

Getting Started

\square Start here

How To...

- Find Installation Instructions
\square Move Between Matrix Application Screens
\square View and Edit a Matrix
- Use Matrices with Expressions
- Display and Copy Matrices
- Use Math Functions with Matrices
- Use the Matrix MTH Operations
\square Delete a Matrix

More Information

\square Uninstalling the Application from the TI-73

- Error Recovery
- Customer Support

Important Information

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis.

In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this product. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

This graphing product application (APP) is licensed. See the terms of the license agreement.

目

Copyright © 1999, 2001 Texas Instruments Incorporated.

Where to Find Installation Instructions

You can find detailed instructions on installing Flash applications at education.ti.com/guides.

Getting Started: Systems of Linear Equations

Use the Matrices application to solve the system of linear equations:
$X+2 Y+3 Z=3$
$2 X+3 Y+4 Z=3$
Enter the coefficients as elements in a matrix, and then use rref(to find the reduced row-echelon form.

Steps	Keystrokes	Display
1. Run the Matrices application.	APPS, highlight MATRICES and press ENTER, then press any key	
2. Display the MATRIX EDT menu, and select the [A] matrix.	®®1	

Steps		Keystrok
3.	Define a 2×4 matrix. The	2 ENTER
	rectangular cursor	4 ENTER
	indicates the current	
	element. Ellipses (...)	
	indicate additional	
	columns beyond the	

Display

4. Enter $\mathbf{1}$ for the first

1 ENTER element. The rectangular cursor moves to the second column of the first row.
5. Complete the first row for $X+2 Y+3 Z=3$.
6. Enter the second row for $2 X+3 Y+4 Z=3$.
7. Display the Matrix Home screen.

APPS CLEAR

Steps	Keystrokes	Display
8. Clear the screen, if necessary.	CLEAR	
9. Display the MATRIX MTH menu. Press Δ to wrap to the end of the menu, and then select B:rref(.	APPS \square Δ ENTER	
10. Display the MATRIX NAME menu and select matrix [A]. Then complete the calculation. The reduced row-echelon form of the matrix is:	APPS 1 DENTER	
$\begin{aligned} & 1 X+0 Y-1 Z=-3 \text { so } \\ & X=-3+Z \end{aligned}$		
$\begin{aligned} & 0 X+1 Y+2 Z=3 \text { so } \\ & Y=3-2 Z \end{aligned}$		

Running or Quitting the Application

Running the Application

After installing the application:

1. Press APPS.
2. Select the Matrices application. An informational screen appears.

MATRICES VEr'sion 1.0
FFESSHII'HEN
(T) 1999 TEMAS InsTFUHEITS

Note If you ever need technical support, you may need the version number shown on this screen.
3. Press any key to display the Matrix Menu screen.

Quitting the Application

To exit the Matrices application and return to the TI-73 Home screen, either:

- Press 2nd [QUIT].
- or -
- On the Matrix Menu screen, highlight HLP. Then select 2:Quit.

Any matrices or other variables that you stored while using the Matrices application are retained in memory. Matrices are stored as application variables (App vars). After quitting the application, you cannot use a stored matrix from the TI-73 Home screen; you must run the Matrices application to access a matrix or perform a matrix calculation.

Matrices Application Screens and How to Move Between Them

The three primary screens used in the Matrices application are shown below. Notice the keys used to move from one screen to another.

Viewing Online Help

To view online Help, highlight HLP on the Matrix Menu screen.
Then select 1:Help.

Press \square (next) and (back) to move through the Help, one page at a time. On the last page, \square returns to the Matrix Menu screen.

Defining a Matrix

What Is a Matrix?

A matrix is a two-dimensional array. You can define, display, or edit a matrix using the Matrix Edit screen. You can also define a matrix directly in an expression. The Matrices application for the TI-73 has six matrix variables, [A] through [F]. A matrix, depending on available memory, can have up to 100 elements in any arrangement of rows and columns (with a maximum of 99 individual rows or columns). You can store only real numbers in a matrix.

Defining a New Matrix

Before you can define or edit a matrix in the editor, you must select the matrix name. From the Matrix Home screen:

1. Press APPS \square to display the MATRIX EDT menu (not MATRIX NAME).

2. Select the matrix you want to define. Use \square or \triangle to highlight the corresponding number and then press ENTER, or press that number key. The Matrix Edit screen is displayed.

Sets the number of columns, up to 99.
Sets the number of rows, up to 99.
When you edit or create a matrix, the cursor highlights the number of rows.
3. Accept or change the number of rows.

- To accept the value, press ENTER.
- To change the value, type the number of rows and then press ENTER.

The cursor moves to the number of columns.
4. Accept or change the number of columns. When you press ENTER, the cursor moves to the first matrix element.

5. Type the value (or an expression) for each element and press ENTER, one row at a time. Each time you press ENTER, the cursor moves to the next element in the row. At the end of a row, the cursor moves to the next row.

To change a value, use $\square, \square, \square$, and Δ to highlight that element and then enter a new value (or press ENTER and then edit the current value).
6. After entering the last element, press APPS to return to the Matrix Menu screen. You can then press CLEAR to display the Matrix Home screen.

Viewing and Editing a Matrix on the Matrix Edit Screen

Viewing an Existing Matrix

On the Matrix Edit screen, select the matrix. As necessary, use the cursor keys to move the rectangular cursor from one matrix element to the next.

Dimensions of the matrix.
Ellipses (...) in the left or right column indicate additional columns.
\uparrow or \downarrow in the right column indicates additional rows
The full value of the highlighted element is shown on the bottom line.
$=$ When the rectangular cursor highlights an element (and an edit cursor is not shown on the bottom line), you can use the following keys:

Key Description

\square or \square Moves the cursor within the current row.
\square or Δ Moves the cursor within the current column.

- On the first row, Δ moves the cursor to the number of columns
- On the number of columns, Δ or Δ moves the cursor to the number of rows.
Key Description

ENTER
or
CLEAR
or
any entry
character

Lets you edit the highlighted element, and activates the edit cursor on the bottom line of the screen.

- ENTER retains the current value in the bottom line so that you can modify it.
- CLEAR clears the bottom line so you can enter a new value.
- Any entry character clears the bottom line and places that character on the line.

Editing a Matrix Element

To edit a matrix element, you must first activate the edit cursor.

1. Select the matrix from the Matrix Edit menu, and then enter or accept the number of rows and columns.
2. Press $\square, \square, \square$, and \square to highlight the element.
3. Press either ENTER, CLEAR, or an entry key to activate the edit cursor on the bottom line.
4. Change the value of the matrix element using the editing keys described below. You can enter an expression, which is evaluated when you move the cursor to another element.

Note If you edit a value by mistake and want to restore the original value, press CLEAR ENTER.
5. Press ENTER, Δ, or \square to move to another element.

Tatrixedrt	HFPr=Hind	
W-1TFIX	[H] 8 <4	
[3.1416	$\begin{array}{lll}-3148 & 13\end{array}$	-
[2 c	3.1415	
[112.33	0 0	
[00		
[0	.85714	$\overline{+}$
2, $2=0$		

When the edit cursor is shown on the bottom line, use the following keys to edit the value:

Key Description

\square or \square Moves the edit cursor within the value.
\square or \square Stores the value displayed on the bottom line to the matrix element; deactivates the edit cursor and moves the rectangular cursor within the column.

ENTER Stores the value displayed on the bottom line to the matrix element; deactivates the edit cursor and moves the rectangular cursor to the next row element.

CLEAR Clears the value on the bottom line.
Any entry Places that character at the location of the edit cursor. character
[2nd [iNS] Activates the insert cursor.
DEL Deletes the character under the edit cursor.

Using Matrices with Expressions on the Matrix Home Screen

Using a Matrix in an Expression

To use a matrix in an expression, either:

- Copy the name of an existing matrix from the MATRIX NAME menu.
- Type the matrix elements directly from the keyboard.

An expression can perform a maximum of two operations that create or return a matrix. For example:

$$
[[1,2][3,4]] \rightarrow[A] \quad \text { and } \quad[[1,2][3,4]] * 3
$$

are valid because they contain two matrix operations (the input matrix is created in the calculator's memory, and so is the resulting output matrix).

If an expression has three or more such operations, an error occurs. In most cases, however, you can perform the operations successfully by breaking them into separate pieces. For example:

An error occurs for:	Instead, enter:
$[[1,2][3,4]]+[[5,6][7,8]]$	$[[1,2][3,4]] \rightarrow[A]$
	$[[5,6[7,8]] \rightarrow[B]$
	$[A]+[B]$
augment $([[1,2][3,4]],[[5,6][7,8]])$	$[[1,2][3,4]] \rightarrow[A]$
	$[[5,6][7,8]] \rightarrow[B]$
	augment $([A],[B])$
identity $(3) * \operatorname{randM}(3,3)$	identity $(3) \rightarrow[A]$
	randM $3,3,3) \rightarrow[B]$
	$[A] *[B]$

Note
These expressions cause an error because they contain three matrix operations (two input matrices and one result matrix).

Typing a Matrix Directly from the Keyboard

On the Matrix Home screen, use the syntax:

Any expressions are evaluated when you press ENTER. For example:

To store a matrix directly to a matrix variable, use STO. For example:

Select the matrix from the Matrix NAME menu or type it directly. Press $Y=$ and WINDOW to type [and].

Accessing a Specified Matrix Element

On the Matrix Home screen, you can store a value to, or recall a value from, a specified matrix element. The element must be within the defined matrix dimensions. Use the syntax:
[matrix] (row,column)

Displaying and Copying Matrices on the Matrix Home Screen

Displaying a Matrix

To display the contents of a matrix on the Matrix Home screen, select the matrix from the MATRIX NAME menu and then press ENTER.

If the matrix is too large to be displayed on the screen, press \square, \square, \square, and \triangle to scroll the matrix.

		\uparrow or \downarrow in the right column
1.178	4	indicates additional rows.
$\cdots \mathrm{F}$		
		Ellipses (...) in the left or right
$\cdots 2.14323 .987$		column indicate additional
-26		columns.

Copying One Matrix to Another

To copy a matrix:

1. Press APPS to display the MATRIX NAME menu.
2. Select the name of the matrix you want to copy. You can either use \square and Δ to highlight the number to the left of the matrix name and then press ENTER, or simply press the corresponding number key.
3. Press STO.
4. Press APPS again and select the name of the new matrix to which you want to copy the existing matrix.
5. Press ENTER to copy the matrix.

Using Math Functions with Matrices

You can use matrices with many of the math functions on the TI-73 keyboard, the MATH menu, the MATH NUM menu, and the $=$ and \neq relational operations available from the Text Editor. However, the dimensions must be appropriate. Each of the functions below creates a new matrix; the original matrix remains the same.

+ (Add), - (Subtract), * (Multiply)

To add (\square) or subtract (\square) matrices, the dimensions must be the same. The answer is a matrix in which the elements are the sum or difference of the individual corresponding elements.
matrix $A+$ matrix B
matrix A-matrix B
To multiply (\boxtimes) two matrices, the column dimension of matrixA must match the row dimension of matrixB.
matrix A *matrix B

[fikix Himit	Herehemul
	$\left.\left[\begin{array}{ll}2 & 2 \\ 3 & 4\end{array}\right]\right]$
[B]	
	$\left[\begin{array}{lll}4 & 3 \\ 4 & 3\end{array}\right]$

Multiplying a matrix by a value or a value by a matrix returns a matrix in which each element of matrix is multiplied by value.
matrix*value
value *matrix

- (Negation)

(-)

Returns a matrix in which the sign of every element is changed (reversed).
-matrix

Eakfix Homa	HeFFEHidu
[H]	
	$\left.\left[\begin{array}{cc}2 & -2 \\ 3 & 4\end{array}\right]\right]$
- [H]	
	$\left[\begin{array}{lll}-2 & 2 \\ -3 & -4\end{array}\right]$

abs(MATH NUM menu

Returns a matrix containing the absolute value of each element of matrix.
abs(matrix)


```
[C]
GEs[C]
    [[23 [-65] [14]]
    [[25
```


round(MATH NUM menu

Returns a matrix in which every element in matrix is rounded to \#decimals (≤ 9). If \#decimals is omitted, the elements are rounded to 10 digits.
round(matrix)
round(matrix,\#decimals)

-1 (Inverse)

Inverts a square matrix ($\wedge-1$ is not valid). The determinant cannot equal zero.
matrix ${ }^{-1}$

Powers

To raise a matrix to a power, matrix must be square. You can square (x^{2}), cube (3 from MATH menu), or raise a matrix to any integer power ($\boldsymbol{\wedge}$ power) between 0 and 255.
matrix ${ }^{2}$
matrix ${ }^{3}$
matrix^power

Relational Operations

2nd [TEXT]

To compare two matrices using the relational operations = and \neq (available from the Text Editor), they must have the same dimensions. The $=$ and \neq operations perform an element-byelement comparison between matrixA and matrixB. Other relational operations are not valid with matrices.
matrixA=matrixB returns 1 if every comparison is true, or 0 if any comparison is false.
matrixA \neq matrix B returns 1 if at least one comparison is false, or 0 if no comparison is false.

Hovis mershe	
	[1
1	
	$\left[\begin{array}{llll}3 & 2 & 1 \\ 1 & 2 & 3\end{array}\right]$

iPart(, fPart(MATH NUM menu

iPart(and fPart(return a matrix containing the integer part and the fractional part, respectively, of each element of matrix.
iPart(matrix)
fPart(matrix)

int(CATALOG

Returns a matrix containing the greatest integer of each element of matrix.
int(matrix)

For a negative non-integer, int(returns the integer that is one less than the integer part of the number. To return the exact integer part, use iPart(instead.

Using the Matrix MTH Operations

To display the Matrix MTH menu, press APPS \square.

NAME MTH EDT	EDT HLP
1: det (Calculates the determinant.
2: T	Transposes the matrix.
3: dim(Returns the matrix dimensions.
4: Fill	Fills all elements with a constant.
5: identity (Returns the identity matrix.
6: randM(Returns a random matrix.
7: augment(Appends two matrices.
8: Matrlist(Stores a matrix to a list.
9: Listrmatr (Stores a list to a matrix.
0 : cumSum(Returns the cumulative sums of a matrix.
A: ref(Returns the row-echelon form of a matrix.
B: rref(Returns the reduced row-echelon form.
C: rowSwap (Swaps two rows of a matrix.
D: row+(Adds two rows; stores in the second row.
E: *row (Multiplies the row by a number.
F: *row+(Multiplies the row, adds to the second row.
G: [Defines the beginning of a matrix and row.
$\mathrm{H}:]$	Defines the end of a matrix and row.

det(1: Determinant

Returns the determinant (a real number) of matrixname. The matrix must be square.
det (matrixname)

T 2: Transpose

Returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of matrixname.
matrixname ${ }^{\mathbf{T}}$

dim(3: Matrix Dimensions

dim (lets you perform three separate operations.

- To find the dimensions of a matrix:

Use dim(to return a list containing the dimensions (\{rows columns\}) of matrix.
dim (matrix)
Note
If dim (matrix) $\rightarrow \mathbf{L}$ 1, then \mathbf{L} (1) returns the number of rows and L1(2) returns the number of columns.

- To create a new matrix:

Use dim (with STO to create a new matrixname of dimensions rows \times columns with 0 as each element.
$\{$ rows,columns $\} \rightarrow \mathbf{d i m}($ matrixname $)$

- To change the dimensions of a matrix:

Use dim (with STO to redimension an existing matrixname to dimensions rows \times columns. The elements in the old matrixname that are within the new dimensions are not changed.
Additional created elements are zeros. Matrix elements that are outside the new dimensions are deleted.
$\{$ rows,columns $\} \rightarrow \operatorname{dim}($ matrixname)

Fill(4: Fill Matrix Elements

Stores value to every element in matrixname.
Fill(value,matrixname)

Fill《5,[E] Don
[E] [[[505] 5

identity(5: Identity Matrix

Returns the identity matrix of dimension rows \times dimension columns.
identity(dimension)


```
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& 1 \\
& 0 \\
& \hline N
\end{aligned}
\]} \\
\hline \\
\hline \\
\hline
\end{tabular}
```


randM(6: Random Matrix

Returns a rows \times columns random matrix of integers ≥-9 and ≤ 9. The seed value stored to the rand function controls the values (Chapter 2 in the TI-73 Guidebook at education.ti.com/guides).
randM(rows,columns)

augment(7: Append Matrices

Appends matrixnameA to matrixname B as new columns. matrixnameA and matrixnameB both must have the same number of rows.
augment(matrixnameA,matrixnameB)

,	Alverehtoul
	[1
[E]	

$\left[\begin{array}{llll}{\left[\begin{array}{llll}1 & 2 & 5 & 6\end{array}\right]}\end{array}\right.$

Matrolist(8: Store Matrix to List

Matrılist(has two variations.

- To fill each listname with elements from each column in matrixname:

Use the syntax:
Matr>list(matrixname,listnameA, ... ,listname n)

If you specify more listnames than the matrixname has columns, the additional listnames are ignored. Likewise, if you specify fewer listnames, the additional columns in the matrixname are ignored.

- To fill a listname with elements from a specified column\# in matrixname:

Use the syntax:
Matrاist(matrixname,column\#,listname)

Listımatr(9: Store List to Matrix

Fills matrixname column by column with the elements from each list. If dimensions of all lists are not equal, List>matr(fills each extra matrixname row with 0 .

Listımatr(listA, ... ,listN,matrixname)

Listumetr Citale
[C] Lone

cumSum(0: Cumulative Sums

Returns cumulative sums of the elements in matrixname, starting with the first element. Each element is the cumulative sum of the column from top to bottom.
cumSum(matrixname)

Note About Row Operations

MATRIX MTH menu items A through \mathbf{F}, as described in the remaining part of this section, are row operations. You can use a row operation in an expression. Row operations do not change the matrix in memory. You can enter all row numbers and values as expressions. You can select the matrix from the MATRIX NAME menu.

ref(, rref(A: and B: Row-echelon and Reduced Row-echelon Forms

ref(returns the row-echelon form of a real matrixname. The number of columns must be greater than or equal to the number of rows.

```
ref(matrixname)
```

rref(returns the reduced row-echelon form of a real matrixname. The number of columns must be greater than or equal to the number of rows.

```
rref(matrixname)
```


rowSwap(C: Row Swap

Swaps rowA and rowB of matrixname, and returns the new matrix.
rowSwap(matrixname,rowA,rowB)

row+(D: Row Addition

Adds row A and row B of matrixname, stores the sum in row B, and returns the new matrix.
row+(matrixname,rowA,rowB)

From the original matrix, rows 1 and 2 are added to create this new row 2.

*row(E: Row Multiplication

Multiplies a specified row of matrixname by value, stores the result in row, and returns the new matrix.
*row(value,matrixname,row)

From the original matrix, row 1 is multiplied by 2 to create this new row 1.

*row+(F: Row Multiplication and Addition

Multiplies rowA of matrixname by value, adds it to row B, stores the results in row B, and returns the new matrix.
*row+(value,matrixname,rowA,rowB)

From the original matrix, row 1 is multiplied by 3 to produce [3 6 9], which is then added to row 2.

[,] G: and H: Direct Matrix Entry

Let you enter a matrix directly from the Matrix Home screen. For example:

For \rightarrow, press STO.
$[[1,2,3][3,2,1]] \rightarrow[B]$
You can also press Y and WINDOW to type [and] directly from the keyboard.

Deleting a Matrix

From the Matrix Home Screen

Use the DeIVar instruction available from the CATALOG.

From the MEMORY Menu

1. Quit the Matrices application (2nd [QUIT]).
2. Press 2nd [MEM].
3. Select 4:Delete.
4. Select 9:AppVars. (Because matrices are not standard variables on a TI-73, they are stored as application variables.)
5. Use \square and Δ to move the pointer to the applicable matrix name.

Note On this calculator screen, matrix names are shown as MATA and MATB instead of [A] and [B].
6. Press ENTER to delete the matrix.
7. Continue deleting matrices as necessary.

Uninstalling the Application from Your Tl-73

To uninstall the application and delete it from the calculator's memory:

1. Quit the Matrices application ([2nd [QuIT]).
2. Press 2nd [Mem].
3. Select 4:Delete.
4. Select 8:Apps.
5. Select Matrices and press ENTER.
6. Select 2:Yes to confirm that you want to delete the application.

If you retained the application file on your computer, you can reinstall it later.

Error Recovery Instructions

Low Battery Condition

Do not attempt a Flash download if the low-battery message appears on the calculator. Low battery indication is shown on the initial screen. If you receive this error during an installation, change the batteries before trying again.

Check Amount of Flash Application Free Space

On the TI-73, select [2nd [MEM] 3:Check APPs.... The number to the right of Spaces Free: indicates the number of spaces available for applications. The Matrices application requires one space. There are a maximum of four spaces.

Communication Error

This error indicates the Flash installer is unable to communicate with the TI-73. The problem is usually associated with the TI-GRAPH LINK ${ }^{\text {TM }}$ cable and its connection to the TI-73 and/or to the computer. Make sure the cable is firmly pushed in to the calculator and the computer.

If this does not correct the problem, try a different
TI-GRAPH LINK cable and reboot your computer. If you continue to get this error, please contact Tl-Cares ${ }^{T M}$ Customer Support for assistance.

Memory is Full

This download error appears when the Tl-73 contains one to four applications that occupy the available 64 K of space. To make room for another application, you must delete one from the Tl-73. Before deleting an application, you can back it up to your computer so that you can reload it later as necessary.

Syntax Error

QUIT ignores the last transaction and displays the last results.
GOTO displays the screen with the error highlighted. Make any necessary correction and press ENTER.

Singular Mat

A singular matrix (determinant=0) is not valid as an argument for ${ }^{-1}$.

Invalid Dim

You specified a matrix dimension as something other than an integer between 1 and 99.

You attempted to invert a non-square matrix.
You attempted to access an invalid row or column value referencing an existing matrix (e.g. $[A](1,2)$ when $[A]=1 \times 1$).

Memory

You specified a matrix with more than 100 elements.

Dim Mismatch

You attempted to perform an operation that references more than one matrix, but the dimensions do not match.

Miscellaneous Error Received

Write down the error code displayed in the dialog box and contact TI-CARES.

Checksum Error

Exit the installation and try it again. If this problem persists, contact TI-CARES.

Miscellaneous

If you obtain new or upgraded software for your TI-73, you may need to provide your current software version and/or the serial number of your unit. It is also good to know your version number in case you have difficulties with your TI-73 and need to contact technical support. Knowing the software version may make it easier to diagnose the problem.

Knowing the available number of application spaces in advance helps you better manage your application downloads.

Verify Maintenance Upgrade Version

On the TI-73, enter [2nd [mem] 1:About. The version number has the format x.yy or x.yyyy.

Verify Flash Application Version

On the TI-73, select APPS. Select the appropriate application and press ENTER. The version number of the application appears on the initial screen.

Verify Serial Number

On the TI-73, enter 2nd [MEM] 1:About. The serial number appears on the line beneath the product ID number.

Texas Instruments (TI) Support and Service Information

For general information

E-mail:	ti-cares@ti.com
Phone:	1-800-TI-CARES (1-800-842-2737)
	For US, Canada, Mexico, Puerto Rico, and
	Virgin Islands only

Home page: education.ti.com
For technical questions
Phone: 1-972-917-8324

For product (hardware) service
Customers in the US, Canada, Mexico, Puerto Rico, and Virgin Islands: Always contact TI Customer Support before returning a product for service.

All other customers: Refer to the leaflet enclosed with your product (hardware) or contact your local TI retailer/distributor.

End-User License Agreement

BY INSTALLING THIS SOFTWARE YOU AGREE TO ABIDE BY THE FOLLOWING PROVISIONS.

1. LICENSE: Texas Instruments Incorporated ("TI") grants you a license to use and copy the software program(s) ("License Materials") contained on this diskette/CD/web site. You, and any subsequent user, may only use the Licensed Materials on Texas Instruments calculator products.
2. RESTRICTIONS: You may not reverse-assemble or reverse-compile the Licensed Materials. You may not sell, rent, or lease copies that you make.
3. COPYRIGHT: The Licensed Materials and any accompanying documentation are copyrighted. If you make copies, do not delete the copyright notice, trademark, or protective notices from the copies.
4. WARRANTY: TI does not warrant that the Licensed Materials or documentation will be free from errors or that they will meet your specific requirements. THE LICENSED MATERIALS ARE PROVIDED "AS IS" TO YOU OR ANY SUBSEQUENT USER.
5. LIMITATIONS: TI makes no warranty or condition, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding the Licensed Materials.
IN NO EVENT SHALL TI OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS, LOSS OF USE OR DATA, OR INTERRUPTION OF BUSINESS, WHETHER THE ALLEGED DAMAGES ARE LABELED IN TORT, CONTRACT, OR INDEMNITY.

SOME STATES OR JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION MAY NOT APPLY.

IF YOU AGREE TO BE BOUND BY THIS LICENSE, CLICK ON THE "ACCEPT" BUTTON; IF YOU DO NOT AGREE TO BE BOUND BY THIS LICENSE, CLICK ON THE "DECLINE" BUTTON TO EXIT THE INSTALLATION.

Page Reference

This PDF document contains electronic bookmarks designed for easy onscreen navigation. If you decide to print this document, please use the page numbers below to find specific topics.

Important Information 2
Where to Find Installation Instructions 3
Getting Started: Systems of Linear Equations 4
Running or Quitting the Application 7
Matrices Application Screens and How to Move Between Them 9
Viewing Online Help 10
Defining a Matrix 11
Viewing and Editing a Matrix on the Matrix Edit Screen 14
Using Matrices with Expressions on the Matrix Home Screen. 17
Displaying and Copying Matrices on the Matrix Home Screen 21
Using Math Functions with Matrices 23
Using the Matrix MTH Operations 29
Deleting a Matrix 42
Uninstalling the Application from Your TI-73 43
Error Recovery Instructions 44
Miscellaneous 47
Texas Instruments (TI) Support and Service Information 48
End-User License Agreement 49

