

Linda Griffith

- Linda Griffith earned a BSE and MSE from the University of Central Arkansas. She received a Ph.D. in mathematics education from The University of Texas at Austin.
- After teaching at the West Side School District in Greers Ferry, AR, Dr. Griffith served as
- instructor at Austin Community College in Austin, Texas
- assistant instructor at The University of Texas at Austin
- assistant professor at The University of Alabama at Birmingham
- and is currently a professor of Mathematics at the University of Central Arkansas (UCA) in Conway, Arkansas.
- Dr. Griffith will serve as the Southern Regional Representative for the National Council of Supervisors of Mathematics beginning in April of 2013. She has served as an officer in the Arkansas Council of Teachers of Mathematics. She is a national instructor for the Teachers Teaching with Technology program.
- She currently is reassigned to work with the Arkansas Department of Education on the comprehensive professional development plan for implementation of the Common Core State Standards for Mathematics.

Ray Barton

- Ray Barton teaches mathematics at Olympus High School in Salt Lake City. He is interested in technology as a tool for facilitating student engagement in the mathematical practices. He conducts workshops for teachers and enjoys discovering how other teachers assist students in learning and practicing mathematics. Ray has been a T^{3} Instructor since the beginning of the organization.

Jennifer Wilson

- Jennifer is in her 20th year of teaching mathematics at Northwest Rankin High School, where she uses TI-Nspire CAS ${ }^{\text {TM }}$ and the TINspire ${ }^{\text {TM }}$ Navigator ${ }^{\text {TM }}$ System every day both to teach her students and learn from them. She enjoys writing mathematics curricula using technology and working with educators to incorporate good questioning techniques, engaging problems, and formative assessment in their classrooms. Jennifer recently received the Presidential Award for Excellence in Mathematics and Science Teaching.

How students should work: Standards for Mathematical Practice

- Make sense of problems and persevere in solving them
- Reason abstractly and quantitatively
- Construct viable arguments and critique the reasoning of others
- Model with mathematics
- Use appropriate tools strategically
- Attend to precision
- Look for and make use of structure
- Look for and express regularity in repeated reasoning

True or False?

$$
\text { 1. }(x+2)^{2}=x^{2}+4
$$

$$
\text { 2. } \frac{x+3}{}=3
$$

$$
x
$$

3. If $y=\ln (\pi)$, then $y^{\prime}=\frac{1}{\pi}$.

π

You have been asked to place a fire hydrant so that it is an equal distance from three locations indicated on the following map.

B
C°

Make sense of problems and persevere in solving them
I wanted to give up so bad, but i didnt. 1 kept working, and awn though i was one ot the last, people to finish. I still was proud of myself. I am Irarning not to give ip and to keep oping cen though I cant figure it out Lreflected ser x-axis - [ii]
2. reflected over y-axis- ai]

3 rotated 180° - $[801]$
4 reflected aver $y=x-[96]$
5xetlected over $y=-x-0.3]$
6 rotated $-90^{\circ}-\left[\begin{array}{c}-1 \\ i 1\end{array}\right]$
rotated 90° - [810]

Make sense of problems and persevere in solving them

Make sense of problems and persevere in solving them

1. started by finding the siecundien of triangle 1. I used the formula $\tan (90)=\frac{13}{x}$ a logout 11 . for that. Then 1 did the ppthagaream thoumit. got $1 \cap$. Next 1 found the seconding of triangle 2 . For this 1 did $\tan (35)=\frac{x}{6}$ whish is 11 and again

Model with mathematics

This quarter I had the opportunity to model with mathematics. I go cycling every weekend, but I always wondered how exactly the sensor on my tire was able to figure out that I rode twenty-eight miles. I knew it has something to do with how many times the sensor went around in a circle and the circumference of my tire. Now, because we learned about linear distance, I know that the computer calculates it by taking the diameter of my wheel and finding the circumference of my tire and multiplying that by how many times the sensor goes around the tire. So, since the tire of my bike has a diameter of $\mathbf{2 8}$ inches that means that it has a circumference of 28π. Theoretically, if the sensor goes around 4,000 times, I would travel on my bike about 5.5 miles.

Model with mathematics
One mathematical practice that I realized was being used was modeling with mathematics. During one of the first class periods, we were asked to place a fire hydrant equidistant from three points (in this case, three bidings). What h knowing it, sane of us were ? creating perpendicular bisector\& we leonid that when using perpendicular bisectors, yore able to find the point ukick is equidistant from the vertices (the circuncentar).

Model with mathematics
Every day in band as we use transformation because we have to move around the field, In our last movement I am in the center of a diamond shape. We have to translate across the field. If the field was a graph we would moving across the x axis wish is the back hash or the line in the center of the field.

Attend to precision
Attending to precision was very important in this unit because one negative sign could very easily give you a wrong answer. For example, the problems $-\csc \left(150^{\circ}\right)$ and $\csc ^{-1}\left(150^{\circ}\right)$ are totally different problems. In my head, when I think of inverse cosine, my mind says negative cosine even though I know very well that I mean inverse. My ignorance of precision lead to confusion among my table, but I am slowly learning to bay move attention to my words. saying, things, thingys, and "whatchamacallit" see not aceptabet anymore.

Attend to precision

"The pitcher's mound on a regulation softball field is 46 feet from home plate. The distance between the bases is 60 feet. How far from third base is the pitcher's mound? Give your answer to the nearest foot."

Being an avid baseball fan, I took it upon myself to solve this problem by myself. While the rest of my table was taking the easy way out by simply using Law of Cosines, I (for some strange reason) thought that it would be easier to use the Pythagorean theorem several times to find the answer.

This covers a few journal topics. This is an example of Make Sense of Math Problems and Persevere in Solving Them. I drew a diagram of the field and used many patterns of pythag. I also checked my answer with my peers, who solved it differently than I did, and got the correct answer. This example is also Model with Mathematics because it applied to the real world by using a baseball field.

INSTRUMENTS

Look for and make use of structure

In the figure dove I looked for and made use of structure. I looked at the trapezoid stove and realized it was a rectangle and triangle by trowing ane simple line. I know it

Look for regularity in repeated reasoning
same way. The $\sqrt{2}$ of the hypotenuse will always be in the answer at though it may not be seen like $\sqrt{2}$. Here re examples:

The triangle to the left hos $\sqrt{2}$ shown in the answer but the triangle to the right has $\sqrt{2}$ in the answer because $3 \sqrt{2} \cdot \sqrt{2}$ is not in brest farms. I baked for regularity in iepeated reasoning and found an interesting answer.

Construct viable arguments and critique the reasoning of others

In math class, this is probably the most used mathematical practice we ese. In Mrs. Wilson's math class, she always gives us the opportunity to explain now we got an answer. For instance, when we finish bellvingers, if someone has a question about a problem, Mrs. wilson is always looking for a student that understands the problem to explain it By doing this, it is lear to see how a fellow classmate acheived the correct answer once he or she is finished, Mrs. Wilson will ask if anyone got the correct answer, but worked it a different way. By seeing the

How students should work: Standards for Mathematical Practice

- Make sense of problems and persevere in solving them
- Reason abstractly and quantitatively
- Construct viable arguments and critique the reasoning of others
- Model with mathematics
- Use appropriate tools strategically
- Attend to precision
- Look for and make use of structure

What information do you see that might be useful in a discussion?

Nearly half correct

If $y=\ln (\pi)$ ，then $y^{\prime}=1 / \pi$

Nearly half correct
Convince someone

\＃3

What pattern does this data follow?

From Experiments in Doing by Jill Gough

TExas
INSTRUMENTS

Quick poll results. Now what?

New and MUCH more interesting questions are now possible.

1. Is the majority always right?
2. Can we listen to an opposing view and try to understand their reasoning?
3. Can each side make a reasonable argument for why they made their choice?
4. Are you willing to consider that the other side might be right?

The minority view, quadratic functions, explained first. Then a member of the majority party raised her hand and said "I voted exponential, but I can now give another reason why it is, in fact, quadratic. Is that okay?" WOW! We stopped and voted again.

Six Degrees of Separation

If you had 100 friends and each friend had 100 friends and so on... what could be the maximum degree of separation between you and anyone in the world?

In what sequence should the following screens be discussed in class? Why did you choose that sequence?

JOWN

	(3) 管区
100.100	10000
100 $100 \cdot 100$	1000000
1000000 100	100000000
100000000-100	10000000000
10,000,000,000=5 theges	
	$4 / 22$

COBMELY

Jingots

ADARS

BENLDSAN

What discussions might arise from the following wrong responses?

ELZABETH

MELSSA

CHELSEA

Six Degrees of Separation

How many friends would each person need under these assumptions in order to have a maximum of six degrees of separation?

What discussions might arise from the following student work? How might the sequence influence the discussion?

BELS5A

goszalo

$40^{12} 1.3{ }^{1.4}$ \%	
	00
$\log _{100}(7000000000)$	4.92255
4.9225490200072	4.92755
$\sqrt[6]{7000000000}$	$10 \cdot \sqrt{10} \cdot 7^{\frac{1}{6}}$
$\sqrt[6]{7000000009}$	43.7371
I	\checkmark
	$16 / 25$

J0WN

CHELSEA

Kalyan

Write the equation that fits the total distance traveled in feet based on the velocity in miles per hour.

What is the next step for a teacher?

Write a complete sentence about what the graph of reaction distance vs. velocity represented.

Use Screen Capture to require responses from all students and to show and discuss selected responses.

Bringing closure to a lesson:

I have learned...

My question is....

Teacher moves that promote mathematical learning

Questioning

- Be relentless in asking what does it mean and why does it work
- Wait after asking a question before calling on a student and before reacting to a student answer to a question
- Deflect questions to students
- Expect and create opportunities for full participation from all students

Teacher moves that promote mathematical learning

Discussion

- Orchestrate productive discussion among students
- Activate the five strategies for managing a discussion: anticipate responses, monitor student work, select work to be presented, sequence student responses in meaningful way, connect responses to the mathematical goals of the lesson

Teacher moves that promote mathematical learning

Formative Assessment

- Engage students in defending responses to peers
- Celebrate wrong answers as places to learn, promoting discussions about what is good about wrong answers and why they are wrong
- Engage students in providing feedback to one another
- Be relentless in focusing on what students are thinking about the mathematics

Teacher moves that promote mathematical learning

Tasks

- Tasks should have a worthwhile mathematical objective
- Choose or frame tasks in ways that allow opportunities for discussion
- Establish and maintain the cognitive demand of tasks by the questions posed and interventions that support student reasoning

How can teacher moves support the implementation of the Mathematical Practices?

Grain Size

- Unit planning
- Units integrated across topics
- Standards in more than one unit
- The glue that holds the course together is in every unit (focus and coherence)

Teacher Goals

- How do I get my students to get the correct answer to this problem or complete this task?
- What is the mathematics my students will learn from working on this problem or task?

The Foundation

- Jacobs, Lamb, and Philipp on professional noticing and professional responding;
- Smith, Stein, Hughes, and Engle on orchestrating productive mathematical discussions;
- Ball, Hill, and Thames on types of teacher mathematical knowledge; and
- Levi and Behrend (Teacher Development Group) on Purposeful Pedagogy Model for Cognitively Guided Instruction.
Purposeal Pedagocy Mosel \square Orchestrating Clusroom Discourie

Step 1

- Write or select a problem or task that has the potential to reveal some mathematics that will help reach the learning goal.
- What is the mathematics this task or problem has the potential to reveal?

Step 2

- Anticipate what students will do that might be productive to share.
- Remember there are productive failures.

Step 3

- Pose the problem and monitor students as they solve.
- Teachers role during this process is called professional noticing.
- Requires that they have the teacher specialized content knowledge.

Steps 4 and 5

- Select student work to share that would be productive.
- Sequence the papers to share to help students make connections.

In the Classroom - 1

In the Classroom - 2

Step 6

- Compare and contrast strategies and make mathematical connections (Discourse).

TI Technology

- Publish View
- Navigator

What are your questions?

What would happen to the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$

 if you "slant" the sides?

Bringing it all together

How students should work: Standards for Mathematical Practice

- Make sense of problems and persevere in solving them
- Reason abstractly and quantitatively
- Construct viable arguments and critique the reasoning of others
- Model with mathematics
- Use appropriate tools strategically
- Attend to precision
- Look for and make use of structure
- Look for and express regularity in repeated reasoning

