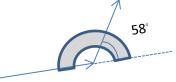
Unit 1 Challenge: Around Olympus Mons!

THE ON-RAMP TO ROBOTICS – TI-NSPIRE CX		CHER NOTES	
Overview of Mars Challenge:	Goals:		
Students use the student map to plot the	Students will:		
shortest path around Olympus Mons. The	1. plot a course on	the student map using a ruler and protractor to	
scaled values and angles are used to write a	navigate around	Olympus Mons.	
program on a calculator connected to	2. use proportional	reasoning to convert student map distances	
TI-Innovator™ Rover. Students test their	into scaled drive	distances.	
paths and programs on the drive mat that	3. use their scaled	map measurements to write a TI Python	
you set up on the floor of the classroom.	program on their	calculator.	
		eir program by driving a TI-Innovator™ Rover	
	on the Olympus	Mons drive mat.	
Background:		ortest path from one point to another, often while	
on the map to the distance in the actual terrain true north direction in the actual terrain. A skille map and use it to navigate the course on the te	a. Similarly, the compass ro ad person with a scaled ma		
student map is the "scaled map".			
Teacher Tips:			
• Tape down the edges of the Olympus			
Place obstacles on the inside of black	· · · · · ·		
	width of the rover when de	termining their path to avoid obstacles.	
Student Directions: Find the scale of the student map.		Materials: ● TI-Innovator™ Rover	
1. Measure the width of the Olympus Mo	ns drive mat in the unit of	Iaminated Olympus Mons drive	
meters and record the value in the tab		mat	
2. Measure the width of the Olympus Mo			
centimeters and record the value in the table below.		• ruler	
		protractor	
Note: Be sure students measure in units of me	Be sure students measure in units of meters on the drive mat and		
centimeters on the student map.		 obstacles such as miniature traffic cones, Styrofoam blocks, 	
3. Calculate the scale of the student map	using the formula below.	rocks, etc.student map of Olympus Mons	
Note: Be sure students calculate with meters i	n the numerator and		
centimeters in the denominator.			
4. Design a path around the volcano that	avoids the marked obstac	les.	
Use a ruler and pencil to draw that pat			
student map.			


Unit 1 Challenge: Around Olympus Mons!

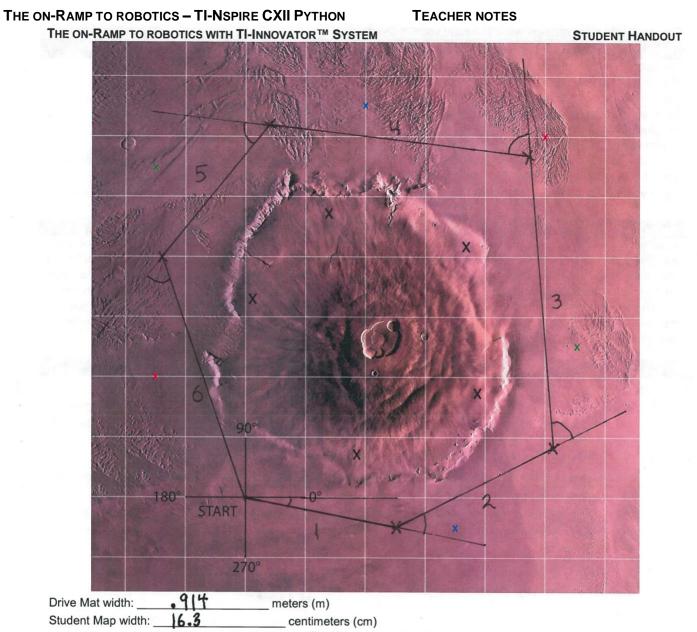
THE ON-RAMP TO ROBOTICS – TI-NSPIRE CXII PYTHON

TEACHER NOTES

Use a protractor to measure the exterior angles that are needed for Rover to turn from one line segment to the next along your path. You may find it helpful to extend the path line beyond the turning point to aid in measuring the exterior angle.

Example exterior angle measurement:

6. Measure each path segment in cm and record in the table; use the map scale to calculate the distance the Rover must drive on the Olympus Mons drive mat.


Example calculation: a drive segment may be 6 centimeters and the student map scale may be .04m = 1 cm (this is an example only. Students must find the actual scale using their own calculations and measurements), find the drive distance in meters:

$$6cm \times \frac{.04m}{1cm} = .24m$$

 Write a TI-Innovator Rover program that drives each segment in path. Example: rv.left(58)

rv.forward(.24,"m")

Unit 1 Challenge: Around Olympus Mons!

Scale (Drive Mat Width ÷ Student Map Width):	.0561	meters/centimeter
--	-------	-------------------

Segment	Angle (degrees)	Turn Direction (L/R)	Student Map Length (cm)	Scaled Drive Mat Length (m)
1	11.0	R	4.55	•255
2	38.0	E	5.30	.297
3	67.0		8.70	488
4	78.0		7.80	.438
5	58.0	Ē	5.10	.286
6	58.5	L	7.60	.426