dragging it to a new position.

The measurement moves with the object it measures unless you pull it away. When you pull it away from the object, the measurement momentarily resists before pulling away.

Area

The Area tool calculates and displays the area of a selected polygon, circle, or ellipse.
The default measurement is displayed in square centimetres. You can change its precision by using Numerical Edit in the Display toolbox.

You can add a comment to the measurement immediately after creating it by typing the text. See "Comments" in the chapter "Using the Display Toolbox" for more information on adding a comment to a numerical value.

Checking area

1. Select Area from the Measure toolbox.
2. Select the polygon, circle, or ellipse whose area you want to measure.

The result is displayed.

Moving measurements

Reposition the measurement by selecting it with the Pointer tool and dragging it to a new position.

The measurement moves with the object it measures unless you pull it away. When you pull it away from the object, the measurement momentarily resists before pulling away.

Slope

The Slope tool calculates and displays the slope of a selected segment, ray, vector, or line.
You can change the precision of the slope by using Numerical Edit in the Display toolbox.
You can add a comment to the measurement immediately after creating it by typing the text. See "Comments" in the chapter "Using the Display Toolbox" for more information on adding a comment to a numerical value.

Checking slope

1. Select Slope from the Measure toolbox.

2. Select the segment, ray, vector, or line whose slope you want to measure.

Select the object.

The result is displayed.

Moving measurements

Reposition the measurement by selecting it with the Pointer tool and dragging it to a new position.

The measurement moves with the object it measures unless you pull it away. When you pull it away from the object, the measurement momentarily resists before pulling away.

Angle

The Angle tool calculates and displays the measurement of an angle defined by an angle mark or three selected points. The second point must be the vertex.

If you use Angle to select three points, angle measurements default to angles from 0 to 180 degrees (interior angles). If you want measurements greater than 180 degrees (reflex angles), you must first mark the angle with Mark Angle in the Display toolbox. The default measurement is displayed in degrees. You can change its precision by using Numerical Edit in the Display toolbox.

You can add a comment to the measurement immediately after creating it by typing the text. See "Comments" in the chapter "Using the Display Toolbox" for more information on adding a comment to a numerical value.

Checking angles

1. Select Angle from the Measure toolbox.

ㄴ) ㄷ.

2. If an angle mark is displayed on the angle, select the angle mark to measure the angle. Otherwise, select three points to specify the angle. The second point must be the vertex.

Select three points.

The result is displayed.

Moving measurements

Reposition the measurement by selecting it with the Pointer tool and dragging it to a new position.

The measurement moves with the object it measures unless you pull it away. When you pull it away from the object, the measurement momentarily resists before pulling away.

Equation \& Coordinates

The Equation \& Coordinates tool displays the equation of a line, circle, conic, or coordinates of a point with respect to a default coordinate system.

You can change the precision by using Numerical Edit in the Display toolbox. You can change the form of the equation by using the options under Preferences in the Options menu or by selecting the equation and pressing TAB.

Checking equation or coordinates

1. Select Equation \& Coordinates from the Measure toolbox.

2. Select the point, line, circle, or conic whose equation you want to find. If multiple coordinate systems are present, you must select the coordinate system before the equation is displayed.

The result is displayed.

Select a point to display its coordinates.

Modifying the equation or coordinates

The equation is updated as you modify the object. The values composing the equation are based on the coordinate system.

Reposition the equation by selecting it with the Pointer tool and dragging it to a new position.

The equation moves with the object it measures unless you pull it away. When you pull it away from the object, the equation momentarily resists before pulling away.

Calculate

The Calculate tool opens a calculator at the bottom of the screen. You can perform calculations using measurements, numerical values, calculation results, and numerical inputs from the keyboard. When you change the components of a calculation, the result is updated.

The calculator shown below is displayed at the bottom of your computer screen. It cannot be moved from this position. Once selected, the calculator remains ON (visible) until you press the OFF button. The calculator becomes active as soon as you select the Calculate tool. It becomes inactive when you perform any action not directly associated with a calculation. To reactivate the calculator, you can either select the Calculate tool or click in the calculator edit window.

Calculations are entered in the edit window. See the procedure "Entering a calculation" in this section for how to enter a calculation. A measurement or numerical value from the Cabri Geometry II drawing window is represented in the edit window as a variable a, b, c, \ldots, z. This variable is also shown next to the value in the Cabri Geometry II drawing window. The value's full precision will be used in the calculation. All parentheses must be closed when entering a calculation.

You can extract the abscissa and ordinate from any coordinate set by clicking on each value individually.

The calculation result is displayed in the result window. You can drag the result to the Cabri Geometry II drawing window. When you drag the result to the drawing window, a tag identifying it as a calculation result is dragged along with it. See the step for copying the result to the drawing window in the procedure "Entering a calculation" on page 11-10.

You cannot modify values in the result window. However, on the Macintosh and Windows versions, you can edit results using Numerical Edit once they are in the drawing window. In addition to using the standard Numerical Edit features, you can display and change the composition of the result by selecting the Calc option in the Numerical Edit window. For the DOS version, select the Calculate tool, and double-click on the result to get the original formula back in the edit window. If you change the composition of a calculation, its result is automatically updated in the drawing window. (See "Numerical Edit" in the chapter "Using the Display Toolbox" for more details.)

If two different but compatible units are involved in a calculation, the result is displayed with the default units specified in Preferences under the Options menu (for example, $2 \mathrm{~cm}+4 \mathrm{~mm}=2.4 \mathrm{~cm}$).

The calculator gives three types of warnings:

- division by zero
- parentheses not closed
- incompatible units

Both division by zero and parentheses not closed must be corrected before the calculation can be performed. For incompatible units, Cabri Geometry II offers the option to disregard the units and to perform the calculation as if the values were without units.

Function buttons on the calculator contain mathematical functions. Click on a function button to display its operation in the edit window. The following table describes the functions available from the calculator function buttons.

Function Button	Operation	Syntax
Off	Turns off calculator. Calculator disappears.	none
Cancel	Clears last entry.	none
Inv	Generates the inverse of the following functions:	none
Inv-SIN	Calculates the arcsine.	$\arcsin ($ value)
Inv-COS	Calculates the arccosine.	$\arccos ($ value $)$
Inv-TAN	Calculates the arctangent.	\arctan (value)
Inv- $\sqrt{ }$	Calculates square of a number (x^{2}).	sqr (value)
Inv-LN	Calculates the natural antilogarithm (e^{x}).	\exp (value)
Inv-LOG	Calculates the common antilogarithm (10^{x}) .	10^{\wedge} (value)
SIN	Calculates the sine.	\sin (value)
COS	Calculates the cosine.	\cos (value)
TAN	Calculates the tangent.	\tan (value)
$\sqrt{ }$	Calculates the square root ($\sqrt{ }$) .	sqrt(value)
\wedge	Raises a number to a power $\left(y^{x}\right)$.	value1^value2
LN	Calculates the natural logarithm (base e). (The value used for e is 2.718281828.)	Ln (value)
LOG	Calculates the common logarithm.	Log(value)
ABS	Calculates the absolute value.	Abs(value)
π	Includes the value of π (pi) - 3.141592654. (On the Macintosh, OPTION +p may also be used for π.)	π
()	Adds parentheses. The keys () may also be used.	(value)
$+,-, *, \div$	Adds mathematical operators addition, subtraction, multiplication, and division. The keyboard may also be used: + for addition, for subtraction, * for multiplication, and / for division (\div).	$+,-, *, \div$
=	Performs the calculation. Pressing the return key also performs the calculation.	=

You can also enter mathematical functions from the keyboard. The following table lists the syntax for the mathematical functions supported by the calculator.

Function	Syntax
Absolute Value	ABS(value), abs(value), Abs (value)
Square	SQR(value), sqr(value), Sqr (value), Sq (value)
Square Root	SQRT(value), sqrt(value), Sqrt(value), SqRt(value), ل $($ value)
Logarithm base 10	$\log 10$ (value), Log10(value), \lg (value)
Natural Logarithm	LN (value), \ln (value), Ln (value)
Exponential ex	EXP (value), \exp (value), Exp (value)
Lowest Integer, Floor	FLOOR(value), floor(value), Floor(value)
Greatest Integer, Ceiling	CEIL(value), ceil(value), Ceil(value)
Round (to nearest integer)	ROUND(value), round(value), Round(value)
Sine	SIN(value), $\sin ($ value), $\operatorname{Sin}($ value)
Cosine	COS(value), \cos (value), Cos (value)
Tangent	TAN(value), tan(value), Tan(value)
Arc Sine	$\operatorname{ARCSIN}($ value), $\arcsin ($ value), asin(value), $\operatorname{ArcSin}(v a l u e)$
Arc Cosine	$\operatorname{ARCCOS}($ value), $\arccos ($ value), acos(value), $\operatorname{ArcCos}($ value)
Arc Tangent	ARCTAN(value), arctan(value), atan(value), ArcTan(value)
Hyperbolic Sin	SINH(value), \sinh (value), SinH (value), sh (value)
Hyperbolic Cos	$\mathrm{COSH}($ value $), \cosh ($ value $), \operatorname{CosH}($ value $), \operatorname{ch}($ value)
Hyperbolic Tan	TANH(value), tanh(value), TanH(value), th(value)
Arc Hyperbolic Sine	$\mathrm{ARCSH}($ value), arcsh (value), $\operatorname{ArcSh}($ value)
Arc Hyperbolic Cosine	$\mathrm{ARCCH}($ value), arcch (value), $\mathrm{ArcCh}($ value)
Arc Hyperbolic Tangent	ARCTH(value), $\operatorname{arcth}($ value), $\operatorname{ArcTh}(v a l u e)$
Minimum of ($\mathrm{n} 1, \mathrm{n} 2$)	MIN(value1, value2), min(value1, value2), Min(value1, value2)
Maximum of ($\mathrm{n} 1, \mathrm{n} 2$)	MAX(value1, value2), $\max ($ value1, value2), $\operatorname{Max}($ value1, value2)
$\operatorname{Pi}(\pi)$	$\pi, \Pi, \mathrm{PI}, \mathrm{pi}, \mathrm{Pi}$
Exponent	$10^{\wedge}($ value $)$

Entering a calculation

1. Select Calculate from the Measure toolbox.
2. Enter an expression in the edit window using any combination of the following methods:

- Click on any of the function buttons.
- Point to any numerical value in the drawing window, and click to copy it.
- Type in a function or a number.

Enter an expression.

 window to place the result.

Editing a calculation

1. Select the result with the Numerical Edit tool. (On the Macintosh, click on the Calc button. You must point to the number.) You can also select the Calculate tool and double-click the result composition to the edit window.

$$
\begin{aligned}
& \text { CGP } \quad \text { Result } 7.104 \mathrm{~cm} \\
& \text { Rave }
\end{aligned}
$$

The composition of the result is displayed in the calculator edit window.

Note: The display attributes options in the Windows version are determined in the Options/Preferences/Default Styles dialog box. These options are not available in the DOS version.
2. Edit the composition as described above in "Entering a calculation."

Select the $=$ button to display the result.

Click to place the result.

Tabulate

The Tabulate tool collects selected measurements, calculations, and numerical values into a single data table. You must define the table before values can be entered.

When you select values for tabulation, they are entered into the next available column of the table. If the value has a label comment, it is copied into the first row of the column and the value is copied into the next available row. If the value does not have a label comment, the first row will be empty for that column. Comments that you later add to tabulation values are copied into the first row in that value's column. See "Comments" in the chapter "Using the Display Toolbox" for instructions on adding a comment to a numerical value.

The values in a column are not displayed unless the full width of the column is visible. Each row of the table is numbered sequentially in the first column on the left. You can enter single values into the table when at least one object changes and you press the TAB key.

You can collect data automatically by selecting the table, and then using Animation. Data is stored in the table for each of the defined tabulation values at a rate relative to the animation.

You can delete columns or rows, and change column width (see page 11-13). The maximum number of rows is 999 . The number of columns is limited by memory.

You can make only one table for each Cabri Geometry II drawing. You can copy the values in a table to another program (such as a spreadsheet program). First, select the table with the Pointer tool, and use Copy from the Edit menu. Then go to the target program, and paste the data.

Note: The example tables shown on the following pages are for the Macintosh version using the Chicago font. The display attributes options are not available for the Windows and DOS versions; therefore, the fonts displayed on your screen will be different.

Using Tabulate

1. Select Tabulate from the Measure menu.
2. Define the table by dragging the marquee rectangle to size the table. You can resize the table by dragging the lower right corner.
3. Point to a numerical value, and click to enter it into the table.
4. Press TAB to record new values.

Note: At least one value must change before a new row is entered.

To tabulate values automatically, first select the table, and then animate the construction using Animation or Multiple Animation (in the Display toolbox).

When selected, the table displays with a marquee rectangle around it.

Adding values

1. Select Tabulate, and then point to the value and click.

The new value is added in the next available column and row. Blank cells in the new column will be filled with a hyphen (-).
2. Press TAB to record new values.

ㄴ) - -

Drag rectangle to size the table.

Click on each value to be tabulated.

	Radius	Area
1	0.63	1.2601
2		
3		
4		
5		

Press the TAB key to tabulate entries.

	Badius	Area
1	0.63	1.2601
2	1.00	3.1416
3	1.50	7.0686
4	2.00	12.5664
5	3.00	28.2743

	Radius	Area	Circum
1	0.63	1.2601	-
2	1.00	3.1416	-
3	1.50	7.0686	-
4	2.00	12.5664	-
5	3.00	28.2743	-
6	0.50	0.7854	3.14
7			

Sizing a table and deleting columns and rows

Sizing a table:

1. Click on the table.

An edit window is displayed around the table.
2. Point to any column divider in the first row.

The cursor changes to the column width + cursor.
3. Drag the column to modify its width.

Deleting a column:

1. Click in the first row of a column (the title column) to select the column.

The column is highlighted.
2. Press DELETE or select Clear in the Edit menu to delete the column.

Deleting a row:

1. Click in a row of the first column (the sequentially numbered column) to select the row.

The row is highlighted.
2. Press DELETE or select Clear in the Edit menu to delete the row.

Point and click in the first row of a column.

CPE	\#,		
	Radius	Area	Circum
1	0.63	1.2601	-
2	1.00	3.1416	-
3	1.50	7.0686	-
4	2.00	12.5664	-
5	3.00	28.2743	-
6	0.50	0.7854	3.14
7			

Point to the column divider and drag.

New column width.

	Radius	Area
1	0.63	1.2601
2	1.00	3.1416

Point and click in a row of the first column.

CCSP	Radius Area	
1	0.63	1.2601
2	1.00	3.1416
3	1.50	7.0686
4	2.00	12.5664
5	3.00	28.2743
6	0.50	0.7854
7		

Chapter 12: Using the Display Toolbox

The Display toolbox contains the tools associated with display features in Cabri Geometry II. These features allow you to annotate your constructions or animate objects.

The illustration below shows the location of the Display toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using Display tools, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

Label

The Label tool attaches a label to a point, line, or circle. When you select an object with the Label tool, an edit box appears in which you can enter the label text. The edit box contains pull-down menus that allow you to specify the attributes of the text (Macintosh only).

You can also attach a label to a point immediately after it is created. This method limits text to five characters, and you cannot edit when entering the text.

To set attribute defaults for font, size, and style of the text, use the Font, Size, and Style c*ommands in the Options menu in the Macintosh version, or the Options/Preferences menu in the Windows version.

Creating a label

1. Select Label from the Display toolbox.
2. Click to select a point, line, or circle.

Select a point, line, or circle.

Enter a label.

4. Type the label text on the keyboard.

Modifying a label

Move a label by dragging it to a desired location using the Pointer tool.

You can move the label within a fixed region from the object it labels. The label maintains its relative position to the object throughout any changes to the object.

Edit a label by selecting it with the Label tool. An edit box appears for editing the text. You must shade the text that you want to modify before making changes to its font, size, style, or color. Shade the text by dragging the I-beam cursor (I.) across it. Then select the appropriate option.

Note: The DOS version lets you change the color of a label by selecting the label, and then selecting a color from the color palette, or by applying the Color tool.

The Comments tool allows you to create an edit box to enter a text comment. Dragging a marquee rectangle in the drawing window makes the edit box appear for you to enter your text. The edit box contains pull-down menus that allow you to specify the attributes of your comment text. The comment becomes a text object that you can move anywhere in the plane.

You can also add measurements and numerical values to comments. These values become a part of the comment, yet maintain their numerical characteristics.

To set attribute defaults for font, size, and style of the text, use the Font, Size, and Style commands in the Options menu in the Macintosh version, or the Options/Preferences menu in the Windows version. You can also frame and/or fill comments with a color by using the Modify Appearance tool in the Draw toolbox.

Creating a comment

1. Select Comments from the Display toolbox.

Drag an appropriately sized box.

Enter a comment.

AreáEsploration
The area of a circle is $\pi r 2$.
The area of circle $c=$ top of the edit box.

The C, S, F, and color block \square change the character font, the character size, the font style, and the color of the character.
4. Type the text on the keyboard.

Text is confined within the box and automatically wraps to the next line when near the boundary. Create additional lines by pressing ENTER.

Highlight and change the text style.

Hreo Explorotion
The area of a circle is πr^{2}. The area of circle $c=$

Note: For Macintosh and DOS versions, to access some commonly used special characters, turn on NUM LOCK on your keyboard. Then press the ALT key while entering the three-digit ASCII number to insert the desired character.

224	α	228	Σ	232	Φ	238	\in	241	\pm	246	\div	251	$\sqrt{2}$
226	Γ	230	μ	234	Ω	239	\cap	242	\geq	247	\approx	252	${ }^{3}$
227	π	231	γ	236	∞	240	\equiv	243	\leq	248	\circ	253	2

5. Point to a numerical value, and click to insert it at the location of the l in the edit box.

CCPI
Brea kiplarailan
The area of a circle is πr^{2}. The area of circle $c=1$

Adding a comment to a numerical value

1. Select the Comments tool, then the numerical value.
2. Type the text. Press ENTER if you need additional lines.

Text is confined within the box and does not wrap to the next line. The comment is used as the column title if this value is tabulated in the table.

Modifying a comment

Move a comment by dragging it anywhere in the plane with the Pointer tool.

Edit a comment by selecting it with the Comments tool. An edit box appears. You must shade text that you want to modify before making changes to its font, size, style, or color. Shade the text by dragging the I across it. Then select the appropriate option.

Click directly on a numerical value within a comment to change its characteristics. The options in the edit box change to the options available in Numerical Edit. You can then modify the numerical value. See "Numerical Edit" in this chapter for specific details on editing a numerical value.

Resize the edit box by dragging its lower right-hand corner.

Note: The Windows and DOS versions let you change the color of a comment by selecting the comment, and then selecting a color from the color palette, or by applying the Color tool.

Brea Explorotion

The area of a circle is πr^{2}.
The area of circle $c=3.1416 \mathrm{~cm}^{2}$

The Numerical Edit tool creates an edit box for editing numerical values, including interactive numbers or measurements. Interactive numbers can be modified interactively and used to define rotations, dilations, or measurement transfer values. The edit box contains pull-down menus that allow you to specify the attributes of the text.

Attribute defaults for font, size, and style of the text can be set using the Font, Size, and Style commands in the Options menu (Macintosh only).

Creating and editing numerical values

1. Select Numerical Edit from the Display toolbox.

2. Click to place an edit box anywhere in the drawing for creating an interactive number.
3. If the attributes are already as you desire, continue to step 4. If not, select the font, size, style, and color of the text that you want. Press and hold the mouse button while pointing to the small icon boxes at the top of the edit box.

The C, S, F, and color block \square change the character font, the character size, the font style, and the character color.
4. Type a numerical value.
5. Press and hold the mouse button while pointing to the \mathbf{U} (Macintosh) in the edit box or press CTRL+U (Windows and DOS) to assign units to the interactive number.

Note: The Windows and DOS versions let you change the color of a numerical value by selecting it, and then selecting a color from the color palette, or by applying the Color tool.

Click to place the edit box.

Enter a numerical value.

Add appropriate units.

Cis.	Without unit
Millimeter	
Centimeter	
Meter	
Kilometer	
Square Millimeter	
Square Centimeter	
Square Meter	
Square Kilometer	
Radian	
Degree	
Grad	

Modifying a numerical value

Move the numerical value by dragging it anywhere in the plane with the Pointer tool.

You can modify numerical values interactively when the edit box is active. Using the arrow keys, place the I to the right of the digit you want to change. Use the up-arrow key to increase the digit by 1 . Use the down-arrow key to decrease the digit by 1 .

You can change these values automatically with animation. Using the Animation tool, select the number as you would select any object. The digit increases or decreases relative to the cursor position and to the direction indicated by the Animation tool.

You can change the units of a numerical value or its displayed precision. Using the Numerical Edit tool, select the numerical value. Select the U (Macintosh) in the edit box or press CTRL+U (Windows and DOS), and assign a unit to any number or change to the desired units.

Cabri Geometry II performs unit conversions based on the number's current unit assignment. Press the + key to increase the precision displayed by 1 digit. Press the - key to decrease the precision displayed by 1 digit.

Change the character attributes of a numerical value by selecting it using the Numerical Edit tool. An edit box appears for editing the number. You must shade the text that you want to modify before making changes to its font, size, style, or color. Shade the text by dragging the I. across it. Then select the appropriate option from the icons in the edit box.

The Mark Angle tool labels an angle specified by three points with an angle mark.

Creating a marked angle

1. Select Mark Angle from the Display toolbox.

2. Specify the angle by selecting three points. The second point must be the vertex.

Note: To measure an angle, just select the marked angle with the Angle tool in the Measure toolbox.

Select three points.

Drag the mark through the vertex to measure the reflex angle.

Modifying an angle mark

Using the Pointer tool, modify an angle mark by dragging it through the vertex to measure the opposite angle. The angle mark changes to \bigsqcup when the angle is 90 degrees.

Using the Modify Appearance tool in the Draw toolbox, change the number of angle marks displayed by selecting the desired angle mark attribute, and then the angle mark.

Example

Mark two angles:

The Fix/Free tool fixes the location of a free point or vice versa. Fixed points cannot be moved or deleted.

Fixing or freeing points

1. Select Fix/Free from the Display toolbox.

All fixed points are displayed with a thumb tack next to them.
2. Select any free point to fix its location or any fixed point to free the location constraint.

The Fix/Free tool works as a toggle function on a point. To free all fixed points simultaneously, click in free space while pressing SHIFT.

Select any point to fix its position.

> Select any fixed point to free it.

Trace On/Off

The Trace On/Off tool traces the path of an object as it is translated. You may trace objects manually by dragging the object or automatically by using the Animation tool. Multiple objects can be selected for tracing.

To clear trace results, select Refresh Drawing in the Edit menu.

Tracing an object

1. Select Trace On/Off from the Display toolbox.
2. Select the object to trace.

Selected objects are displayed in marquee outline.
3. Disable the trace on an object by selecting the object displayed in marquee outline.

The Trace On/Off tool works as a toggle function on an object. To disable a trace on all objects simultaneously, click in free space while pressing SHIFT.

Select any object.

Move the object to show the trace.

Modifying a trace

Use the Pointer tools (see Pointer toolbox) to modify the construction. As you move the object, its outline is displayed.

Animation

The Animation tool automatically moves an independent object along a specified path. Direction and speed are determined by the animation "spring." You can increase or decrease the animation speed by pressing + or - respectively, while the animation is active.

Objects defined by Trace are displayed at a specific interval relative to the length of the path. If the tabulation table is selected prior to the animation, animation automatically enters tabulation data into the table at a predetermined interval. (See "Tabulate" in the chapter "Using the Measure Toolbox.")

Animating an object

1. Select Animation from the Display toolbox.
2. Place the cursor on any object, and drag the animation spring in the opposite direction to the intended animation.

The farther away the spring is pulled, the faster the object is animated. The animation begins when the mouse button is released and the spring collapses.

If the Pointer tool is visible in the toolbar and the object does not lie on a defined path, the animated direction is 180 degrees from the spring. Otherwise, the object is animated along its defined path.

If the Rotate, Dilate, or Rotate and Dilate tool is visible in the Pointer toolbox and the object can be transformed, the animation will be relative to the visible Pointer tool. For example, if the Rotate tool is visible, the object is rotated automatically.
3. Stop the animation by clicking anywhere on the drawing.

Drag the animation spring.

Release the mouse button to begin.

Multiple Animation

The Multiple Animation tool automatically moves multiple objects along specified paths. Direction and speed are determined by the objects' individual animation "spring." You can increase or decrease the speed of the total animation by pressing + or - , respectively, during the animation.

Objects defined by Trace are displayed at a specific interval relative to the length of the path. If the tabulation table is selected prior to the multiple animation, multiple animation automatically enters tabulation data into the table at a predetermined interval.(See "Tabulate" in the chapter "Using the Measure Toolbox.")

Using Multiple Animation

1. Select Multiple Animation from the Display toolbox.
2. Place the cursor on any object, and drag an animation spring in the opposite direction to the intended animation. Select as many objects as desired for the animation. Redefine any animation spring by selecting the object again.

The farther away the spring is pulled, the faster the object is animated. The animation spring remains in place after the mouse button is released.

If the object does not lie on a defined path, the animated direction is 180 degrees from the spring. Otherwise, the object is animated relative to its defined path. Multiple Animation does not work with other Pointer tools as does Animation.
3. Press ENTER to begin the animation.
4. Stop the animation by clicking anywhere on the drawing.

Drag the animation spring.

Press ENTER to begin.

Note: The point on the circle was selected to trace.

Chapter 13: Using the Draw Toolbox

The Draw toolbox contains the tools associated with drawing features in Cabri Geometry II. These features allow you to change the appearance of objects or display the coordinate system.

The illustration below shows the location of the Draw toolbox on the Cabri Geometry II toolbar, along with its pull-down menu. Procedures for using Draw tools, including examples, are presented in this chapter in the order in which the tools appear on the pull-down menu.

Hide/Show

Color

Fill

Thick

Modify Appearance

Show/Hide Axes

New Axes

Define Grid

Hide/Show

The Hide/Show tool hides from view all selected objects and their accompanying labels and measurements. It also shows selected hidden objects. Hiding objects does not alter any of their attributes or geometric roles in a construction.

Hiding and showing objects

1. Select Hide/Show from the Draw toolbox.
2. Select the object you want to hide.

Note: Hidden objects are shown in dotted outline when the Hide/Show tool is active; otherwise, they are invisible.

Pressing the OPTION key (Macintosh) or the CTRL key (DOS) filters the cursor messages for all hidden objects, allowing easier access to visible objects.
3. Select a hidden object to make it visible again.

Pressing SHIFT and clicking in free space makes all hidden objects visible.

Pressing OPTION+SHIFT (Macintosh) or CTRL+SHIFT (DOS) filters the cursor messages for all visible objects, allowing easier access to hidden objects.

Click to hide visible objects.

Selected objects are hidden.

Click to display hidden objects.

The Color tool changes the color of any object to one of 15 colors in the color palette. (This tool does not display on black and white systems.

Changing the color of an object

1. Select Color from the Draw toolbox.
2. Select one of the colors in the color palette.

The selected color appears outlined in the palette.
3. Select any object to change its color to the color you selected.

Select a color from the palette.

Select object to change its color.

The Fill tool fills an object such as a triangle, polygon, circle, or label with a color (or pattern for black and white systems) that you choose from 15 selections available in the color palette.

Filling an object with color

1. Select Fill from the Draw toolbox.

2. Select one of the colors (patterns appear on black and white systems) in the color palette.

Select a fill color from the palette.

3. Select an object.

Select object to fill with color.

Modifying a filled object

Select an object a second time with the same color to change the color to transparent white (the original fill color).

Select an object a second time while pressing the OPTION key (Macintosh) or the ALT key (Windows, DOS) to change the color to opaque white.

Example

Construct a star polygon with the Regular Polygon tool.

Fill the star polygon with color.

The Thick tool changes the outline thickness of an object.

Changing outline thickness

1. Select Thick from the Draw toolbox.
4) 」
2. Select the thickness for the outline.

Select the thickness attributes.

3. Select the object to be outlined.

The Dotted tool changes the outline pattern of an object.

Changing outline pattern

1. Select Dotted from the Draw toolbox.

2. Select the pattern for the outline.

Select the outline attribute.

3. Select the object to be outlined.

The Modify Appearance tool changes the appearance of a point, the tick marks of an angle or a segment, the type of coordinate system, or the style of a comment.

Modifying appearances

1. Select Modify Appearance from the Draw toolbox.
2. Select the appropriate option:

- Points: small, medium, large, circular, or cross.
- Angle marks: one, two, or three tick marks.
- Segments: zero, one, two, or three tick marks.
- Coordinate system: Cartesian or polar coordinates. Polar coordinates can be represented in degrees, gradients, or radians.
- Comments: transparent without border, opaque without border, transparent with border, or opaque with border.

3. Select the object you want to appear with the selected attribute.

Select attributes to modify.

Select corresponding objects.

Example

1. Select the polar coordinate attribute.

2. Select the xy-coordinate system.

3. Coordinate system changes to polar.

Show/Hide Axes

The Show/Hide Axes tool displays the default axes. This command toggles between Show Axes and Hide Axes. If the axes are visible, the Hide Axes tool appears in the toolbox; if not, the Show Axes tool appears.

Equations and coordinates adhere to the specified coordinate system. Measurements of length, area, slope, and angle are given relative to their physical measure. The default coordinate system is defined in one centimeter increments, which corresponds to the physical measure you see. The coordinate system may be either Cartesian or polar. You can change the system by using the Modify Appearance tool, setting the defaults in the Options menu, or selecting the axes and pressing TAB.

Specifying axes

1. Select Show/Hide Axes from the Draw toolbox.

2. Coordinate system translation:

Drag the origin to translate the axes to a new location.
3. Axes rotation:

Rotate both axes simultaneously by grabbing the x -axis beyond the first scale mark and dragging in a circular manner.

Rotate the y-axis separately by grabbing the y-axis beyond the first scale mark and dragging in a circular manner.

Note: Pressing the SHIFT key while dragging rotates the axes in 15-degree increments.

Axes are displayed when you choose this tool.

Drag the first scale mark to change the scale

Drag x - or y-axis to rotate the coordinate system.

The New Axes tool creates a new x-y axis defined by three points. The first point defines the origin, the second point defines the location of the x-axis, and the third point defines the location of the y-axis. If the axes are defined using existing points, the points determine the scale of the axes. Otherwise, the scale is defined in one-centimeter increments.

You can define multiple coordinate systems. Equations and coordinates and grids must be specified relative to a specific coordinate system if multiple coordinate systems are defined.

After defining a new coordinate system, you can manipulate it in the same manner as the default coordinate system documented in the previous tool, Show/Hide Axes.

Creating axes

1. Select New Axes from the Draw toolbox.
2. Designate a point for the origin.
3. Click to specify the location of the x-axis.
4. Click to specify the location of the y-axis.

니 거

Click to place the x-axis.

Click to place the y-axis.

The Define Grid tool displays the grid of a defined coordinate system.

Defining and deleting a grid

1. Select Define Grid from the Draw toolbox.
2. Select the coordinate system to display the grid.
3. Delete the grid by selecting one of the grid points and pressing DELETE.
4) $\dot{1}$ -

A

adjusting your system configuration, 1-4
ambiguities, handling, 1-12
Angle tool, 11-5
animating an object 12-10
Animation tool 12-10
Arc tool, 6-3
Area tool, 11-3
arrow pointer, 1-10
attribute icons, description, 1-7
Automatic button, using to configure memory, 1-4
automatic data collection, 11-11

C

Calculate tool, 11-7
calculating measurements, 11-7 hhrough 11-10
changing
appearance of objects, 1-19
color of an object, 13-3
column width, 11-13
constructed lines, 5-3
direction and slope of a constructed ray, 5-5
language, 2-10
memory allocation, 1-4
outline patterns, 13-6
outline thickness, 13-5
system configuration, 1-4
Check Property toolbox, 10-1
checking
angles, 11-5
areas, 11-3
collinearity, 10-2
equation or coordinates, 11-6
equidistant property, 10-5
membership, 10-6
parallelism, 10-3
perpendicularity, 10-4
slopes, 11-4
Circle tool, 6-2
Clear command, 2-5
close box, description, 1-7
Close command, 2-2
closing the active drawing window, 2-2
closing the program, 2-4
Collinear tool, 10-2
Color tool, 13-3
column width pointer, 1-10
Comments tool, 12-3
Compass tool, 7-8
configuring
memory setting, 1-5
number of objects, 1-5
number of screen colors, $1-5$
toolbar tools, 2-9
Conic tool, 6-4
constraining the slope of a line, 5-2
Construct toolbox, 7-1
constructing objects, 1-10
construction pencil pointer, 1-10
Copy command, 2-5
creating
angle bisectors, 7-6
arcs, 6-3
axes, 13-9
calculations 11-10
circles, 6-2
comments, 12-3
compass circles, 7-8
conics, 6-4
intersection points, 4-4
inverse points, 8-7
labels, 12-2
lines, 5-2
loci, 7-11
macros, rules for, 9-2
marked angles, 12-7
measurement transfers, 7-9
midpoints, 7-4
numerical values, 12-5
parallel lines, 7-3
perpendicular bisectors, 7-5
perpendicular lines, 7-2
points, 4-2
points on an object, 4-3
polygons, 5-8
rays, 5-5
reflections, 8-2
regular polygons, 5-9
segments, 5-4
symmetrical images, 8-3
triangles, 5-7
vector sum, 7-7
vectors, 5-6
creating and selecting points, basics, 1-10
cross hair pointer, 1-10
crossed lines pointer, 1-10
Curves toolbox, 6-1
Cut command, 2-5

D

Defaults command, 2-7
Define Grid tool 13-10
Define Macro tool, 9-5
defining a grid, 13-10
deleting objects, 1-17
determining dependent and independent objects, 1-12
Dilate tool, 3-4
dilating
an object, 8-6
objects, 3-4, 3-5

Dilation tool, 8-6
Display toolbox, 12-1
Distance \& Length tool, 11-2
Dotted tool, 13-6
dragging hand pointer, 1-10
dragging objects, 1-13
Draw toolbox, 13-1
drawing window, 1-6

E

Edit menu, 2-5, 2-6
editing
comments, 12-4
labels, 12-2
numerical values, 12-5
Equation \& Coordinates tool, 11-6
Equidistant tool, 10-5
examples
arcs, creating, 6-3
basic points, 1-13
comments, 1-21
conics, creating, 6-4
dependent objects, 1-14
independent objects, 1-14
labeling, 1-19
lines, creating, 5-3
locus, creating a, 7-11
marked angles, creating, 12-7
measurement transfers, creating, 7-9
modifying appearances, 13-7
parallel lines, creating, 7-3
perpendicular bisectors, 1-11
perpendicular lines, creating, 7-2
rotating and dilating, 3-5
segments, creating, 5-4
selecting multiple objects, 3-2
expanding or contracting an object. See dilating an object

F

File menu, 2-2, 2-3, 2-4
Fill tool, 13-4
filling an object with color, 13-4
Final Object tool, 9-4
Fix/Free tool, 12-8
fixing or freeing points, 12-8
Font command, 2-11
freehand rotation of an object, 3-5
function buttons, calculate window, 11-8
functions and syntax, calculate window, 11-9

G

grasping hand pointer, 1-10

H

Help menu, 2-12
Hide/Show tool, 13-2
hiding and showing objects, 13-2

I

I-beam pointer, 1-10
Initial Object tool, 9-3
initial point of a line, 5-2
installing the software, 1-2
Intersection Point(s) tool, 4-4
Inverse tool, 8-7

L

Label tool, 12-2
labeling objects, 1-19, 12-2
language, changing, 2-10
Line tool, 5-2
Lines toolbox, 5-1
Locus tool, 7-11
low memory message, 1-4

M

Macro toolbox, 9-1
magnifying glass pointer, 1-10
Mark Angle tool, 12-7
Measure toolbox, 11-1
Measurement Transfer tool, 7-9
measuring objects, 11-2
Member tool, 10-6
memory, available for application, 1-4
Menu bar, description, 1-6
menus, options, 1-8
Midpoint tool, 7-4
Modify Appearance tool,13-7
modifying
a point on an object, 4-3
angle bisectors, 7-6
appearances, 13-9
arcs, 6-3
circles, 6-2
comments, 12-4
compass circles, 7-8
conics, 6-4
dilations, 8-6
equation or coordinates, 11-6
modifying (continued)
inverse points, 8-7
labels, 12-2
lines, 5-2
loci, 7-12
marked angles, 12-7
modifying (cont.)
measurement transfers, 7-10
midpoints, 7-4
numerical values, 12-6
parallel lines, 7-3
perpendicular bisectors, 7-5
perpendicular lines, 7-2
points, 4-2
rays, 5-5
reflections, 8-2
regular polygons, 5-10
rotations, 8-5
segments, 5-4
symmetrical images, 8-3
traces, 12-9
translations, 8-4
triangles, 5-7
vector sum, 7-7
vectors, 5-6
moving measurements
area, 11-3
of an object, 11-2
of angles, 11-5
slope, 11-4
moving objects, 3-2
Multiple Animation tool, 12-11

N

network operation, 1-3
New Axes tool, 13-9
New command, 2-2

0

On-line help window, how to open, 1-9
Open command, 2-2
open hand pointer, 1-10
opening a new drawing window, 2-2
opening an existing construction file, 2-2
optimal configuration settings, 1-4
optimizing your system configuration, 1-4
Options menu, 2-7 hrough 2-10

P

Page Setup command, 2-3, 2-4
paint brush pointer, 1-10
paint bucket pointer, 1-10
paper size and orientation, 2-3, 2-4
Parallel Line tool, 7-3
Parallel tool, 10-3
Paste command, 2-5
Perpendicular Bisector tool, 7-5
Perpendicular Line tool, 7-2
Perpendicular tool, 10-4
Point on Object tool, 4-3
Point tool, 4-2
Pointer tool, 3-2
Pointer toolbox, 3-1
pointers, display types, 1-10
pointing hand pointer, 1-10
Points toolbox, 4-1
Polygon tool, 5-8
Preferences command, 2-7
Print command, 2-4
Printer Setup command, 2-4
printing a construction file, $1-22, \mid 2-4$
printing options, 2-4
printing to scale, 2-3, 2-4

Q

Quit command, 2-4

R

Ray tool, 5-5
Redefine Object tool, 7-14
Redefine Point tool, 7-13
redefining an object, 7-14
redefining a point, $7-13$
Redo command, 1-17, 2-5
Reflection tool, 8-2
Regular Polygon tool, 5-9
removing selected objects, 2-5
Replay Construction command, 2-6
replaying each step of a construction, 2-6
returning to a recently saved version, 2-3
Revert command, 2-3
Rotate and Dilate tool, 3-5
Rotate tool, 3-3
rotating an object, $3-3,8-5$
rotating an object automatically, 3-3
Rotation tool, 8-5

s

Save and Save As command, 2-2
saving a construction file, 1-22, 2-2
scroll bars, description, 1-7
scrolling the drawing window, 1-22
Segment tool, 5-4
Select All command, 2-6
selecting
all objects, 2-5
default colors and attribute settings, 2-7
objects, 3-2
preferences, 2-7
selection hand pointer, 1-10
selection pencil pointer, 1-10
selection pointer, description, 1-7
setting preferences, 2-7
Show Drawing command, 2-3
Show/Hide Attributes command, 2-7
Show/Hide Axes tool, 13-8
size box, description, 1-7
Size command, 2-11
Slope tool, 11-4
specifying
axes, 13-8
final objects, 9-4
initial objects, 9-3
macros, 9-6
starting the program, 1-3
status, checking, 1-5
storing a macro in memory, 9-2, 9-5
Style command, 2-11, 2-12
Symmetry tool, 8-3
system requirements, 1-2

T

table dimensions, using Tabulate, 11-11
Tabulate tool
adding values, 11-12
description 11-11
sizing and deleting columns, 11-13
using tabulate, 11-12
Thick tool, 13-5
Tool Configuration command, 2-9
Toolbar, description, 1-7
toolboxes
Check Property, 10-1
Construct, 7-1
Curves, 6-1
Display, 12-1
Draw, 13-1
Lines, 5-1
Macro, 9-1
Measure, 11-1
Pointer, 3-1
Points, 4-1
Transform, 8-1
Trace On/Off tool, 12-9
tracing an object, 12-9
Transform toolbox, 8-1
translating
lines, 5-2
objects, 8-4
rays, 5-5
segments, 5-4
vectors, constructed, 5-6
Translation tool, 8-4
Triangle tool, 5-7

U

Undo command, 1-17, 2-5
using the software on a network, 1-3

V

Vector Sum tool, 7-7
Vector tool, 5-6
viewing
font sizes, 2-11
installed fonts, 2-11
text styles, 2-11
viewing an entire region, 2-3
viewing available system memory, 1-4

Z

zoom box, description, 1-7

[^0]: Cabri Geometry II is a trademark of Université Joseph Fourier.
 Macintosh is a registered trademark of Apple Computer Corporation Incorporated.
 MS-DOS and Windows are registered trademarks of Microsoft Corporation.
 PostScript is a registered trademark of Adobe Systems Incorporated.
 © 1997, 1999 by Texas Instruments Incorporated. All rights reserved.

