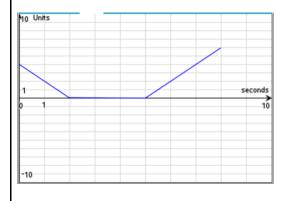
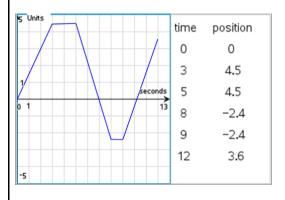

Challenges:


Challenge 1: Use rv.forward_time(time,speed,"unit") to have Rover drive the path described by the graph below and on page 1.4:

Challenge 2: Use rv.forward_time() and rv.backward_time() to have Rover drive the path described by the graph below and on page 2.2:


Challenge 3: Use the rv.forward_time(), rv.backward_time(), rv.stay(), and rv.position() functions to have Rover drive the path described by the graph below and on page 3.2:

Challenge 4: Use the rv.forward_time(), rv.backward_time(), rv.stay(), and rv.position() functions to have Rover drive the path described below.

Rover starts at 3 units to the right of zero. Rover drives backward at 2 units per second for 3 seconds. Rover stops and stays for 2 seconds, then drives forward at 2 units per second for 1.5 seconds.

Challenge 5: Have Rover drive the path described by the graph and table below and on page 5.2. Use the rv.forward_time(), rv.backward_time() and rv.stay() functions.

Challenge 6: Have Rover drive the path described by the graph and table below and on page 6.2. Use the rv.forward_time() , rv.backward_time() and rv.stay() functions. Assume Rover starts at position zero.

Note: The graph is of velocity vs. time.

y Units per second		time 1	velocity 1.5
	+	2.5	0
1 sec	conds	4	-2
0 1	10	7	0
		9	2
	H		
-5			