Lir TI-RGB Array Flippy Do

Overview:

Build a flippy do and slip it over your TI-RGB Array to explore base two numbers using the manipulatieve. Write a TI-BASIC program to abstract a representation of a decimal number in a binary format on the TI-RGB Array.

The TI-RGB Array can be used as a binary display. Notice the numbering of the pixels is in place value order. A pixel that is on represents the digit 1 while off represents the digit 0 .

Directions:

- Follow the instructions on the printout to Build you Flippy-Do.
- Slide the Flippy-Do on the TI-RGB Array.
- Fold the tabs up or down to match the binary number in the table.
- Fill in in the remainder of the table on the right. Do you see a pattern?

Decimal	4-bit binary number	Pixel 3	Pixel 2	Pixel 1	Pixel 0
0	0000	off	off	off	off
1	0001	off	off	off	on red
2	0010	off	off	on red	off
3	0011	off	off	on red	on red
4					
5					
6					
7					
8					
9					

Projects with The TI-Innovator ${ }^{\text {tM }}$ System (Ti-Nspire CX)

The table to the right contains every 8 -bit number that has a single 1 in it. Do you notice a pattern?

- Fill out the remainder of the table writeing down the power of two and the decimal equivalent next to each binary number.

Challenge 3 :

- Write a program to turn on the TI_RGB Array for the number 13 and display the calculated decimal value as the sum of powers of 2^{3} through 2^{0}.
- Set the tabs of the Flippy-Do up or down for the number 13. Run the program. Do the pixels on the TI_RGB Array match the number on the Flippy-Do?
- Modify your program to match a few more numbers from the table. Do you see how the TI_RGB Array can display binary numbers?

Challenge 3 Optional Extension: Try to represent the decimal 170 as an eight bit binary number.

Student Document

Decimal	4-bit binary number	Pixel 3	Pixel 2	Pixel 1	Pixel 0
10					
11					
12					
13					
14					
15					

Decimal	8-bit binary number	Power of 2
1	00000001	2^{0}
2	00000010	2^{1}
4	00000100	2^{3}
	00001000	
	00010000	
	00100000	
	01000000	
	10000000	

```
Define c2()=
Prgm
Send "CONNECT RGB "
Send "SET RGB 0 255 0 0"
Send "SET RGB 1 0 0 0"
Send "SET RGB 2 255 0 0"
Send "SET RGB 3 255 0 0"
decimal:=1* 23}+1*\mp@subsup{2}{}{2}+0*\mp@subsup{2}{}{1}+1*\mp@subsup{2}{}{0
Disp "Decimal = ",decimal
EndPrgm
```

