TI-10
 A Guide for Teachers

Developed by
Texas Instruments Incorporated

Activities developed by
Dr. Jane Schielack

Abstract

About the Author Dr. Jane Schielack is an Associate Professor of Mathematics Education in the Department of Mathematics at Texas A\&M University. She developed the Activities section and assisted in evaluating the appropriateness of the examples in the How to Use the TI-10 section of this guide.

Important Notice Regarding Book Materials

Texas Instruments makes no warranty, either expressed or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the purchase price of this book. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

Note: Using calculators other than the TI-10 may produce results different from those described in these materials.

Permission to Reprint or Photocopy

Permission is hereby granted to teachers to reprint or photocopy in classroom, workshop, or seminar quantities the pages or sheets in this book that carry a Texas Instruments copyright notice. These pages are designed to be reproduced by teachers for use in classes, workshops, or seminars, provided each copy made shows the copyright notice. Such copies may not be sold, and further distribution is expressly prohibited. Except as authorized above, prior written permission must be obtained from Texas Instruments Incorporated to reproduce or transmit this work or portions thereof in any other form or by any other electronic or mechanical means, including any information storage or retrieval system, unless expressly permitted by federal copyright law.

If you request photocopies of all or portions of this book from others, you must include this page (with the permission statement above) to the supplier of the photocopying services.

Send inquiries to this address:

Texas Instruments Incorporated
7800 Banner Drive, M/S 3918
Dallas, TX 75251
Attention: Manager, Business Services

性 Texas Instruments

education.ti.com
ti-cares@ti.com
Copyright © 2001 Texas Instruments Incorporated
Except for the specific rights granted herein, all rights are reserved.
Printed in the United States of America.

Automatic Power Down, APD, and EOS are trademarks of Texas Instruments Incorporated.

Table of Contents

How to Use the TI-1O 15
1 Display, Scrolling, Order of Operations, and Parentheses 16
2 Clearing and Correcting 19
3 Menus 23
4 Basic Operations 26
5 Constant Operation 33
6 Whole Numbers and Decimals 38
7 Memory 42
8 Problem Solving: Auto Mode 47
9 Problem Solving: Manual Mode 54
10 Place Value. 62

CHAPTER PAGE	CHAPTER	PAGE
About the Teacher Guide...................... iv	Appen	A-1
About the TI-10.....................................v	Qui	
	Appen	
The Value of Place Value \qquad Place value	Appen	
What's the Problem? 7	Menu	
Number sentences, Problem solving	Appen	
Comparing Costs................................	Erro	
Division with quotient/remainder or decimal result	Append Supp	

About the Teacher Guide

How the Teacher Guide Is Organized

This guide consists of two sections: Activities and How to Use the TI-10. The Activities section is a collection of activities for integrating the $\mathrm{Tl}-10$ into mathematics instruction. The How To Use the TI-10 section is designed to help you teach students how to use the Tl-10 features.

- Activities Section

The activities are designed to be teacherdirected. They are intended to help develop mathematical concepts while incorporating the TI-10 as a teaching tool. Each activity is self-contained and includes the following:

- An overview of the mathematical purpose of the activity.
- The mathematical concepts being developed.
- The materials needed to perform the activity.
- A student activity sheet.

- How to Use the TI-10 Section

This section contains examples on transparency masters. Chapters are numbered and include:

- An introductory page describing the Tl-10 keys presented in the examples, the location of those keys on the TI-10 keyboard, and pertinent notes about the functions of those keys.
- The transparency masters following the introductory page provide examples of practical applications of the keys being discussed. The keys being discussed are shown in black on an illustration of the TI-1O keyboard.

Things to Keep in Mind

- While many of the examples on the transparency masters may be used to develop mathematical concepts, they were not designed specifically for that purpose.
- For maximum flexibility, each example and activity is independent of the others. Select the transparency master for the key your students need to use to develop the mathematical concepts you are teaching. Then select an appropriate activity for the mathematical concept you are teaching.
- If an example does not seem appropriate for your curriculum or grade level, use it to teach the function of the key(s), and then provide relevant examples of your own.
- To ensure that students start at the same point, have them press (AC) to clear the TI-10, and then press (a) to clear the display.

How to Order Additional Teacher Guides

To place an order or to request additional information about Texas Instruments (TI) products, contact us.

Phone: 1-800-TI-CARES

$$
(1-800-842-2737)
$$

E-mail: ti-cares@ti.com
Home page: education.ti.com
You may download and print your own copy of this Teacher Guide from this web page.
education.ti.com/guides

About the TI-10

Two-Line Display

The first line displays an entry of up to 11 characters. Entries begin on the top left. If the entry does not fit on the first line, it wraps to the second line. When space permits, both the entry and the result appear on the first line.

The second line displays up to 11 characters. If the entry is too long to fit on the first line, it wraps to the second line. If both entry and result do not fit on the first line, the result is displayed right-justified on the second line. Results longer than 10 digits are displayed in scientific notation.

If an entry does not fit on two lines, it continues to wrap, so that you always see the last two lines of the entry. You can view the beginning of the entry by scrolling up. In this case, only the result appears when you press Enter.

Display Indicators

Refer to Appendix B for a list of the display indicators.

Error Messages

Refer to Appendix D for a listing of the error messages.

Order of Operations

The TI-10 uses the Equation Operating System (EOS ${ }^{\text {TM }}$) to evaluate expressions. The operation priorities are listed on the Display, Scrolling, Order of Operations, and Parentheses transparency master in the How to Use the TI-10 Section.

Because operations inside parentheses are performed first, you can use \square and \square to change the order of operations and, therefore, change the result.

Menus

The (Mode key displays menus.

- To move up or down through the menus, press a or -
- To move the cursor and underline a menu item, press \leqslant or \Rightarrow.
- To return to the previous screen without selecting the menu item, press Mode or (1ara).
- To select a menu item, press Enter while the item is underlined.
- To return to the previous screen, press (Mode or (1ara).
Refer to Appendix C for more information about menus.

Previous Entries (History)

After an expression is evaluated, use and - to scroll through previous entries and results, which are stored in the TI-1O history.

Problem Solving (*)

The Problem Solving tool has three features that students can use to challenge themselves with basic math operations and place value.

- Problem Solving Automatic mode provides a set of exercises to challenge the students' skills in addition, subtraction, multiplication, and division. Problem Solving Automatic mode lets students select the level of difficulty (1 , 2 , or 3) and the type of operation (,+- , x, \div, or?).
- Problem Solving Manual mode lets students compose their own problems, which may include missing elements or inequalities.

About the TI-10 (Continued)

- Problem Solving Place Value has three options that let students:
- Find the place value of a given digit.
- Find how many ones, tens, hundreds, thousands, tenths, or hundredths are in a given number.
- Find the digit in the ones, tens, hundreds, thousands, tenths, or hundredths place of a given number.

Resetting the TI-10

You can reset the TI-1O in any of the following ways:

- Press (Ac).
- Press (:) and (iara simultaneously.
- Press (Mode, select the RESET menu, select Y (yes), and then press Enter.
When you reset the TI-10, MEM CLEARED is displayed. Press (1ara) to clear the display.

Resetting the Tl-10:

- Returns settings to their defaults:
- Standard notation (floating decimal)
- Problem Solving AUTO mode
- Quotient and Remainder results for division
- Difficulty Level 1 (addition) in Problem Solving tool
- Type of Operation - addition
- Clears:
- Pending operations
- Entries in history
- The constant (stored operation)
- Any error condition

Automatic Power Down ${ }^{\text {TM }}$ (APD ${ }^{\top M}$)

If the TI-1O remains inactive for about five minutes, Automatic Power Down (APD) turns it off automatically. To turn the TI-10 on again after APD, press (:6). The display, pending operations, settings, and memory are retained.

The Value of Place Value

Overview
Students will build their flexibility in using numbers
by exploring the connections between the number
symbols and their representations with base-ten
materials.

Math Concepts	Materials
Grades 2-4	- TI-10
- whole number place value	- pencil
(through thousands)	- Counting on Frank by
thousands) - money	Rod Clement
Grades 4-6	- base-ten
- decimal place value (through hundredths)	materials - student activity
- metric units (meters, decimeters, centimeters)	(pages 5 and 6)

Introduction

1. Read Counting On Frank by Rod Clement. Discuss other kinds of questions that a person could ask about how many objects fit in or on other objects.
2. Divide students into several groups. Give each group a large pile of units (over 300) from the base-ten materials. Tell them that this is how many jelly beans fit into a jar that you filled. Ask them to count the "jelly beans." Observe the techniques they use to count (counting one at a time, making groups of 10 , etc.).
3. Tell students you have run out of unit pieces and then ask:

How many rods (groups of 10) would I need to use to make a pile of "jelly beans" the same size as yours?
4. Have students explore the answer to this problem with their units, or they can apply their knowledge of place value. Then show them how to explore the answer using the TI-10.
5. Have students compare their solutions with the base-ten materials to the TI-10 display. (They can make 31 tens rods from the 314 units, with 4 units left over.)

To use the Place Value feature for this activity:

1. Press ${ }^{*}$ (mode.
2. Press \Rightarrow Enter to select MAN (manual) mode, if necessary.
3. Press $\boldsymbol{\sim}$ Enter to set the Place Value feature to 11 -. This lets you find out how many ones, tens, hundreds, etc., there are in a number.
Note: You can use the 1 -. Place Value feature to find what digit is in the ones, tens, hundreds, etc., place.
4. Press (Inode to return to the entry screen.

To explore answers to this problem on the Tl -10:

1. If necessary, press © to enter the Problem Solving tool.
2. Enter 314, the number of units.
3. Press 㽞. [10.) to see how many tens there are in 314. The display shows 31..., indicating there are 31 tens in 314.

The Value of Place Value (Continued)

Collecting and Organizing Data

Have students use their base-ten materials and TI-10s to continue exploring other numbers and identifying how many units, tens, hundreds, and thousands those numbers contain. Older students can find how many tenths and hundredths are in the numbers. Encourage exploration with questions such as:

- How many hundreds are in 120? 2478? 3056?
- How many tens are in 120? 2478? 3056?
- How many units (ones) are in 120? 2478? 3056?
- What numbers can you find that have 12 units? 12 tens? 12 hundreds?
- What numbers can you find that have 60 units? 60 tens? 60 hundreds?

Analyzing Data and Drawing Conclusions

Have students use the tables on The Value of Place Value Student Activity pages to record their findings and identify the patterns they see. To help them focus on the patterns, ask questions such as:

- How does the number of tens in 1314 compare to the number 1314? How about 567? 2457? 4089, etc.?

If you cover the digit in the units place, you see how many tens are in a number.

- How does the number of hundreds in 1314 compare to the number 1314? How about 567? in 2457? in 4089, etc.?

If you cover the digits to the right of the hundreds place, you see how many hundreds are in a number.

- How does the display on the TI-10 compare to what you can do with the base-ten materials?

If the TI-10 displays 31_, for 316, you should be able to make 31 tens rods out of 316 units.

In (Problem Solving) MAN (manual) mode, students can use the 11 -. Place Value feature to test their conjectures. For example, if they think 1602 has 160 hundreds, they enter 1602, press [1. 100. , and see 16 They can then use base-ten materials to see why there are only 16 hundreds in 1602.
Note: Students can use the - 1 -. place value feature to find what digit is in the hundreds place. They enter 1602, press ... 6 This result means that 6 is the digit in the hundreds place.

The Value of Place Value (Continued)

Continuing the Investigation

Connect the place-value patterns to money. For example, ask students:

- If each one of your "jelly beans" costs a penny, how many pennies would you spend for 1,314 jelly beans?

1,314 pennies

- How many dimes (tens) would you spend?

131 dimes and 4 more pennies

- How many dollars (hundreds)?

13 dollars, plus 14 more pennies, or 1 dime and 4 pennies

Older students can record the money and enter it into the TI-10 in decimal form, 13.14. Then, they can use the TI-10 to connect dimes to $1 / 10(0.1)$ of a dollar ($\$ 13.14$ has 131 dimes or tenths). They can also connect pennies to $1 / 100(0.01)$ of a dollar ($\$ 13.14$ has 1314 pennies or hundredths).

Older students can also connect the place-value patterns to conversions between metric units. For example, a measurement of 324 centimeters can also be recorded as 32.4 decimeters (or rounded to 32 dm) because $1 \mathrm{dm}=10 \mathrm{~cm}$, or it can be recorded as 3.25 meters (or rounded to 3 m) because $1 \mathrm{~m}=100 \mathrm{~cm}$.
\qquad Value, Part A

Collecting and Organizing Data

1. Use your base-ten materials and your TI-10 to explore how many tens, hundreds, and thousands are in a number. Record your observations in the table.

Number	Number of Thousands	Number of Hundreds	Number of Tens

2. What patterns do you see?

Analyzing Data and Drawing Conclusions: Patterns

1. Write 5 numbers that have 15 tens.
\qquad
2. Write 5 numbers that have 32 hundreds.
\qquad
3. Write 5 numbers that have 120 tens.
\qquad

The Value of Place

Value, Part B
\qquad

Collecting and Organizing Data

1. Use your base-ten materials and your TI-10 to explore how many tenths and hundredths are in a number. Record your observations in the table. What patterns do you see?

Number	Number of Tenths	Number of Hundredths

2. What patterns do you see?

Analyzing Data and Drawing Conclusions: Patterns

1. Write 5 numbers that have 15 tenths.
\qquad
2. Write 5 numbers that have 32 hundredths.
\qquad
3. Write 5 numbers that have 120 tenths.

What's the Problem?

Introduction

1. On a sentence strip or on the overhead, display a number sentence, such as $\mathbf{8 + 2}=$? . Have students brainstorm situations and related questions that this number sentence could represent and then ask:

If I bought eight postcards on my vacation, and I had two postcards already at home, how many postcards do I have now?
2. If necessary, have students act out the situation with counters and determine that the value of? is 10.
3. Demonstrate how to display this equation on the TI-10 and how to tell the TI-10 what the value of ? is.
4. Now display an equation such as $\boldsymbol{?}-\mathbf{1 0}=\mathbf{4}$. Have students brainstorm situations and related questions that this number sentence could represent.

I had some money in my pocket, and I spent 10 cents of it. I only have 4 cents left. How much money did I have in my pocket to begin with?

Have students practice the keystrokes necessary to display this equation and test the value they determine for ?.
5. Over a period of time, continue to introduce students to different types of number sentences to explore. For example, $\boldsymbol{?} \mathbf{x} \boldsymbol{?}=\mathbf{2 4}$ (which has 8 solutions of whole number factor pairs) and ? x $4=2$ (which has no whole number solution).

To display $8+2=?$:

1. Press () $)$ (mode \Rightarrow Enter to put the TI-10 in Problem Solving MAN (manual) mode.
2. Press (Mode to exit the menu.
3. Press $8 \boxplus 2$ (Enter. The TI-10 displays 1 SOL (one whole number solution).
4. Enter 10 and press Enter to test the solution. The TI-10 displays the equation and YES.
© If an incorrect value is tested for ?, the Tl -10 displays no and provides a hint. For example, if a student tests 15 for the equation ? - $\mathbf{1 0}=\mathbf{4}$, the $\mathrm{Tl}-10$ displays no, shows 15-10>4, and then returns to the original equation.
Note: After three incorrect answers, the TI-10 displays the correct answer.

What's the Problem? (Continued)

Collecting and Organizing Data

As an ongoing activity, have students work in pairs and use the What's the Problem? Student Activity page to create problem-solving cards. One partner is responsible for the calculations on the TI-10, and the other partner is responsible for writing number sentences.

1. Have the partner responsible for writing number sentences create an addition, subtraction, multiplication, or division number sentence, using the ?, and then, record the number sentence in the top box on Page 10.
2. Have the partner responsible for the TI-10 enter the number sentence into the calculator.
3. Have the partner responsible for writing number sentences create a situation and question to go with the number sentence and then record this information in the bottom box.

The partners can work together to glue or tape the two boxes to opposite sides of an index card.

Have students work together using the TI-10 to explore how many whole number solutions the equation has and test those solutions. Provide ideas for exploration by asking questions such as:

- What actions could be happening in your story to go with addition (subtraction, multiplication, or division)?
- How could you use the counters to act out this number sentence?
- What could this number in the number sentence represent in your story?
- What could the question mark in the number sentence represent in your story?
- Can you make a story for a number sentence that begins with a question mark?

What's the Problem? (Continued)

Analyzing Data and Drawing Conclusions

To help student focus on thinking about the relationships between their stories and the numbers and operations in their number sentences, ask questions such as:

- How would using a different number here change your story?
- How would using a greater than or less than symbol instead of an equal sign in the number sentence change your story?
- How would using a different operation in your number sentence change your story?

Continuing the Investigation

- Have partners create stories and trade them. Each partner can then write a number sentence to go with the other partner's story.
- Have students sort their number sentences into categories. For example, those with no whole number solutions, those with 1 whole number solution, those with 2 whole number solutions, and those with infinite whole number solutions.
- Have students try to find an equation or inequality with exactly no whole number solutions, exactly 1 whole number solution, exactly 2 whole number solutions, more than 5 whole number solutions, etc.

What's the Problem?

\qquad

1. Write a number sentence using an operation and the ?.
2. Write a story that describes a situation and asks a question that can be represented by the number sentence.

Comparing Costs

Overview

Students will solve a problem using division with an integer quotient and remainder, solve the same problem using division with the quotient in decimal form, and then compare the results.

Math Concepts	Materials
- division	- TI-10
- multiplication	- pencil
- fractions	- student
- decimals	activity (page 14)

Introduction

1. Introduce this problem.

The maintenance department has determined that it will cost $\$.40$ per square yard to maintain the district's soccer field each year. The soccer field is 80 yards wide and 110 yards long. The six schools that play on the field have decided to split the cost evenly. How much should each school contribute to the soccer field maintenance fund this year?
2. Have students use the TI-10 to solve this problem in two ways:

- Find the integer quotient and remainder.
- Find the quotient in decimal form.

Collecting and Organizing Data

Students should record their procedures and results on the Comparing Costs Student Activity page. To help them focus on their thinking, ask questions such as:

- What did you enter into the TI-10 to solve the problem?
- $80 \boxtimes 110 \square$ to determine the area of the soccer field.
- $\quad 0.40 \square$ to find the total maintenance cost.
- $\dagger 6 \square$ to find the cost for each school in decimal form.

The TI-10 default division setting (QR) displays an integer quotient with a remainder.

To display a quotient in decimal form:

1. Press (AC) © to reset the TI-10.
2. Press (1)ode \Rightarrow to underline - (decimal format).
3. Press Enter to select the decimal setting.
4. Press (100de to exit the \div (division) menu and return to the previous screen.

Comparing Costs (Continued)

- Could you have solved the problem more efficiently? How?
80×110 can be calculated mentally, and the key presses can be simplified to 8800 区. $4 \div 6$ ■.
- How are your procedures alike for each type of solution?

The procedures all involve finding how many square yards in the soccer field; they all involve multiplication and division.

- How are they different?

You use different keys to tell the TI-10 in what form you want the answer displayed.

Analyzing Data and Drawing Conclusions

To guide students in the analysis of their data, ask questions such as:

- How are your solutions in the two forms alike?

The solutions all have a whole number component of 586.

- How are your two solutions different?

The remainder form just tells how many dollars are left over. The decimal form tells how much more than $\$ 586$ each school has to pay.

Comparing Costs (Continued)

- What happens if you multiply each solution by 6 to check it?

For the quotient and remainder form, when you multiply 586 by 6 , you get 3516 , so you must then add the remainder, 4 , to get the total cost of $\$ 3520$.

If you multiply the decimal result 586.6666667 by 6 (586.6666667 囚 6 ■), you get 3520 . However, this result does not make sense because 6×7 does not end in a 0 !

Because we are referring to money calculations, you can fix the decimal result, 586.6666667 , to 2 decimal places (586.6666667 Fix 0.01 Enter). When you multiply the rounded number 586.67 by 6 (586.67 ® 6 ®), you get 3520.00 . This result still does not make sense because $6 \times 7=42$.

If you reset and clear the TI-10, and then multiply 586.67 by 6 (© © ((batc 586.67 区 6), you get 3520.02. This calculation does make sense.

- As a school, which form of the quotient would you want to use?

Responses may vary. Some students may want to use the decimal form, since it is the closest to the representation of money. Some students may want to use the integer quotient and remainder form and suggest that the Central Office pay the $\$ 4.00$ remainder.

For an integer division (with quotient and remainder), the $\mathrm{TI}-10$ uses only the quotient of the result in subsequent calculations. The remainder is always droped.

The TI-10 only rounds the displayed result. The internally stored value is not rounded. When you fix 586.6666667 to 2 decimal places (586.67), and then multiply by 6 , the TI-10 remembers the original number (586.6666667), and uses it as the factor. But when you enter the rounded number, 586.67, the $\mathrm{TI}-10$ uses the number you entered for the factor, calculating a product of 3520.02.

Comparing Costs

Collecting and Organizing Data

The Maintenance department has determined that it will cost $\$ 4.00$ per square yard to maintain the district's soccer field each year. The soccer field is 80 yards wide and 110 yards long. The 6 schools that play on the field have decided to split the cost evenly. How much should each school contribute to the soccer field maintenance fund this year?

1. Use division with an integer quotient and remainder to find the answer.
2. Use division with a quotient in decimal form to find the answer.

Analyzing Data and Drawing Conclusions

Write a short paragraph comparing the two solutions.

How to Use the Tl-10

1 Display, Scrolling, Order of	
\quad Operations, and Parentheses	16
2 Clearing and Correcting	19
3 Menus	23
4 Basic Operations	26
5 Constant Operation	33
6 Whole Numbers and Decimals	38
7 Memory	42
8 Problem Solving: Auto Mode	47
9 Problem Solving: Manual Mode	54
10 Place Value	62

Display, Scrolling, Order of Operations, and Parentheses

Keys

1. (\square) opens a parenthetical expression. You can have as many as eight parentheses at one time.
2. closes a parenthetical expression.
3. \& and \Rightarrow move the cursor left and right.

- and \sim move the cursor up and down through previous entries/results and menus.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (1iar) to reset the $\mathrm{Tl}-10$ to the default settings and clear the display.
- The EOS ${ }^{\text {TM }}$ transparency master shows the order in which the Tl-10 completes calculations.
- When using parentheses, if you press $\#$ before pressing \square, Syn Error is displayed. Press (ibar) to return to the previous display.
- Operations inside parentheses are performed first. Use \square and \square to change the order of operations and, therefore, change the result.

Example: $1+2 \times 3=7$

$$
(1+2) \times 3=9
$$

- The first and second lines display entries up to 11 characters. Entries begin on the left and scroll to the right. An entry always wraps at the operator.
- Results are displayed rightjustified. If a complete problem does not fit on the first line, the result displays on the second line.
- If an entry does not fit on two lines, it continues to wrap. You can view the beginning of the entry by using \sim to scroll.

Equation Operating System (EOS ${ }^{\text {TM }}$)

Priority

Functions

1 (first) Expressions inside parentheses ().

Functions that require a closing parenthesis) and precede the argument.

Negation (-).

4
Multiplication, implied multiplication, division ($\times \div$).
$5 \quad$ Addition and subtraction (+ -).

6 (last) $\quad \exists$ completes all operations.

Because operations inside parentheses are performed first, you can use parentheses to change the order of operations and, therefore, change the result.

Order of Operations

$1+2 \times 3=$

Press	Display	
(A0) (1a)	4	
$\begin{aligned} & 1 \text { Đ } 2 \text { 区 } 3 \\ & =\square \end{aligned}$	$1+2 \times \pm$	7

Multiply
区
Parentheses
$\square \square$
$(1+2) \times 3=$

Clearing and Correcting

Keys

1. (:) turns the TI-1O on and off.
2. \measuredangle clears the last digit you entered, allowing you to correct an entry without re-entering the entire number.
3. In the Calculator tool, (1aar) clears the last entry, all pending operations, and any error conditions. You can then enter a new problem and continue your calculation.
4. (AC) resets the TI-10.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (1iar) to reset the TI-10 and clear the display.
- You can reset the TI-10 in any of the following ways:
- Press (AC).
- Press (:I) and (iaral simultaneously.
- Press (Mode, select the RESET menu, select Y (Yes), and then press Enter.
- When you reset the TI-10, the message MEM CLEARED is displayed. Press (1ara) to clear the display.
- Resetting the TI-10 returns settings to their defaults:
- Standard notation (floating decimal)
- Problem Solving Auto mode
- Quotient and Remainder result for division
- Difficulty Level 1 (addition) in Problem Solving
- Addition as the Type of Operation
- Clears:
- Pending operations
- Entries in history
- The constant (stored operation)
- Any error condition

Clearing and Correcting

Notes（continued）

－Pressing（⿴囗十a木合 alone does not affect the mode settings，memory，history， or constant．
－In ©（Problem Solving）AUTO （automatic）mode，pressing（1ara）lets you clear your answer from the display before you press Enter．
－In ©（Problem Solving）MAN
（manual）mode，pressing（bata lets you clear your problem before you press Enter or it lets you clear your answer before you press Enter．

Clearing entries

1. Enter $35+10$.
2. Clear the entry and pending operation.
3. Enter 35-9.
4. Complete the calculation.

Clear

Clear

Correcting entry errors using $\boxed{\square}$

1. Enter $69+3$.
2. Change the 9 to an 8 .
3. Add 3.
4. Complete the calculation.

Keys

1. Mode displays the Calculator tool menus (See page 24).
2. ($\stackrel{1}{1}$ (Mode displays the Problem Solving tool menus (See page 25).

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (1iar) to reset the TI-1O and clear the display.
- The Calculator tool is active when you turn the TI-10 on. When the Calculator tool is active, press (Mode to access the Calculator menus. See page 24 for all the Calculator menu options.
- Press *) to access the Problem Solving tool. When the Problem Solving tool is active, the (0) indicator shows on the top line of the TI-10 display. While the Problem Solving tool is active, press (Mode to access the Problem Solving menus. See page 25 for all the Problem Solving menu options.
- See Appendix C for a complete menu map.
- To select an option from any menu, highlight the item you want and press Enter. To exit the menu, press Mode again.
- Press (Auto to toggle between the AUTO (automatic) and MAN (manual) modes in the Problem Solving tool.
- Press to change the level of difficulty, while you're in the Problem Solving AUTO mode. After reaching Level 3 , the $\mathrm{Tl}-10$ cycles back to Level 1.

Menus (Continued)

Calculator Tool

Press	Menu	Option	Explanation	Example
(AC) (16a) Mode	(Division)	QR	Displays division results as a quotient and remainder.	2 r 1
		-	Displays division results as a decimal.	2.25
(AC) (Caar Mode	OP (Constant Operation)	+ 1	Shows the constant operation on the display.	
		$?$	Hides the constant operation.	15
(AC) (ㄷar) Mode	CLEAR OP1	Y (Yes)	Clears the operation and value stored in OP1.	n CLEAR OP1
		n (No)	Retains the value and operation stored in OP1.	
(AC) (ㄷar) Mode	RESET	n (No)	Does not reset the calculator.	RESET
		Y (Yes)	Resets the calculator.	n

Menus (Continued)

Problem Solving Tool

Press	Menu	Option	Explanation	Example
(AC) (Giara)	(Mode)	AUTO (automatic)	Default. Presents problems with one element missing.	Auto $5+2=?$
		MAN (manual)	Lets you compose your own problems with missing elements.	$5+?=7$

Problem Solving AUTO (automatic) Mode

Press	Menu	Option	Explanation	Example
$\begin{aligned} & \text { (AO) (Iata) } \\ & \text { (I) Mode } \sim O R \\ & \square \end{aligned}$	$\begin{gathered} . . . \mathrm{wiz} \\ \text { (Level of } \end{gathered}$ Difficulty)	123	After Level 3 the T-10 cycles back to Level 1 .	$\begin{aligned} & \text { Auto } \\ & 4+?=10 \end{aligned}$
$\begin{aligned} & \text { (AC) (ara) } \\ & \text { (a) (Mode) } \end{aligned}$	(Type of Operation)	+ - $2 \div \%$	Add, subtract, multiply, divide, find the operation.	$\begin{aligned} & 1 \quad \text { Auto } \\ & 10-?=4 \end{aligned}$

Problem Solving MAN (manual) Mode

Display options for Problem Solving Place Value only.

Press	Menu	Option	Explanation	Example
$\begin{aligned} & \text { (AC) ©itar } \\ & \text { (A) Auto Mode } \end{aligned}$	" (Place Value)	11 -.	Lets you find out how many ones, hundreds, thousands, tenths, or hundredths a number contains.	Press 1234 100. $\begin{aligned} & 1234 \\ & 12 _-\quad \end{aligned}$
		- 1 -.	Lets you find out what digit of a number is in a specified place.	Press 1234 $\square .100$. 1234 12. -2.

Basic Operations

Keys

1. + adds.
2. \square subtracts.
3. \triangle multiplies.
4. \div divides.
5. $\#$ completes the operation.
6. Enter completes the entry.
7. (-) lets you enter a negative number.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (ibar) to reset the TI-10 and clear the display.

- There are two options for displaying division results.
- When the QR setting is selected, the result of division appears as quotient and remainder (__r r __). $Q R$ is the default setting.
- When the decimal (.) setting is selected, the result of division is displayed as a decimal.
- If you use the result of division in a subsequent calculation, only the quotient is used. The remainder is dropped.
- The maximum number of digits for quotient and remainder is 5. The quotient, remainder, and the r character together can total up to 11 characters.
- When the QR setting is selected for division all numbers must be positive whole numbers.
- If you attempt to divide by O, a $\div O$ ERROR message is displayed.
- $\dagger, \boxed{\square}, \boxed{\otimes}, \dagger$, Enter, and Ξ work with the built-in constants.
- The negative symbol (-) will appear smaller than the minus sign $(-)$ in the display.

Basic operations

$2+5-6=$

Press	Display	
（AC）（1ara）	4	
$\begin{aligned} & 2 \oplus 5 \square \\ & 6 \underset{\square}{\square} \end{aligned}$	2＋5－6＂	，

$3 \times 4 \div 2=$

Add，Subtract
田曰

Multiply，Divide
区
Equals
\pm

Finding patterns in previous problems
Enter the problems.
$1+1=$
$1+2=$
$1+3=$
Review history (previous problems) to determine the pattern.

Add

History

Entering negative numbers

The temperature in Utah was - $3^{\circ} \mathrm{C}$ at 6:00 A.M. By 10:00 A.M., the temperature had risen $12^{\circ} \mathrm{C}$. What was the temperature at 10:00 A.M.?

Division with remainders

Chris has 27 pieces of gum. He wants to share the pieces evenly among himself and 5 friends. How many pieces will each person get? How many pieces will be left over?

Division with decimal result

Set the division display option to decimal and divide 27 by 6.

Divide \bigcirc

Calculating equivalent units of time

Sara ran 2 kilometers in 450 seconds. Convert her time to minutes and seconds.

450 seconds $=\begin{aligned} & ? \text { minutes } \\ & ? \text { seconds }\end{aligned}$

Press	Display
(AC) (6)	4
$\begin{aligned} & 450 \div 60 \\ & \square \end{aligned}$	4516817808

(7 minutes, 30 seconds)

Constant Operation

Keys

1. Opl lets you store an operator $(+-x \div)$ and a number as a constant for repeated use.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (ilear) to reset the TI-1O and clear the display.
- The constant operation is set in conjunction with Opl when you perform a calculation that uses the $\oplus, \square, \boxtimes$, or \div key.

- The constant operation works with whole numbers and decimals.
- When you use the constant operation (Opl), a counter appears on the left side of the display and the result appears on the right side of the display. The counter shows how many times the constant has been repeated. If the number at the right exceeds 6 digits, the counter will not be shown. The counter returns to 0 after it reaches 99.
- When you use division as the operation for a constant, you can choose either division format setting - quotient with a remainder (QR) or decimal (.). For QR format, only the quotient is used in subsequent calculations; the remainder is dropped.
- To clear a stored constant operation:
- Press (AC) to reset the Tl-10. (Press (ciaa) to return to the previous screen.)
- Press Mode u to scroll to the CLEAR OP1 menu, select Y, and then press Enter. Then press (Mode to return to the previous screen.
Note: Pressing Giar by itself does not clear the constant.

Addition as "counting on"

There are 4 frogs in a pond. If 3 more frogs jump into the pond one at a time, how many frogs will be in the pond?

Constant operation

Multiplication as "repeated addition"

Maria put new tile in her kitchen. She made 4 rows with 5 tiles in each row. Use repeated addition to find how many tiles she used. Before you begin, set the TI-10 to hide the constant operation.

(Continued)

Multiplication as "repeated addition" (Continued)

(clear)

Clearing the constant operation

Before entering a new operation in OP1, you must clear the current values.

Whole Numbers and Decimals

Keys

1. \cdot enters a decimal point.
2. Fix sets the number of decimal places in conjunction with the Place Value keys.
3. Fix 1000. rounds results to the nearest thousand.
4. Fix 100. rounds results to the nearest hundred.
5. Fix 10. rounds results to the nearest ten.
6. Fix 1. rounds results to the nearest one (unit).

7. Fix 0.1 rounds results to the nearest tenth.
8. Fix 0.01 rounds results to the nearest hundredth.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) Clara) to reset the TI-1O and clear the display.
- The TI-10 automatically rounds the result to the number of decimal places selected. Only the displayed value is rounded. The internally stored value is not rounded. The calculated value is padded with trailing zeros if needed.
- To remove the fixed decimal setting, press Fix \cdot.
- You must press Fix before you press a Place Value key each time you want to change the number of places for rounding.

Whole Numbers and Decimals

Notes (Continued)

- All results are displayed to the fixed setting until you either clear the
setting by pressing Fix \triangle or reset the Tl-10.
- You can use $\cdot \square$ to enter a decimal with any number of places, regardless of the fixed decimal setting.
- You can apply the Fix setting to an individual number that you entered, or to a result.

Setting the number of decimal places

Round 12.345 to the hundredths place, the tenths place, and the tens place. Then cancel the Fix setting.

Press	Display
(AC) (6a)	4
$\begin{aligned} & 12 \boxtimes 345 \\ & \text { Enter } \end{aligned}$	12.345:
Fix 0.01	12.34512 .35
Fix 0.1	$12.245=12.3$
Fix 10.	$12.345=10$
$\underset{(\text { cancel } \mathrm{Fix})}{\text { Fiix }}$	12.345= 12.345

Fix decimal
Fix
Hundredths
0.01

Tenths
0.1

Tens
10.

Addition with money

José bought ice cream for \$3.50, cookies for $\$ 2.75$, and a large soda for $\$.99$. How much did he spend?

Fix decimal
Fix

Hundredths

0.01

Keys

1. $\mathrm{M}+$ adds the displayed result to the memory.
2. M- subtracts the displayed result from the value in memory.
3. MR/MC recalls the contents of memory to the display. When pressed twice, it clears the memory.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (iaal to reset the $\mathrm{Tl}-10$ and clear the display.
- You can store integers and decimals in memory.
- M is displayed anytime a value other than O is in memory.
- To clear the memory, press MR/MC twice.
- You must press \mp to complete an operation before the result can be entered into memory.

Using memory to add products

Using memory to find averages

Dai has test scores of 96 and 85 . He has weekly scores of 87 and 98 . Find the average for each group of scores and then find the average of his two averages together in decimal form.

Press	Display
(AC) (1at)	4
(Mode) \Rightarrow Enter	$4 \mathrm{Hf} \quad \div \quad \div$
$\begin{aligned} & \text { Mode } 96 \pm \\ & 85= \end{aligned}$	4t+45 = 16:
$\dagger 2 \square$	181\% 5 - 40.5
$\mathrm{M}+$	
$87 \pm 98 \pm$	

Add to memory
$\mathrm{M}+$
Add
†
Memory recall MR/MC

(Continued)

Using memory to find averages (Continued)

Press	Display
$\div 2=$	1月5: \%
(+) $=$	플. 18
$\div 2=$	

Problem Solving: Auto Mode

Keys

1. (s) activates the Problem Solving tool. In AUTO mode, Problem Solving displays exercises in addition, subtraction, multiplication, and division.
2. Mode lets you access the mode menu to change between Automatic (AUTO) and Manual (MAN) modes. In AUTO mode, you can access the Level of Difficulty, and the Type of Operation menus.
Note: Auto, Level 1, and Addition are the default settings.
3. changes to the next level of difficulty. After Level 3, it cycles back to Level

4. Auto toggles between MAN and AUTO modes in the Problem Solving tool.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (1iar) to reset the TI-1O and clear the display.
- In AUTO mode (default), the Tl-10 presents problems with one element missing (for example, $5+2=$? or $5+?=7$ or $5 ? 2=7$).
- If the answer entered by the student is not correct, the Tl-10 displays no and gives a hint in the form of < or >.
- After three incorrect answers, the TI-10 provides the correct answer.
- After every fifth problem, the TI-10 displays a Scoreboard that tallies the correct and incorrect answers.
- You can check progress at any time by pressing (Mode, which displays the Scoreboard momentarily. Press \sim to review previous problems.
- In Problem Solving, you can view the history, but you cannot edit.
- To exit Problem Solving, press again. The Scoreboard and previous entries are cleared when you exit.

Select level of difficulty

Choose the level of difficulty.

Press	Display
(AC) (1ear)	4
(1) Mode	ALTE Auto Hin
\sim	
\Rightarrow Enter	
Mode (to exit)	$\mathrm{B}+\mathrm{y}=\mathrm{man}$

(Problems will vary
from the example shown here.)

Problem Solving

Mode Mode

Select level of difficulty using

Choose the level of difficulty.

Problem Solving

Mode

Select type of operation

Choose the type of operation:

- addition (+)
- subtraction (-)
- multiplication (x)
- division (\div)
- find the operator (?)

Problem Solving

Test your skills

Enter solutions to the problems that the Tl-10 presents.

Problem solving

Mode Mode

View the Scoreboard

After every fifth problem, the TI-1O displays a scoreboard that tallies your correct and incorrect solutions.

You can also display the
Scoreboard momentarily at any time by pressing (node.

Problem solving

Mode (Mode)

Find the operator

Change the type of operation to "find the operator" (?) and solve the problems the $\mathrm{Tl}-10$ presents.

(Problems will vary from example shown here.)

Problem solving

Problem Solving: Manual Mode

Keys

1. (1) activates the Problem Solving tool.
2. Mode lets you access the mode menu to change between Automatic
(AUTO) and Manual (MAN) modes. In MAN mode, you can access the Place Value menu.

Note: 11-. is the default Place Value setting.
3. ? lets the student indicate a missing element in MAN (manual) mode.
4. < $<\ggg$, and \square let the student test inequalities and equalities.

5. (Auto toggles between MAN and AUTO modes in the Problem Solving tool.

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (ciar) to reset the TI-1O and clear the display.
- In MAN mode, the student composes his or her own problems.
- In MAN mode, for all operations except inequalities, the TI-10 accepts only integers.
- You can enter no more than 11 characters into the display.
- You can enter a problem that has one solution, multiple solutions, or no solution. For example:
-1 solution: $2+5=?, 2+?=7,2 ? 5=7$
- Multiple solutions: ? $+?=1, ?+?=6$
- 0 solutions: $3 \div 2=$?
(There is no positive, whole number solution.)
- When a problem has no solution, the Tl-10 displays no and continues to present the problem until you press (cara).
- Problem Solving Manual mode was designed to deal with positive whole numbers. In some cases, the equality/inequality feature allows you to enter decimals.

Problem Solving: Manual Mode

Notes (Continued)

- Problems with two missing elements may have multiple solutions. $(? \times ?=24$ has eight solutions.) These problems must be in the form of ?operator? =number.
- You can check progress by pressing Mode to display the Scoreboard.
Press a to review previous problems.
- When you first press (Mode, the display shows the Scoreboard for a moment before showing the menu.
- For tests of inequalities, when the Tl-10 returns a no, the correct response is displayed immediately.
- In Problem Solving, you can view the history, but you cannot edit.
- To exit Problem Solving, press

Problems with one solution

Problems with one solution are equations with one missing element (for example $7+2=$? or $7+$? $=9$).
Enter a problem and find a solution.

Press	Display
(AC) Clar)	4
(Mode) \Rightarrow Enter	H1TM
Mode	$\begin{aligned} & 0 \\ & 4 \end{aligned}$
$\begin{aligned} & 5-3= \\ & ? ? \text { Enter } \end{aligned}$	
2 Enter	Ex : Y:
	$\begin{array}{r} 5+7=1 \\ 1 \leq 12 . \end{array}$

(Continued)

Problem solving

Mode
Mode
Missing element
$?$

Problems with more than one solution

Problems with two missing elements may have more than one solution. Enter a problem, find the number of solutions, and then find a solution.

Problem solving

Mode Mode

Missing element
$?$

Problems with no solution

The TI-10 is not designed to handle certain types of problems. These will result in a O SOL (no solution) response from the $\mathrm{Tl}-10$.

Problem solving

Mode
Mode
Missing element

Less than，greater than，equal to

You can test inequalities and equalities using the Problem Solving tool．

Press	Display
（AC）（ab）	
（ $\stackrel{\Delta}{ }$ Mode Enter	HITHI Hm
（Mode	4
$\begin{aligned} & 2 母 1 母 1 \\ & +2 \text { Enter } \end{aligned}$	$\begin{array}{r} 1+1+2 \\ Y E 3 \end{array}$
$\frac{5 母 4<10}{\text { Enter }}$	$5+4<10$
$\begin{aligned} & \bullet 5 \triangleq \\ & \square 50 \text { Enter } \end{aligned}$	$\begin{array}{r} 5.50 \\ 1010 \end{array}$

Problem solving

Mode
（Mode
Equals
θ
Greater Than

Less Than
＜
Θ

View the Scoreboard

After every fifth problem, the
Tl-10 displays a scoreboard that tallies your correct and incorrect solutions.

You can also display the
Scoreboard momentarily at any time by pressing (Mode.

Problem solving

Keys

1. (人) activates the Problem Solving tool.
2. (Mode lets you access the mode menu to change between Automatic (AUTO) and Manual (MAN) modes. In MAN mode, you can access the Place Value menu.
Note: 11-. is the default Place Value setting.

3. \square activates the Place Value feature when the TI-1O is in Problem Solving MAN mode. It also works in conjunction with these keys:

Key	Displays
1000.	Number of thousands
100.	Number of hundreds
10.	Number of tens
1.	Number of ones
0.1	Number of tenths
0.01	Number of hundredths

Notes

- The examples on the transparency masters assume all default settings. Press (AC) (iala to reset the $\mathrm{Tl}-10$ and clear the display.
- The Place Value feature works only if you are in the Problem Solving MAN (manual) mode.
- When the TI-10 Place Value feature is active, the $\boldsymbol{\square}$. indicator shows on the top line of the display.
- To exit Place Value, press (ㄷar). The Tl-10 returns to Problem Solving MAN mode.
- To exit Problem Solving completely, press ©

Place Value (Continued)

What is the Place Value of a Given Digit?

The © (Problem Solving) mode setting must be MAN (manual).
Follow these steps (See example on page 65).

1. Press (AO) (Bat to reset the $\mathrm{TI}-10$ and clear the display.
2. Press © (Mode \Rightarrow Enter to select Problem Solving MAN mode.
3. Press (mode to exit the menu and then enter 1234.56.
4. Press \square.
5. Press the desired digit.

If you enter 6 , the TI-10 will display ____._ 6 briefly showing the location of the 6 and then displaying its value, $6 \rightarrow 0.01$, meaning that the 6 is in the hundredths place.
Once Place Value is active, it is not necessary to press \square before each digit you want to test. To test a new number; however, you must press (6an, enter the new number, and then press \square again.

How Many Ones, Tens, Hundreds, Thousands, Tenths, or Hundredths are in a Given Number?

The (s) (Problem Solving) mode setting must be MAN (manual) and the display option must be set to 11 -.
Follow these steps (See example on page 67).

1. Press (AO) (a) to reset the TI-10 and clear the display.
2. Press () Mode \Rightarrow Enter to select Problem Solving MAN mode.
3. Press $\boldsymbol{\sim}$.
4. Underline 11 -. and press Enter.
5. Press (node to exit the menu and then enter 1234.56.
6. Press 目.
7. Press [1., [10.), 100., [1000., [0.1], or 0.01.

If you press 100 ., the TI-10 will display 12 __.__, meaning that there are 12 hundreds in the number. When you press [0.01, the Tl-10 displays 123456 meaning that there are 123,456 hundredths in the number.

Place Value (Continued)

When a number includes a repeated digit, the TI-10 first analyzes its occurrence in the right-most position. To find the place value of other instances of the same digit, press the digit twice for the second occurrence, three times for the third occurrence, etc. Each time you press the given digit in succession, the displays shifts to next occurrence to the left of the original occurrence. (See page 66 for an example.)
To exit Place Value, press (6ara) and the TI-10 returns to Problem Solving, MAN (manual) mode.

What Digit of a Number is in a Given Place?

The © (Problem Solving) mode setting must be MAN (manual) and the display option set to-1-.
Follow these steps (See example on page 68).

1. Press (AO) (aba to reset the TI-1O and clear the display.
2. Press © (Mode Enter to select Problem Solving MAN mode.
3. Press $\boldsymbol{\sim}$.
4. Underline-1-. and press Enter.
5. Press (mode to exit the menu and then enter 1234.56.
6. Press 目.
7. Press [1., 10., 100. , 1000., 0.1), or 0.01.

If you press 100 ., the TI-10 displays _2 __.__ briefly showing that the location of the 2 is in the hundreds place. The answer then clears so you can press another digit or place value key.
Press (bar) to exit Place Value. The TI-10 returns to Problem Solving, MAN mode.

Determine place value

Enter 1234.56. Determine the place value of 6 and 4 .

Press	Display
(AC) Claar)	4
Mode \Rightarrow Enter	HUTI HAl
Mode	$\begin{aligned} & 4 \\ & 4 \end{aligned}$
$1 2 3 4 \longdiv { \bullet 5 6 }$	1744.E6 4
6	184.56 k
	154.5 b-sin.
4	124.5.5
	1: 4.91

Problem Solving

Place Value

Repeated digits

Enter 123.43. Determine the place value of each 3 .

Press	Display
(AC) (cear) 4	
(1) Mode \Rightarrow	HITI Hn
Enter	
Mode	4
$123 \square 43$	
3	
33	
	$\begin{aligned} & 0 \\ & 1.4 .4 \\ & 3: 1 \end{aligned}$

Problem solving

Place value

How many?

How many hundreds are in 1234.56 ? How many hundredths?

Problem solving

Place value

Hundreds
100.

Hundredths

0.01

What's the digit?

What digit is in the hundreds place in 1234.56?

Problem solving

Place value

Quick Reference to Keys

A

Quick Reference to Keys

A

Key	Function
(*)	Toggles between the Calculator and Problem Solving tool. In the Problem Solving tool, displays menus that let you:
(s) Mode	Select AUTO (automatic) or MAN (manual) mode.
(1) Mode	Select Level of Difficulty.
(1) (Mode \sim	Select Type of Operation.
* Mode (MAN)	Select display options for Place Value feature. (This option is available only if MAN mode is selected.)
Auto	Toggles between the AUTO and MAN mode in Problem Solving.
[Moves to the next Level of Difficulty. After reaching Level 3, the TI-10 cycles back to Level 1. Level 1: basic facts Level 2: one digit numeral or two digit numeral with zeros in the ones place Level 3: up to three digit numerals
?	While in © (Problem Solving) MAN (manual) mode, lets you indicate a missing element in an equation.
$<$ \square	While in (s) (Problem Solving) MAN (manual) mode, lets you test inequalities. While in © (Problem Solving) MAN (manual) mode, lets you test inequalities.

Quick Reference to Keys

A

Key	Function
\square.	While in (Problem Solving) MAN (manual) mode, you can determine the place value of a particular digit of a given number or, in conjunction with place value keys, you can determine how many thousands, hundreds, etc., a number contains or what digit is in a given place.
(回. d 1000.	Determines the place value of the digit $d(0-9)$ of a given number. Tells how many thousands a given number contains or what digit is in the thousands place.
[1. 100.	Tells how many hundreds a given number contains or what digit is in the hundreds place.
(1) 10.	Tells how many tens a given number contains or what digit is in the tens place.
[1. 1.	Tells how many ones a given number contains or what digit is in the ones place.
[1. 0.11	Tells how many tenths a given number contains or what digit is in the tenths place.
-0.0.01	Tells how many hundredths a given number contains or what digit is in the hundredths place.
Fix	Sets the number of decimal places in conjunction with the Place Value keys. Only the displayed result is rounded; the internally stored value is not rounded. The calculated value is padded with trailing zeros if needed.
Fix 1000.	Rounds results to the nearest thousand.
Fix 100.	Rounds results to the nearest hundred.
Fix 10.	Rounds results to the nearest ten.
Fix 1.	Rounds results to the nearest one.
Fix 0.11	Rounds results to the nearest tenth.
Fix 0.01	Rounds results to the nearest hundredth.
Fix \cdot	Removes fixed decimal setting and returns to floating decimal.
	Enters the numerals O through 9.
\pm	Adds. Enters the addition symbol in Problem Solving mode.
\square	Subtracts. Enters the subtraction symbol in Problem Solving mode.
区	Multiplies. Enters the multiplication symbol in Problem Solving mode.

Key	Function
\div	Divides. Enters the division symbol in Problem Solving mode with the result displayed as a quotient and remainder or a decimal, as determined by the division menu setting.
\square Enter	Completes operations. While in © (Problem Solving) MAN (manual) mode, lets you enter = to test equalities. Tests a solution in the Problem Solving tool. Selects a menu item in either the Calculator or Problem Solving tool. Completes an operation.
\square	Inserts a decimal point.
(-)	Enters a negative sign. Does not act as an operator.
\square \square	Opens a parenthetical expression. Closes a parenthetical expression.
M+ M- MR/MC	Adds displayed result to the value in memory. Subtracts displayed result from the value in memory. Recalls the memory value for use in a calculation when pressed once. When pressed twice, clears memory.
OPD $工$	Stores an operation with a constant value, which can be repeated by pressing the Opl key, as many times as desired. To store an operation to OP1 and recall it: 1. Press Onl, enter the operator and the value, and press Opl to save the operation. 2. Press Opl to recall the stored operation. To clear the contents of OP1, press (Mode $\bullet \bullet$, underline Y , and press Enter. New operations can now be stored for repeated use.

Display Indicators

Indicator	Meaning
*	Tl-10 is in the Problem Solving tool.
■.	TI-10 is in the Place Value feature.
Fix	TI-10 is rounding to a specified place.
M	Indicates that a value other than zero is in memory.
Op1	An operator and a value is stored in OP1.
Auto	Indicates *) (Problem Solving) tool is in AUTO mode.
$\cdot \div$	Indicates that the result from the division feature will be displayed as a decimal.
4 -	Previous entries are stored in history, or more menus are available. Press to access history. Press $\boldsymbol{\sim}$ and $\boldsymbol{\sim}$ to access additional menu lists.
$4 \rightarrow$	Press $\&$ and \Rightarrow to scroll and underline from a menu. You must press Enter to complete the selection.

Menu Map

C

The TI-10 has two tools-the Calculator tool and the Problem Solving tool.

Problem Solving Tool

Menu Map (continued)

C

Calculator Tool

The calculator tool is active when you turn on the TI-10. When the Calculator tool is active, press (Mode to access the Calculator tool menus. Below are the Calculator menu screens.
\div
Division Format
menu

Display division result as Quotient \& Remainder format (default).

Display division result as Decimal format.

OP
Constant Operation menu

Show the line containing the constant operation (default).

Hide the line containing the constant operation.

CLEAR OP1
Clear Constant Operation menu

Yes. Clear the constant operation (default).

No. Do not clear the constant operation.

RESET

Reset
menu

No. Do not reset the TI-10. (default).

Yes. Reset the TI-1O to default settings.

Menu Map (continued)

C

Problem Solving

The Problem Solving tool has two modes-AUTO (Automatic) and MAN (Manual). When you choose AUTO mode, you can access the Level of Difficulty menu and the Type of Operations menu. When you choose MAN mode, you can access the Place Value menu.

Error Messages

Message	Meaning
Arith Error	Arithmetical error. You entered an invalid entry or an invalid parameter.
Syn Error	Syntax error. You entered an invalid or incorrect equation; for example, $5++2$ or (5+2.
\div O Error	Divide by O error. You attempted to divide by O.
Mem Error	Error in attempting to store an entry in memory.
Op Error	Error following steps for using OP1.
Overflow Error	Overflow. The result is too large to fit within the boundaries of the display.
Underflow Error	Underflow. The result is too small to fit within the boundaries of the display.

Support, Service, and Warranty

Product
 Support

Product

Service

Other TI
 Products and
 Services

Customers in the U.S., Canada, Puerto Rico, and the Virgin Islands

For general questions, contact Texas Instruments Customer Support:
phone: 1-800-TI-CARES (1-800-842-2737)
e-mail: ti-cares@ti.com
For technical questions, call the Programming Assistance Group of Customer Support:
phone: 1-972-917-8324
Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands

Contact TI by e-mail or visit the TI Calculator home page on the World Wide Web.
e-mail: ti-cares@ti.com
Internet: education.ti.com

Customers in the U.S. and Canada Only

Always contact Texas Instruments Customer Support before returning a product for service.

All Customers outside the U.S. and Canada
Refer to the leaflet enclosed with this product or contact your local Texas Instruments retailer/distributor.

Visit the TI calculator home page on the World Wide Web.
education.ti.com

Support, Service, and Warranty (continued)

Customers in the U.S. and Canada Only

One-Year Limited Warranty for Commercial Electronic Product
This Texas Instruments electronic product warranty extends only to the original purchaser and user of the product.
Warranty Duration. This Texas Instruments electronic product is warranted to the original purchaser for a period of one (1) year from the original purchase date.
Warranty Coverage. This Texas Instruments electronic product is warranted against defective materials and construction. THIS
WARRANTY IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT OR UNREASONABLE USE, NEGLECT, IMPROPER SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR CONSTRUCTION.

Warranty Disclaimers. ANY IMPLIED WARRANTIES ARISING OUT OF
THIS SALE, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE ONE-YEAR PERIOD. TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER USER.
Some states/provinces do not allow the exclusion or limitation of implied warranties or consequential damages, so the above limitations or exclusions may not apply to you.
Legal Remedies. This warranty gives you specific legal rights, and you may also have other rights that vary from state to state or province to province.
Warranty Performance. During the above one (1) year warranty period, your defective product will be either repaired or replaced with a reconditioned model of an equivalent quality (at T's option) when the product is returned, postage prepaid, to Texas Instruments Service Facility. The warranty of the repaired or replacement unit will continue for the warranty of the original unit or six (6) months, whichever is longer. Other than the postage requirement, no charge will be made for such repair and/or replacement. Tl strongly recommends that you insure the product for value prior to mailing.
Software. Software is licensed, not sold. Tl and its licensors do not warrant that the software will be free from errors or meet your specific requirements. All software is provided "AS IS."
Copyright. The software and any documentation supplied with this product are protected by copyright.

All Customers outside the U.S. and Canada

For information about the length and terms of the warranty, refer to your package and/or to the warranty statement enclosed with this product, or contact your local Texas Instruments retailer/distributor.

