TI-84 Plus C Silver Edition Guidebook

(BC)

This guidebook applies to software version 4.0. To obtain the latest version of the documentation, go to education.ti.com/go/download.

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the amount set forth in the license for the program. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.

FCC Statement

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation.
If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment under FCC rules.
© 2012 Texas Instruments Incorporated
Vernier EasyData, Vernier LabPro, and Vernier Go!Motion are trademarks of their respective owners.

Contents

Important Information ii
Chapter 1:
Getting Started with the TI-84 Plus C Silver Edition 1
Documentation Conventions 1
Using the TI-84 Plus C in the Classroom 1
Using Color on the TI-84 Plus C 1
TI-84 Plus C Keyboard 3
Turning On and Turning Off the TI-84 Plus C 5
Setting the Display Brightness 6
The Home Screen 6
Setting Modes 11
Using the Clock 16
Equation Operating System (EOS™) 16
Entering Expressions and Instructions 18
Pictures and Backgrounds 21
Using Variable Names 21
Storing Variable Values 22
Recalling Variable Values 23
QuickPlot and Fit Equation 24
ENTRY (Last Entry) Storage Area 24
Menus 25
VARS Menus 28
Grouping files 29
Special Features of the TI-84 Plus C 30
Other TI-84 Plus C Features 30
Interchangeable Faceplates 31
Battery Information 32
Replacing TI Rechargeable Batteries 33
TI-84 Plus C Charging Station 35
Transferring the OS from calculator to calculator 37
Error Conditions 37
Linking Compatibility 38
Chapter 2:
Math, Angle, and Test Operations 40
Getting Started: Coin Flip 40
Keyboard Math Operations 40
MATH Operations 43
Using the Equation Solver 47
MATH NUM (Number) Operations 51
Entering and Using Complex Numbers 57
MATH CMPLX (Complex) Operations 61
MATH PROB (Probability) Operations 64
ANGLE Operations 67
TEST (Relational) Operations 69
TEST LOGIC (Boolean) Operations 70
Chapter 3:
Function Graphing 72
Getting Started: Graphing a Circle 72
Defining Graphs 73
Setting the Graph Modes 74
Defining Functions 74
Selecting and Deselecting Functions 76
Setting Graph Styles for Functions 77
Setting the Viewing Window Variables 79
Setting the Graph Format 81
Displaying Graphs 82
Exploring Graphs with the Free-Moving Cursor 84
Exploring Graphs with TRACE 84
Exploring Graphs with the ZOOM Instructions 86
Using ZOOM MEMORY 90
Using the CALC (Calculate) Operations 91
Chapter 4:
Parametric Graphing 95
Getting Started: Path of a Ball 95
Defining and Displaying Parametric Graphs 97
Exploring Parametric Graphs 99
Chapter 5:
Polar Graphing 101
Getting Started: Polar Rose 101
Defining and Displaying Polar Graphs 102
Exploring Polar Graphs 104
Chapter 6:
Sequence Graphing 106
Getting Started: Forest and Trees 106
Defining and Displaying Sequence Graphs 107
Selecting Axes Combinations 111
Exploring Sequence Graphs 111
Graphing Web Plots 113
Using Web Plots to Illustrate Convergence 113
Graphing Phase Plots 115
Chapter 7:
Tables 117
Getting Started: Roots of a Function 117
Setting Up the Table 117
Defining the Dependent Variables 118
Displaying the Table 119
Chapter 8:
Draw Instructions 123
Getting Started: Drawing a Tangent Line 123
Using the DRAW Menu 124
Clearing Drawings 125
Drawing Line Segments 126
Drawing Horizontal and Vertical Lines 127
Drawing Tangent Lines 128
Drawing Functions and Inverses 129
Shading Areas on a Graph 130
Drawing Circles 132
Placing Text on a Graph 133
Using Pen to Draw on a Graph 134
Drawing Points on a Graph 134
Drawing Pixels 136
Storing Graph Pictures (Pic) 137
Recalling Graph Pictures (Pic) 137
Storing Graph Databases (GDB) 138
Recalling Graph Databases (GDB) 139
Background Menu and Image Vars 139
Chapter 9:
Split Screen 140
Getting Started: Exploring the Unit Circle 140
Using Split Screen 141
Horizontal Split Screen 142
Graph-Table Split Screen 143
TI-84 Plus C Pixels in Horizontal and Graph-Table Modes 144
Chapter 10:
Matrices 145
Getting Started: Using the MTRX Shortcut Menu 145
Getting Started: Systems of Linear Equations 147
Defining a Matrix 148
Viewing and Editing Matrix Elements 148
Using Matrices with Expressions 151
Displaying and Copying Matrices 152
Using Math Functions with Matrices 153
Using the MATRX MATH Operations 157
Chapter 11:
Lists 164
Getting Started: Generating a Sequence 164
Naming Lists 165
Storing and Displaying Lists 167
Entering List Names 168
Attaching Formulas to List Names 169
Using Lists in Expressions 171
LIST OPS Menu 173
LIST MATH Menu 180
Chapter 12:
Statistics 183
Getting Started: Pendulum Lengths and Periods 183
Setting Up Statistical Analyses 190
Using the Stat List Editor 191
Attaching Formulas to List Names 194
Detaching Formulas from List Names 196
Switching Stat List Editor Contexts 196
Stat List Editor Contexts 198
STAT EDIT Menu 200
Regression Model Features 201
STAT CALC Menu 204
Statistical Variables 215
Statistical Analysis in a Program 216
Statistical Plotting 216
Statistical Plotting in a Program 220
Chapter 13:
Inferential Statistics and Distributions 222
Getting Started: Mean Height of a Population 222
Inferential Stat Editors 225
STAT TESTS Menu 227
Inferential Statistics Input Descriptions 244
Test and Interval Output Variables 245
Distribution Functions 246
Distribution Shading 252
Chapter 14:
Applications 255
The Applications Menu 255
Getting Started: Financing a Car 255
Getting Started: Computing Compound Interest 256
Using the TVM Solver 257
Using the Financial Functions 258
Calculating Time Value of Money (TVM) 258
Calculating Cash Flows 260
Calculating Amortization 261
Calculating Interest Conversion 264
Finding Days between Dates/Defining Payment Method 264
Using the TVM Variables 265
The EasyData ${ }^{\text {TM }}$ Application 265
Chapter 15:
CATALOG, Strings, Hyperbolic Functions 268
Browsing the TI-84 Plus C Catalog Help 268
Using Catalog Help 269
Entering and Using Strings 270
Storing Strings to String Variables 271
String Functions and Instructions in the CATALOG 272
Hyperbolic Functions in the CATALOG 275
Chapter 16:
Programming 276
Getting Started: Volume of a Cylinder 276
Creating and Deleting Programs 277
Entering Command Lines and Executing Programs 279
Editing Programs 280
Copying and Renaming Programs 280
PRGM CTL (Control) Instructions 281
PRGM I/O (Input/Output) Instructions 287
Calling Other Programs as Subroutines 292
Running an Assembly Language Program 292
Chapter 17:
Activities 294
The Quadratic Formula 294
Box with Lid 297
Comparing Test Results Using Box Plots 305
Graphing Piecewise Functions 306
Graphing Inequalities 308
Solving a System of Nonlinear Equations 309
Using a Program to Create the Sierpinski Triangle 310
Graphing Cobweb Attractors 311
Using a Program to Guess the Coefficients 312
Graphing the Unit Circle and Trigonometric Curves 313
Finding the Area between Curves 314
Using Parametric Equations: Ferris Wheel Problem 315
Demonstrating the Fundamental Theorem of Calculus 317
Computing Areas of Regular N-Sided Polygons 319
Computing and Graphing Mortgage Payments 322Chapter 18:Memory and Variable Management325
Checking Available Memory 325
Deleting Items from Memory 327
Clearing Entries (Home Screen) and List Editor Elements 327
Archiving and UnArchiving Variables 328
Resetting the TI-84 Plus C 331
Grouping and Ungrouping Variables 333
Garbage Collection 336
ERROR:ARCHIVE FULL Message 338
Chapter 19:
Communication Link 339
Getting Started: Sending Variables 339
TI-84 Plus C LINK 341
Selecting Items to Send 343
Receiving Items 345
Backing Up RAM Memory 346
Error Conditions 346
Appendix A:
Functions and Instructions 348
Appendix B:
Reference Information 378
Variables 378
Statistics Formulas 378
Financial Formulas 381
Important Things You Need to Know About Your Tl-84 Plus C 384
Error Conditions 388
Accuracy Information 392
Texas Instruments Support and Service 395
Service and Warranty Information 395

Chapter 1: Getting Started with the TI-84 Plus C Silver Edition
 Documentation Conventions

In the body of this guidebook, TI-84 Plus refers to the TI-84 Plus, TI-84 Plus Silver Edition, and TI-84 Plus C Silver Edition. The names of the calculators may be used interchangeably. If any of the instructions, examples, and functions in this guidebook differ for each calculator, those differences are pointed out.

Some screen shots were taken using the TI-84 Plus Silver Edition, and some were taken using the TI-84 Plus C Silver Edition. Some of your screens may not look exactly like the examples.

Many examples highlight features that are not available in early OS versions. If your calculator does not have the latest OS, features may not be available and your screens may look different. You can download the latest OS from education.ti.com/go/download.

Using the TI-84 Plus C in the Classroom

The TI-84 Plus C shares many features with the TI-84 Plus. However, some features you may be accustomed to using in the classroom may differ. Some of these differences are listed here.

- TI-Navigator ${ }^{\text {TM }}$ software supports the TI-84, TI-84 Plus, and TI-84 Plus SE. TI-Navigator ${ }^{\text {TM }}$ software does not support the TI-84 Plus C.
- TI-84 Plus C does not work with TI-Presenter™ video adapter or ViewScreen ${ }^{\text {TM }}$ overhead panel, but the TI-84 Plus C view option in the TI-SmartView ${ }^{\text {TM }}$ software allows you to project the graphing calculator emulator to the classroom.
- Some files and variables are compatible between the TI-84 Plus C and the TI-84 Plus family of graphing calculators. For more information on file compatibility, see Linking Compatibility later in this chapter.
- The TI-84 Plus C graphing calculator comes equipped with a Li-ion rechargeable battery. To ensure battery life, store the graphing calculators in the TI-84 Plus C Charging Station, or connect individual graphing calculators to a wall charger.
Warning: RAM memory will be lost if the battery charge is lost. You should back up or archive your variables if your battery power gets low.

For more information on the batteries and the charging station, see Battery Information and $\mathrm{Tl}-84$ Plus C Charging Station later in this chapter.

Using Color on the TI-84 Plus C

The TI-84 Plus C graphing calculator has many color options and a high resolution display that allows more information to be shown on the screen. The TI-84 Plus C uses color in the following ways:

- $Y=$ editor for line color.
- DRAW commands for line color, such as vertical lines, circles, and text on the graph screen.
- The graph format screen for grid, axes, or border color, and applying a background image or color.
- Statistical Plots.

The color options are selected using a spinner, which can contain various options depending on the feature. Press \triangle and \square to scroll through the color options to set a color.

Note: Take care to choose appropriate color combinations for the graph areas so that all features are visible.

- You can reset the calculator to its default settings, including color settings, by pressing

2nd [MEM] 722.

Using Color on the Graph Screen

The examples below show how to set line color on the $Y=$ editor using the spinner, and how to set a Background Image for a graph.

Enter an equation in the $\mathrm{Y}=$ editor.

1. Press $Y=$.
2. Press $\left(-\boxed{-1}, \mathrm{~T}, \Theta, n x^{2} \oplus 6\right.$.

To set the line color in the $Y=$ editor:
3. Press 2nd 0 to select the color/line box to the left of $Y=$, and then press ENTER.

The spinner dialog box becomes active.
4. Press $\square \square$ to select magenta.
5. Press \square.

Note: The thick line style is the default. It can be changed by pressing or \square.
6. Press to highlight $O K$ and then press ENTER.

To set a Background Image:
7. Press 2nd [FORMAT].

Set grid color, axes, and border color as desired.
8. Press \triangle or \square as necessary to highlight Background.

The spinner dialog box becomes active.
9. Press \square as necessary to select the desired Background Image or color.
Note: Your pre-loaded Image Var may be different than the one displayed.

Note: To create Background Image Vars, use the free TI Connect ${ }^{\text {TM }}$ software to convert and send images to your TI-84 Plus C graphing calculator.
10. Press TRACE to see the graph and trace points.

Note: You can manipulate the graph to "fit" an object in the Background Image Var. You can also use QuickPlot and Fit Equation to fit an equation to a shape. (See QuickPlot later in this chapter.)

nokMal float huto Real radian mp	[1]
PolarGC	
CoordOn CoordOff	
GridOff GridDot GridLine	
GridColor: MEDGRAY	
Axes: BLACK	
Label0ff Labelon	
Expr0n Exproff	
BorderColor: 1	
Back9round: 0 ff	
Detect Asymptotes: On Off	

TI－84 Plus C Silver Edition

Using the Color－Coded Keyboard

The keys on the TI－84 Plus C are color－coded to help you easily locate the key you need．
The light colored keys are the number keys．The keys along the right side of the keyboard are the common math functions．The keys across the top set up and display graphs．The APPS key provides access to applications such as Polynomial Root Finder and Simultaneous Equation Solver，Inequality Graphing，and more．
Note：Catalog Help is an application on the TI－84 Plus，but is built into the TI－84 Plus C operating system．The Catalog Help contains syntax information for most menu items，and most of the functions in the catalog．To use Catalog Help on the TI－Plus C，select a menu item and then press $⿴ 囗$ ．
The primary function of each key is printed on the keys．For example，when you press［MATH，the MATH menu is displayed．

Using the 2 nd and ALPHA Keys

The secondary function of each key is printed above the key in the same color as the 2nd key．When you press the［2nd key，the character，abbreviation，or word printed above the other keys becomes active for the next keystroke．For example，when you press［nd and then MATH，the TEST menu is displayed．This guidebook describes this keystroke combination as［थnd［TEST］．

The flashing cursor changes to \mathbf{T} when you press［ndd．The \mathbf{T} may show in the cursor location，or in the status bar on the top of the screen．

```
NORMML FLOAT AUTO REAL RADIGN MP 个\
```

2nd key indicator on the status bar

Many keys also have a third function. These functions are printed above the keys in the same color as the ALPHA key. The third functions enter alphabetic characters and special symbols, as well as access SOLVE and shortcut menus. For example, when you press ALPHA and then MATH, the letter \mathbf{A} is entered. This guidebook describes this keystroke combination as ALPHA [A].

If you want to enter several alphabetic characters in a row, you can press 2nd [A-LOCK] to lock the alpha key in the On position and avoid having to press ALPHA multiple times. Press ALPHA a second time to unlock it.

The flashing cursor changes to 11 when you press ALPHA, even if you are accessing a function or a menu. The $\begin{aligned} & \text { ll may show in the cursor location, or in the status bar on the top of the screen. }\end{aligned}$

Normal float auto real radian mp A

Alpha key indicator on the status bar

Turning On and Turning Off the TI-84 Plus C

Turning On the Graphing Calculator

To turn on the TI-84 Plus C, press 0 N . An information screen displays reminding you that you can press ALPHA [F1] - [F4] to display the shortcut menus, and press \square for Catalog Help. This message also displays when you reset RAM. When some features are active, you may also see a shortcut menu in the ALPHA [F5] location for special shortcuts available in that particular feature.

- To continue but not see this information screen again, press 1.
- To continue and see this information screen again the next time you turn on the TI-84 Plus C, press 2.
- If you previously had turned off the graphing calculator by pressing 2nd [0FF], the $\mathrm{TI}-84$ Plus C displays the home screen as it was when you last used it and clears any error. (The information screen displays first, unless you chose not to see it again.) If the home screen is blank, press Δ to scroll through the history of previous calculations.
- If Automatic Power Down ${ }^{\text {TM }}$ (APD ${ }^{\text {™ }}$) had previously turned off the graphing calculator, the TI-84 Plus C will return exactly as you left it, including the display, cursor, and any error.
- If the $\mathrm{TI}-84$ Plus C is turned off and connected to another graphing calculator or personal computer, any communication activity will "wake up" the TI-84 Plus C.

To prolong the life of the battery, APD ${ }^{\text {TM }}$ turns off the TI-84 Plus C automatically after about five minutes without any activity.

Turning Off the Graphing Calculator

To turn off the TI-84 Plus C manually, press [2nd [0FF].

- All settings and memory contents are retained by the Constant Memory ${ }^{\text {TM }}$ function.
- Any error condition is cleared.

Setting the Display Brightness

Adjusting the Display Brightness

You can adjust the display brightness to suit your viewing angle and lighting conditions.
To adjust the contrast, follow these steps.

- Press 2nd to darken the screen one level at a time.
- Press $2 n d$ to lighten the screen one level at a time.

The TI-84 Plus C retains the brightness setting in memory when it is turned off.

Automatic Dimming

The TI-84 Plus C has an automatic dimming feature. To help prolong battery life, the screen dims after 90 seconds of no activity. Press ON to return the screen to the preset brightness setting. Pressing ON does not affect any calculations, cursors, or error messages.

The Home Screen

The home screen is the primary screen of the TI-84 Plus C. On this screen, enter instructions to execute and expressions to evaluate. The answers are displayed on the same screen. Most calculations are stored in the history on the home screen. You can press Δ and \square to scroll through the history of entries on the home screen and you can paste the entries or answers to the current entry line.

Press 2nd [QuIT] from any screen to go to the home screen.

Enter a calculation.

1. Press [2nd [QUIT] to return to the home screen, if needed.
2. Press 2nd $[v] 3 x^{2} \square 4 x^{2} \square$ +6 ENTER.

Note: When you are in a MathPrint ${ }^{\top \mathrm{M}}$ template, the cursor turns to a right arrow D to indicate that you must press \square

MORMAL FLOAT AUTO REAL RADIAN MP \quad I
$\sqrt{3^{2}+4 \text { © }}$

Displaying Entries and Answers

- When text is displayed, the TI-84 Plus C screen can display a maximum of 10 lines with a maximum of 26 characters per line in Classic mode. In MathPrint ${ }^{\top M}$ mode, fewer lines and fewer characters per line may be displayed, depending on the MathPrint ${ }^{\text {TM }}$ template used.
- A dotted line separates each set of entries and answers.
- If an expression on the home screen, the $Y=$ editor (Chapter 3 in the guidebook), or the program editor (Chapter 16 in the guidebook) is longer than one line, it wraps to the beginning of the next line in Classic mode. In MathPrint ${ }^{\top \mathrm{TM}}$ mode, an expression on the home screen or $\mathrm{Y}=$ editor that is longer than one line scrolls off the screen to the right. An arrow on the right side of the screen indicates that you can scroll right to see more of the expression. In numeric editors such as the window screen (Chapter 3), a long expression scrolls to the right and left in both Classic and MathPrint ${ }^{\text {TM }}$ modes.

Tip: Press 2nd to move the cursor to the end of the line. Press 2nd to move the cursor to the beginning of the line.

- When an entry is executed on the home screen, the answer is displayed on the right side of the next line.
- The mode settings control the way the TI-84 Plus C interprets expressions and displays answers.
- Press MODE to switch between Classic and MathPrint ${ }^{\top \mathrm{TM}}$ modes and see expressions in both formats. The Classic and MathPrint ${ }^{\top M}$ modes are on the top line of the mode screen.
- If an answer, such as a list or matrix, is too long to display entirely on one line, an arrow (MathPrint ${ }^{\text {M }}$) or an ellipsis (Classic) is displayed to the right or left. Press \square and \square to display the answer.

MathPrint ${ }^{\text {TM }}$ (default)

Scrolling Through Previous Entries on the Home Screen

If all lines of the display are full, text scrolls off the top of the display.
You can scroll up through previous entries and answers on the home screen, even if you have cleared the screen. When you find an entry or answer that you want to use, you can select it and paste it (press (ENTER) on the current entry line.

Note: List and matrix answers cannot be copied and pasted to the new entry line. However, you can copy the list or matrix command to the new entry line and execute the command again to display the answer.

- Press \triangle or \square to move the cursor to the entry or answer you want to copy and then press [ENTER. The TI-84 Plus C highlights the entry the cursor is on to help you select your desired choice.

The entry or answer that you copied is automatically pasted on the current input line at the cursor location.

Note: If the cursor is in a MathPrint ${ }^{T M}$ expression, press ALPHA Δ to move the cursor out of the expression and then move the cursor to the entry or answer you want to copy.

- Press CLEAR or DEL to delete an entry/answer pair. After an entry/answer pair has been deleted, it cannot be displayed or recalled again.
Note: For more information on using previous entries, see ENTRY (Last Entry) Storage Area later in this chapter.

Returning to the Home Screen

To return to the home screen from any other screen, press [2nd [QUIT].

Status Bar

The status bar displays on all screens, and gives information about the selected calculator mode settings, any context help available for the item you currently have selected, and battery status. The status bar may also show a busy indicator if the calculator is performing an operation, i to indicate the calculator is in alpha status, and $\boldsymbol{\uparrow}$ to indicate the secondary function is active.

Selected mode settings are displayed on the top line of the status bar when the cursor is in the active entry area. Mode settings do not display when the cursor is in the home screen history, since the mode may have been different for previous calculations.

Context help, if available, is displayed on the second line. The battery status icon, busy indicator, alpha indicator, and second key indicator are on the right. When you scroll into the home screen history, the context help on the status bar displays HISTORY.
In the example below, the cursor is on the GridColor option. The context help for GridColor is on the second line of the status bar.

	UTO REAL Radian Mp CT AN OPTION	D) ${ }^{\text {Battery icon. }}$
MODE settings.	$\begin{aligned} & \text { RectGC PolarGC } \\ & \text { CoordOn CoordOff } \\ & \text { GridOff GridDot Gridl } \end{aligned}$	This area of the status bar also displays the busy
	GridColor: BLUE (1)	indicator, alpha
Context help		indicator, and
for current	Expron Exproff	
cursor	BorderColor	second key indicator,
position.	Back9round: Off	epending on th
	Detect Asymptotes: On Off	tate of the
		graphing calculato

Using Shortcut Menus

Shortcut menus allow quick access to the following:

- Templates to enter fractions, and to toggle between whole and mixed fractions, and fractions and decimals.
- Selected functions from the MATH MATH and MATH NUM menus as you would see them in a textbook, when in MathPrint ${ }^{\top M}$ mode. Functions include absolute value, numeric differentiation, numeric integration, summation, log base n, square root, permutations, combinations, and factorials.
- Quick MathPrint ${ }^{\text {™ }}$ matrix entry, when available.
- Names of function variables from the VARS Y-VARS menu.

To open a shortcut menu, press ALPHA plus the F-key that corresponds to the menu, that is, [F1] for FRAC, [F2] for FUNC, [F3] for MTRX, [F4] for YVAR, or [F5] for special menus within interactive graph activities such as DRAW or QuickPlot and Fit Equation, and more. To select a menu item, either press the number corresponding to the item, or use the arrow keys to move the cursor to the appropriate line and then press ENTER.

All shortcut menu items except matrix templates can also be selected using standard menus. For example, you can choose the summation template from three places:

FUNC shortcut menu

MATH MATH menu

Catalog

NORMAL FLOAT futo real radian mp	[
CATALOG	
-summation E(
$\tan ($	
$\tan ^{-1}($	
Tangent (
tanh	
$\tanh ^{-1}($	
tcdf(
Text	
TextColor (

The shortcut menus are available to use where input is allowed. If the calculator is in Classic mode, or if a screen is displayed that does not support MathPrint ${ }^{\text {TM }}$ display, entries will be displayed in Classic display. The MTRX menu is only available in MathPrint ${ }^{T M}$ mode on the home screen and in the $Y=$ editor.

Note: Shortcut menus may not be available if ALPHA plus F-key combinations are used by an application that is running.

Busy Indicator

normal float auto real radian Mp or

Display Cursors

In most cases, the appearance of the cursor indicates what will happen when you press the next key or select the next menu item to be pasted as a character.

Note: The second cursor and alpha cursor may appear on the status bar, depending on the context.

Cursor	Appearance	Effect of Next Keystroke
Entry	Solid rectangle	A character is entered at the cursor; any existing character is overwritten.
Insert	Underline	A character is inserted in front of the cursor location.
Second	Reverse arrow $\boldsymbol{1}$	A 2nd character is entered or a 2 nd operation is executed.
Alpha	Reverse A目	An alpha character is entered, SOLVE is executed, or shortcut menus are displayed.
Full	Checkerboard rectangle	No entry; the maximum characters are entered at a prompt or memory is full. Also indicates the limit of the allowed MathPrint ${ }^{T M}$ mode levels.
MathPrint ${ }^{\text {™ }}$	Right arrow D	The cursor moves to either the next part of the template or out of the template. Press the right arrow to move out of all MathPrint ${ }^{\text {TM }}$ templates before entering the remaining terms in an expression.

If you press ALPHA during an insertion, the cursor becomes an underlined \mathbf{A} (A). If you press 2nd during an insertion, the underlined cursors becomes an underlined $\uparrow(\uparrow)$.

Note: If you highlight a small character such as a colon or a comma and then press ALPHA or 2nd, the cursor does not change because the cursor width is too narrow.
Graphs and editors sometimes display additional cursors, which are described in the guidebook.

Setting Modes

Checking Mode Settings

Mode settings control how the TI-84 Plus C displays and interprets numbers and graphs. Mode settings are retained by the Constant Memory ${ }^{\text {TM }}$ feature when the TI-84 Plus C is turned off. All numbers, including elements of matrices and lists, are displayed according to the current mode settings.

To display the mode settings, press MODE. The current settings are highlighted. Defaults are highlighted below. The following pages describe the mode settings in detail.

Note: When you press MODE, the cursor is on NORMAL by default. Press Δ to switch between the MathPrint ${ }^{\text {TM }}$ and Classic modes.

MATHPRINT CLASSIC	Controls whether inputs and outputs on the home screen and in the Y= editor are displayed as they are in textbooks
NORMAL SCI ENG	Numeric notation
FLOAT 0123456789	Number of decimal places in answers
RADIAN DEGREE	Unit of angle measure
FUNCTION PARAMETRIC POLAR SEQ	Type of graphing
THCK DOT-THICK THIN DOT-THIN	Resets all Y= line styles SEQUENTIAL SIMUL
REAL a+bi re^日i	Whether to plot sequentially or simultaneously
FULL HORIZONTAL GRAPH-TABLE	Real, rectangular complex, or polar complex
FRACTION TYPE: n/d Un/d	Full screen, two split-screen modes Displays results as simple fractions or mixed fractions
ANSWERS: AUTO DEC FRAC-APPROX	Controls the format of the answers
GOTO 2ND FORMAT GRAPH: No Yes	Shortcut to the Format Graph screen ([2nd [FoRMAT])
STAT DIAGNOSTICS: Off On	Determines which information is displayed in a statistical regression calculation
STAT WIZARDS: On Off	Determines if syntax help prompts are provided for optional and
required arguments for many	

Changing Mode Settings

To change mode settings, follow these steps.

1. Press \square or Δ to move the cursor to the line of the setting that you want to change.
2. Press \square or \square to move the cursor to the setting you want.
3. Press ENTER.

Setting a Mode from a Program

You can set a mode from a program by entering the name of the mode as an instruction; for example, Func or Float. From a blank program command line, select the mode setting from the mode screen; the instruction is pasted to the cursor location.

Rmal float futo real radian mp	[
PROGRAM: TEST : Funcl	

MATHPRINT, CLASSIC

MathPrint ${ }^{\text {TM }}$ mode displays most inputs and outputs the way they are shown in textbooks, such as 2
$\frac{1}{2}+\frac{3}{4}$ and $\int x^{2} d x$.
Classic mode displays expressions and answers as if written on one line, such as 1/2 +3/4.
Note: If you switch between these modes, most entries will be preserved; however matrix calculations will not be preserved.

NORMAL, SCI, ENG

Notation modes only affect the way an answer is displayed on the home screen. Numeric answers can be displayed with up to 10 digits and a two-digit exponent and as fractions. You can enter a number in any format.

Normal notation mode is the usual way we express numbers, with digits to the left and right of the decimal, as in 12345.67.

Sci (scientific) notation mode expresses numbers in two parts. The significant digits display with one digit to the left of the decimal. The appropriate power of 10 displays to the right of E , as in $\mathbf{1 . 2 3 4 5 6 7 E 4}$.

Eng (engineering) notation mode is similar to scientific notation. However, the number can have one, two, or three digits before the decimal; and the power-of-10 exponent is a multiple of three, as in 12.34567E3.

Note: If you select Normal notation, but the answer cannot display in 10 digits (or the absolute value is less than .001), the TI-84 Plus C expresses the answer in scientific notation.

FLOAT, 0123456789

Float (floating) decimal mode displays up to 10 digits, plus the sign and decimal.
FIX 0123456789 decimal mode specifies the number of digits (0 through 9) to display to the right of the decimal for decimal answers.

The decimal setting applies to Normal, Sci, and Eng notation modes.
The decimal setting applies to these numbers, with respect to the Answer mode setting:

- An answer displayed on the home screen
- Coordinates on a graph (Chapters 3, 4, 5, and 6 in the guidebook)
- The Tangent(DRAW instruction equation of the line, x, and $\mathbf{d y} / \mathbf{d x}$ values (Chapter 8 in the guidebook)
- Results of CALCULATE operations (Chapters 3, 4, 5, and 6 in the guidebook)
- The regression equation stored after the execution of a regression model (Chapter 12 in the guidebook)

RADIAN, DEGREE

Angle modes control how the TI-84 Plus C interprets angle values in trigonometric functions and polar/rectangular conversions.

Radian mode interprets angle values as radians. Answers display in radians.
Degree mode interprets angle values as degrees. Answers display in degrees.

FUNCTION, PARAMETRIC, POLAR, SEQ

Graphing modes define the graphing parameters. Chapters $3,4,5$, and 6 in the guidebook describe these modes in detail.

Func (function) graphing mode plots functions, where Y is a function of X (Chapter 3).

Par (parametric) graphing mode plots relations, where X and Y are functions of T (Chapter 4).
Pol (polar) graphing mode plots functions, where \mathbf{r} is a function of θ (Chapter 5).
Seq (sequence) graphing mode plots sequences (Chapter 6).

THICK, DOT-THICK, THIN, DOT-THIN

THICK plotting mode is a quick way to reset all $Y=$ line styles to a thick line connecting each point calculated for the selected functions. You can change individual line styles in the $\mathrm{Y}=$ editor.

Note: The THICK plotting mode on the TI-84 Plus C is equivalent to the CONNECTED plotting mode on the TI-84 Plus graphing calculator.

DOT-THICK plotting mode is a quick way to reset all $Y=$ line styles to a large dot and plots only the calculated points of the selected functions. You can change individual line styles in the $\mathrm{Y}=$ editor.
Note: The DOT-THICK plotting mode on the TI-84 Plus C is equivalent to the DOT plotting mode on the TI-84 Plus graphing calculator. You can change individual line styles in the $Y=$ editor.

THIN plotting mode is a quick way to reset all $\mathrm{Y}=$ line styles to a thin line connecting each point calculated for the selected functions.

Note: Use THIN plotting mode for function graphing when looking at any functions which asymptote to an axis.

DOT-THIN plotting mode is a quick way to reset all $Y=$ line styles to a small dot and plots only the calculated points of the selected functions. You can change individual line styles in the $Y=$ editor.

SEQUENTIAL, SIMUL

Sequential graphing-order mode evaluates and plots one function completely before the next function is evaluated and plotted.

Simul (simultaneous) graphing-order mode evaluates and plots all selected functions for a single value of X and then evaluates and plots them for the next value of X.

Note: Regardless of which graphing mode is selected, the TI-84 Plus C will sequentially graph all stat plots before it graphs any functions.

REAL, $\mathbf{a + b} i$, re^ $^{\wedge}(\theta i)$
Real mode does not display complex results unless complex numbers are entered as input.
Two complex modes display complex results.

- $\mathbf{a}+\mathbf{b} i$ (rectangular complex mode) displays complex numbers in the form $\mathrm{a}+\mathrm{b} i$.
- $\mathbf{r e}^{\wedge}(\theta i)$ (polar complex mode) displays complex numbers in the form re^(θi).

Note: When you use the n / d template, both n and d must be real numbers. For example, you can enter $\frac{1}{2}+\frac{1}{4} i$ (the answer is displayed as a decimal value) but if you enter $\frac{(1-i)}{i}$, a data type error displays. To perform division with a complex number in the numerator or denominator, use regular division instead of the n / d template.

See the complete guidebook for complete details on complex numbers and how the TI-84 Plus C functions work with complex number entries.

FULL, HORIZONTAL, GRAPH-TABLE

Full screen mode uses the entire screen to display a graph or edit screen.
Each split-screen mode displays two screens simultaneously.

- Horiz (horizontal) mode displays the current graph on the top half of the screen; it displays the home screen or an editor on the bottom half (Chapter 9 in the guidebook).
- G-T (graph-table) mode displays the current graph on the left half of the screen; it displays the table screen on the right half (Chapter 9 in the guidebook).

FRACTION TYPE: n/d, Un/d

\mathbf{n} / \mathbf{d} displays results as a simple fraction. Fractions may contain a maximum of six digits in the numerator; the value of the denominator may not exceed 9999.
$\mathbf{U n} / \mathbf{d}$ displays results as a mixed number, if applicable. \mathbf{U}, \mathbf{n}, and \mathbf{d} must be all be integers. If \mathbf{U} is a noninteger, the result may be converted $\mathbf{U} * \mathbf{n} / \mathbf{d}$. If n or d is a non-integer, a syntax error is displayed. The whole number, numerator, and denominator may each contain a maximum of three digits.

Note: To perform division with a complex number in the numerator or denominator, use regular division instead of the n / d template.

ANSWERS: AUTO, DEC, FRAC-APPROX

Auto displays answers in a similar format as the input. For example, if a fraction is entered in an expression, the answer will be in fraction form, if possible. If a decimal appears in the expression, the output will be a decimal number.

Dec displays answers as integers or decimal numbers.
Frac-Approx attempts a fraction conversion using the number of decimals carried by the graphing calculator. A fraction answer may be exact or approximate for any real number result.

Note: The Answers mode setting also affects how values in sequences, lists, and tables are displayed. Choose Dec or Frac to ensure that values are displayed in either decimal or fraction form. You can also convert values from decimal to fraction or fraction to decimal using the FRAC shortcut menu or the MATH menu.

GOTO 2ND FORMAT GRAPH: NO, YES

No does not display the FORMAT graph screen, but can always be accessed by pressing [2nd [FORMAT].
Yes leaves the mode screen and displays the FORMAT graph screen when you press ENTER so that you can change the graph format settings. To return to the mode screen, press MODE.

STAT DIAGNOSTICS: OFF, ON

Off displays a statistical regression calculation without the correlation coefficient (r) or the coefficient of determination $\left(r^{2}\right)$.

On displays a statistical regression calculation with the correlation coefficient (r), and the coefficient of determination (r^{2}), as appropriate.

STAT WIZARDS: ON OFF

On: Selection of menu items in MATH PROB, STAT CALC, DISTR DISTR, DISTR DRAW and seq(in LIST OPS displays a screen which provides syntax help (wizard) for the entry of required and optional arguments into the command or function. The function or command will paste the entered arguments to the Home Screen history or to most other locations where the cursor is available for input. Some calculations will compute directly from the wizard. If a command or function is accessed from [CATALOG] the command or function will paste without wizard support. Use Catalog Help for more syntax help when needed. To use Catalog Help, select a menu item and then press \dagger.
Off: The function or command will paste to the cursor location with no syntax help (wizard)

SET CLOCK

Use the clock to set the time, date, and clock display formats.

Using the Clock

Use the clock to set the time and date, select the clock display format, and turn the clock on and off. The clock is turned on by default and is accessed from the mode screen.

Displaying the Clock Settings

1. Press MODE.
2. Press $\Delta \square$ to move the cursor to SET CLOCK.
3. Press ENTER.

Changing the Clock Settings

1. Press or to highlight each field.

- Press ENTER to select the date and time format.
- Press CLEAR and type a number for the year, month, date, hour, and minute fields.

2. To save changes, press to highlight SAVE, and then press ENTER.

Turning the Clock On and Off

1. Press 2nd [CATALOG].
2. Press \square or to scroll the CATALOG until the selection cursor points to ClockOff or ClockOn.
3. Press ENTER ENTER.

Equation Operating System (EOS™)

Order of Evaluation

The Equation Operating System (EOS ${ }^{\text {TM }}$) defines the order in which functions in expressions are entered and evaluated on the TI-84 Plus C. EOSTM lets you enter numbers and functions in a simple, straightforward sequence.

EOS ${ }^{T M}$ evaluates the functions in an expression in this order.

Order Number	Function
1	Functions that precede the argument, such as $\sqrt{ }$, $\mathbf{s i n}($, or log(
2	Functions that are entered after the argument, such as $,^{2}, 1,!, \circ, r$, and conversions
3	Powers and roots, such as 2^{5} or $5^{x} \sqrt{32}$
4	Permutations (nPr) and combinations (nCr)
5	Multiplication, implied multiplication, and division
7	Relational functions, such as $>$ or \leq
8	Logic operator and
9	Logic operators or and xor

Note: Within a priority level, EOS ${ }^{\text {TM }}$ evaluates functions from left to right. Calculations within parentheses are evaluated first.

Implied Multiplication

The TI-84 Plus C recognizes implied multiplication, so you need not press \boxtimes to express multiplication in
 multiplication.

Note: TI-84 Plus C implied multiplication rules differ from those of some other graphing calculators. For example, the TI-84 Plus C evaluates $\mathbf{1 / 2 X}$ as $(\mathbf{1 / 2)} * \mathbf{X}$, while some graphing calculators may evaluate $\mathbf{1 / 2 X}$ as $\mathbf{1 / (2 * X)}$ (Chapter 2 in the guidebook).

Parentheses

All calculations inside a pair of parentheses are completed first. For example, in the expression 4(1+2), EOS ${ }^{\text {TM }}$ first evaluates the portion inside the parentheses, $1+2$, and then multiplies the answer, 3 , by 4.

Mormal flo	-
4*12	
$4(1+2)$	48.
	12.

Negation

To enter a negative number, use the negation key. Press --- and then enter the number. On the TI-84 Plus C, negation is in the third level in the EOS™ hierarchy. Functions in the first level, such as squaring, are evaluated before negation.

Example: - \mathbf{X}^{2}, evaluates to a negative number (or 0). Use parentheses to square a negative number.

Note: Use the \square key for subtraction and the $-(-)$ key for negation. If you press \square to enter a negative number, as in $9 \times \square$ 7, or if you press to indicate subtraction, as in 9 7, an error occurs. If you press ALPHA \mathbf{A} ALPHA B, it is interpreted as implied multiplication ($\mathbf{A} *-\mathbf{B}$).

Entering Expressions and Instructions

What Is an Expression?

An expression is a group of numbers, variables, functions and their arguments, or a combination of these elements. An expression evaluates to a single answer. On the TI-84 Plus C, you enter an expression in the same order as you would write it on paper. For example, πR^{2} is an expression.

You can use an expression on the home screen to calculate an answer. In most places where a value is required, you can use an expression to enter a value.

Entering an Expression

To create an expression, you enter numbers, variables, and functions using the keyboard and menus. An expression is completed when you press ENTER, regardless of the cursor location. The entire expression is evaluated according to Equation Operating System (EOS ${ }^{\text {TM }}$) rules, and the answer is displayed according to the mode setting for Answer.

Most TI-84 Plus C functions and operations are symbols comprising several characters. You must enter the symbol from the keyboard or a menu; do not spell it out. For example, to calculate the log of 45, you must press LOG 45. Do not enter the letters L, O, and G. If you enter LOG, the TI-84 Plus C interprets the entry as implied multiplication of the variables \mathbf{L}, \mathbf{O}, and \mathbf{G}.

Note: In MathPrint ${ }^{\top M}$ mode, press \square to get out of the MathPrint ${ }^{\top M}$ template and continue entering the expression.
Calculate $3.76 \div(-7.9+\sqrt{5})+2 \log 45$.
MathPrint ${ }^{T M}$ Classic

Multiple Entries on a Line

To enter two or more expressions or instructions on a line, separate them with colons ([ALPHA [:]). All instructions are stored together in last entry (ENTRY).

Entering a Number in Scientific Notation

1. Enter the part of the number that precedes the exponent. This value can be an expression.
2. Press [2nd [EE]. E is pasted to the cursor location.
3. Enter the exponent, which can be one or two digits.

Note: If the exponent is negative, press $(-)$, and then enter the exponent.

When you enter a number in scientific notation, the TI-84 Plus C does not automatically display answers in scientific or engineering notation. The mode settings and the size of the number determine the display format.

Functions

A function returns a value. For example, $\div,-,+, \sqrt{ }$, and \log (are the functions in the example on the previous page. In general, the first letter of each function is lowercase. Most functions take at least one argument, as indicated by an open parenthesis following the name. For example, $\boldsymbol{\operatorname { s i n }}$ (requires one argument, $\boldsymbol{\operatorname { s i n }}$ (value).

Note: The Catalog Help contains syntax information for most of the functions in the catalog. To use Catalog Help, select a menu item and then press \dagger.

Instructions

An instruction initiates an action. For example, ClrDraw is an instruction that clears any drawn elements from a graph. Instructions cannot be used in expressions. In general, the first letter of each instruction name is uppercase. Some instructions take more than one argument, as indicated by an open parenthesis at the end of the name. For example, on the TI-84 Plus C, Circle(requires three arguments, and has two optional arguments: Circle(X, Y, radius[, color, linestyle]).

Interrupting a Calculation

To interrupt a calculation or graph in progress, which is indicated by the busy indicator in the status bar, press 0 ON .

When you interrupt a calculation, a menu is displayed.

- To return to the home screen, select 1:Quit.
- To go to the location of the interruption, select 2:Goto.

When you interrupt a graph, a partial graph is displayed.

- To return to the home screen, press CLEAR or any non-graphing key.
- To restart graphing, press a graphing key or select a graphing instruction.

TI-84 Plus C Edit Keys

Keystrokes	Result
\square or \square°	Moves the cursor within an expression; these keys repeat.
\triangle or	Moves the cursor from line to line within an expression that occupies more than one line; these keys repeat.
	Moves the cursor from term to term within an expression in MathPrint ${ }^{\top M}$ mode; these keys repeat.
	On the home screen, scrolls through the history of entries and answers.
2nd ${ }^{\text {a }}$	Moves the cursor to the beginning of an expression.
2nd \square	Moves the cursor to the end of an expression.
ALPHA $\square^{\text {a }}$	On the home screen, moves the cursor out of a MathPrint ${ }^{\text {TM }}$ expression and up into history.
	In the $Y=$ =editor, moves the cursor from a MathPrint ${ }^{\text {TM }}$ expression to the previous Y -var.
ALPHA ${ }^{\text {a }}$	In the $Y=$ editor, moves the cursor from a MathPrint ${ }^{\top M}$ expression to the next Y-var.
ENTER	Evaluates an expression or executes an instruction.
CLEAR	On a line with text on the home screen, clears the current line.
	On a blank line on the home screen, clears everything on the home screen.
	In an editor, clears the expression or value where the cursor is located; it does not store a zero.
DEL	Deletes a character at the cursor; this key repeats.
2nd [iNS]	Changes the cursor to an underline (_); inserts characters in front of the underline cursor; to end insertion, press [2nd [iNS] or press $\square, ~ \square, ~ \square$, or \square.
2nd	Changes the cursor or status bar indicator to \mathbf{T}; the next keystroke performs a 2nd function (displayed above a key and to the left); to cancel 2nd, press 2nd again.
ALPHA	Changes the cursor or status bar indicator to 㐭; the next keystroke performs a third function of that key (displayed above a key and to the right) or accesses a shortcut menu. To cancel ALPHA, press ALPHA or press \square, Δ, \square, or \square.
2nd [A-LOCK]	Changes the cursor to $\mathbf{i l}$; sets alpha-lock; subsequent keystrokes access the third functions of the keys pressed; to cancel alpha-lock, press ALPHA. If you are prompted to enter a name such as for a group or a program, alpha-lock is set automatically.
	Note: The TI-84 Plus C does not automatically set alpha-lock for entries that require list names.

Keystrokes	Result
X, T, Θ, η	Pastes an X in Func mode, a T in Par mode, a θ in Pol mode, or an n in Seq mode with one keystroke.

Pictures and Backgrounds

The TI-84 Plus C uses both pictures and background images. They are both stored in Flash archive, but they are used in different ways:

- Image Vars (Image1 - Image9, and Image0) are variables stored in archive memory. An Image Var is used as a Background Image in the graph area. Several images are pre-loaded on the TI-84 Plus C. You can also convert images to TI-84 Plus C Image Vars in the TI Connect ${ }^{\text {TM }}$ software and load them to the calculator. You cannot create images on the calculator.

Note: TI Connect ${ }^{\text {TM }}$ software is available as a free download from education.ti.com/go/download.

- Pic Vars (Pic1 - Pic 9, and Pic0) are also variables stored in archive memory. Pic Vars can be created by drawing in the graphing area, and the changes saved and recalled to the graphing area. Saving a Pic Var will not include the Background Image behind your graphing area.
- Both Image Vars and Pic Vars are stored and run in Flash archive, not in RAM. They are both accessible in the VARS menu.
- Image Vars and Pic Vars can only be shared with another TI-84 Plus C graphing calculator.
- TI-84 Plus Pic Vars cannot be shared between the TI-84 Plus and the TI-84 Plus C graphing calculators.
- If you perform a RAM reset on the TI-84 Plus C, the Image Vars and Pic Vars remain in Archive memory for use.
- TI-84 Plus pictures are stored in RAM or archive, while TI-84 Plus C pictures are stored only in archive.

Using Variable Names

Variables and Defined Items

You can enter and use several types of data, including real and complex numbers, matrices, lists, functions, stat plots, graph databases, graph pictures, and strings.

The TI-84 Plus C uses assigned names for variables and other items saved in memory. For lists, you also can create your own five-character names.

Variable Type	Names
Real numbers (including fractions)	$\mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}, \theta$

Complex numbers $\quad \mathbf{A}, \mathbf{B}, \ldots, \mathbf{Z}, \theta$

Matrices	$[\mathbf{A}],[\mathbf{B}],[\mathbf{C}], \ldots,[\mathbf{J}]$
Lists	L1, L2, L3, L4, L5, L6, and user-defined names
Functions	Y1, Y2, \ldots, Y9, Y0
Parametric equations	$\mathbf{X 1 T}$ and $\mathbf{Y 1 T}, \ldots, \mathbf{X 6 T}$ and Y6T
Polar functions	r1, r2, r3, r4, r5, r6
Sequence functions	$\mathbf{u}, \mathbf{v , ~ w}$
Stat plots	Plot1, Plot2, Plot3
Graph databases	$\mathbf{G D B 1 , ~ G D B 2 , ~ . . . , ~ G D B 9 , ~ G D B 0 ~}$

Variable Type	Names
Background images	Image1, Image2, ... , Image9, Image0
Pictures	Pic1, Pic2, ... , Pic9, Pic0
Strings	Str1, Str2, ... Str9, Str0
Apps	Applications
AppVars	Application variables
Groups	Grouped variables
System variables	Xmin, Xmax, and others

Notes about Variables

- You can create as many list names as memory will allow (Chapter 11 in the guidebook).
- Programs have user-defined names and share memory with variables (Chapter 16 in the guidebook).
- From the home screen or from a program, you can store to matrices (Chapter 10), lists (Chapter 11), strings (Chapter 15), system variables such as Xmax (Chapter 1), TbIStart (Chapter 7), and all $\mathbf{Y}=$ functions (Chapters 3, 4, 5, and 6 in the guidebook).
- From an editor, you can store to matrices, lists, and $\mathbf{Y}=$ functions (Chapter 3 in the guidebook).
- From the home screen, a program, or an editor, you can store a value to a matrix element or a list element.
- You can use DRAW STO menu items to store and recall Pic Vars (Chapter 8 in the guidebook).
- Although most variables can be archived, system variables including r, T, X, Y, and θ cannot be archived (Chapter 18 in the guidebook).
- Apps are independent applications, which are stored in Flash archive. AppVars is a variable holder used to store variables created by independent applications. You cannot edit or change variables in AppVars unless you do so through the application which created them.

Storing Variable Values

Storing Values in a Variable

Values are stored to and recalled from memory using variable names. When an expression containing the name of a variable is evaluated, the value of the variable at that time is used.

To store a value to a variable from the home screen or a program using the sTO key, begin on a blank line and follow these steps.

1. Enter the value you want to store. The value can be an expression.
2. Press STO. \rightarrow is copied to the cursor location.
3. Press ALPHA and then the letter of the variable to which you want to store the value.
4. Press ENTER. If you entered an expression, it is evaluated. The value is stored to the variable.

Displaying a Variable Value

To display the value of a variable, enter the name on a blank line on the home screen, and then press ENTER.

```
NORMAL FLOAT aUTO REAL RADIAN mP \
Q

\section*{Archiving Variables (Archive, Unarchive)}

You can archive data, programs, or other variables in a section of memory called user data archive where they cannot be edited or deleted inadvertently. These archived variables are indicated by asterisks \((*)\) to the left of the variable names. These archived variables cannot be edited or executed. They can only be seen and unarchived. For example, if you archive list L1, you will see that L1 exists in memory but if you select it and paste the name L1 to the home screen, you won't be able to see its contents or edit it until it is unarchived.

Note: Image Vars are run and stored in archive, but when Image Vars are displayed in the VARS 4:Picture \& Background, the BACKGROUND menu does not display the asterisk *.

\section*{Recalling Variable Values}

\section*{Using Recall (RCL)}

To recall and copy variable contents to the current cursor location, follow these steps. To leave RCL, press CLEAR.
1. Press 2nd [RCL]. RCL and the edit cursor are displayed on the bottom line of the screen.
2. Enter the name of the variable in one of five ways.
- Press \(\triangle\) ALPHA and then the letter of the variable.
- Press [2nd [LIST], and then select the name of the list, or press 2nd [L1] or [L2], and so forth.
- Press 2nd [MATRIX], and then select the name of the matrix.
- Press VARS to display the VARS menu or VARS \(\square\) to display the VARS Y-VARS menu; then select the type and then the name of the variable or function.
- Press ALPHA [F4] to display the YVAR shortcut menu, then select the name of the function.
- Press PRGM and then select the name of the program (in the program editor only).

The variable name you selected is displayed on the bottom line and the cursor disappears.
nORMAL FLOAT AUTO REAL RADIAN MP —
\(100+\)

Rcl Q
3. Press ENTER. The variable contents are inserted where the cursor was located before you began these steps.

\section*{mokmal float auto real radian mp}
\(100+517\)
Note: You can edit the characters pasted to the expression without affecting the value in memory.

\section*{QuickPlot and Fit Equation}

QuickPlot and Fit Equation allows you to drop points on a graph screen and model a curve to those points using regression functions. You can select color and line style, draw points on a graph, and choose an equation to fit the drawn points. You can then store the results of the plot and equation. For details, refer to Chapter 12 in the guidebook.

QuickPlot and Fit Equation is an option in the STAT] [CALC] menu.
Prior to starting the QuickPlot and Fit Equation interactive feature on the graph area, be sure to set your Background Image Var and other graph settings from the FORMAT screen. Also set your WINDOW or ZOOM settings.


\section*{ENTRY (Last Entry) Storage Area}

\section*{Using ENTRY (Last Entry)}

When you press ENTER on the home screen to evaluate an expression or execute an instruction, the expression or instruction is placed in a storage area called ENTRY (last entry). When you turn off the TI-84 Plus C, ENTRY is retained in memory.
To recall ENTRY, press 2nd [ENTRY]. The last entry is pasted to the current cursor location, where you can edit and execute it. On the home screen or in an editor, the current line is cleared and the last entry is pasted to the line.

Because the TI-84 Plus C updates ENTRY only when you press ENTER, you can recall the previous entry even if you have begun to enter the next expression.
5 © 7
[ENTER
2nd [ENTRY]


Note: You can also scroll up through previous entries and answers on the home screen, even if you have cleared the screen. When you find an entry or answer that you want to use, you can select it and paste it (press ENTER) on the current entry line. List and matrix answers cannot be copied and pasted to the new entry line.
For more information on copying and pasting previous entries, see Scrolling Through Previous Entries on the Home Screen earlier in this chapter.

\section*{Clearing ENTRY}

Clear Entries (Chapter 18 in the guidebook) clears all data that the TI-84 Plus C is holding in the ENTRY storage area, and clears the home screen history.

\section*{Using Ans in an Expression}

When an expression is evaluated successfully from the home screen or from a program, the TI-84 Plus C stores the answer to a storage area called Ans (last answer). Ans may be a real or complex number, a list, a matrix, or a string. When you turn off the TI-84 Plus C, the value in Ans is retained in memory.

You can use the variable Ans to represent the last answer in most places. Press [2nd [ANS] to copy the variable name Ans to the cursor location. When the expression is evaluated, the TI-84 Plus C uses the value of Ans in the calculation.

Calculate the area of a garden plot 1.7 meters by 4.2 meters. Then calculate the yield per square meter if the plot produces a total of 147 tomatoes.


\section*{Continuing an Expression}

You can use Ans as the first entry in the next expression without entering the value again or pressing 2nd [ANS]. On a blank line on the home screen, enter the function. The TI-84 Plus C pastes the variable name Ans to the screen, then the function.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Mormal float muto rehl radian mp} \\
\hline \multicolumn{2}{|l|}{5/2 2.5} \\
\hline Äns*9.9 & \\
\hline & 24.75 \\
\hline
\end{tabular}

\section*{Storing Answers}

To store an answer, store Ans to a variable before you evaluate another expression.
Note: \(\mathrm{nPr}, \mathrm{nCr}\), and \(x\) th root do not pull Ans into the MathPrint \({ }^{\top \mathrm{M}}\) template.
Calculate the area of a circle of radius 5 meters. Next, calculate the volume of a cylinder of radius 5 meters and height 3.3 meters, and then store the result in the variable V .
2nd \([\pi] 5 \times x^{2}\)
[ENTER
\(\mathbf{x} \mathbf{3} \cdot \mathbf{3}\)
ENTER
STO. ALPHA \(\mathbf{V}\)
ENTER
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{|mormal float auto real radian mp I]} \\
\hline \multicolumn{2}{|l|}{\(\pi 5^{2}\)} \\
\hline & 78.53981634 \\
\hline \multicolumn{2}{|l|}{} \\
\hline & 259.1813939 \\
\hline Äns \(\rightarrow\) V & 259.1813939 \\
\hline
\end{tabular}

\section*{Menus}

\section*{Using Menus}

You can access most TI-84 Plus C operations using menus. When you press a key or key combination to display a menu, one or more menu names appear on the top line of the screen.
- The menu name on the left side of the top line is highlighted. Up to nine items in that menu are displayed, beginning with item 1, which also is highlighted.
- A number or letter identifies each menu item's place in the menu. The order is 1 through 9 , then 0 , then \(A, B, C\), and so on, if appropriate.
- When the menu continues beyond the displayed items, a down arrow ( \(\downarrow\) ) replaces the colon next to the last displayed item.
- When a menu item ends in an ellipsis (...), the item displays a secondary menu or editor when you select it.
- When an asterisk \((*)\) appears to the left of a menu item, that item is stored in user data archive (Chapter 18 in the guidebook).


\section*{Displaying a Menu}

While using your TI-84 Plus C, you often will need to access items from its menus.

When you press a key that displays a menu, that menu temporarily replaces the screen where you are working. For example, when you press MATH, the MATH menu is displayed as a full screen.

Note: If a context help message is in the status bar when you press a menu which temporarily replaces the
\begin{tabular}{l} 
MORMAL FLOAT AUTO REAL RADIAN MP \(\quad\) П \\
\hline 5+9【 \\
\hline
\end{tabular}
 screen, that context help will remain in the status bar as a reminder that you are working within a context.

After you select an item from a menu, the screen where you are working usually is displayed again.


\section*{Moving from One Menu to Another}

Some keys access more than one menu. When you press such a key, the names of all accessible menus are displayed on the top line. When you highlight a menu name, the items in that menu are displayed. Press \(\square\) and \(\square\) to highlight each menu name.

Note: FRAC shortcut menu items are found in the FRAC menu, and are also found on the MATH NUM menu. FUNC shortcut menu items are also found on the MATH MATH menu.

NORMAL FLOAT AUTO REAL RADIAN MP П
MRTH NUM CMPLX PROB FRAC
1:labs(
2:round (
3: iPart \((\)
4: fPart (
5: int (
6:min
7: max
8: lcm(
9 \(\downarrow\) 9cd

\section*{Scrolling a Menu}

To scroll down the menu items, press \(\square\). To scroll up the menu items, press \(\Delta\).

To page down six menu items at a time, press ALPHA \(\square\). To page up six menu items at a time, press ALPHA \(\triangle\).
To go to the last menu item directly from the first menu item, press \(\Delta\). To go to the first menu item directly from the last menu item, press \(\square\).

\section*{Selecting an Item from a Menu}

You can select an item from a menu in three ways.
- Press the number or letter of the item you want to select. The cursor can be anywhere on the menu, and the item you select does not need to be displayed on the screen.

- Press \(\square\) or to move the cursor to the item you want, and then press ENTER.

After you select an item from a menu, the TI-84 Plus C typically displays the previous screen.

- Move the cursor to the item you want, and then press \(\dagger\). For most commands, the Catalog Help syntax editor displays the correct syntax. Enter the syntax using the displayed help, and then press ALPHA [F4] to paste. The Catalog Help pastes the complete command.


Press ALPHA [F5] to escape without pasting the command.

Note: On the LIST NAMES, PRGM EXEC, and PRGM EDIT menus, only items 1 through 9 and 0 are labeled in such a way that you can select them by pressing the appropriate number key. To move the cursor to the first item beginning with any alpha character or \(\theta\), press the key combination for that alpha character or \(\theta\). If no items begin with that character, the cursor moves beyond it to the next item.

\section*{Leaving a Menu without Making a Selection}

You can leave a menu without making a selection in any of four ways.
- Press 2nd [QUIT] to return to the home screen.
- Press CLEAR to return to the previous screen.
- Press a key or key combination for a different menu, such as MATH or 2nd [LIST].
- Press a key or key combination for a different screen, such as \(Y\) or 2nd [TABLE].

\section*{VARS Menus}

\section*{VARS Menu}

You can enter the names of functions and system variables in an expression or store to them directly.
To display the VARS menu, press VARS. All VARS menu items display secondary menus, which show the names of the system variables. 1:Window, 2:Zoom, 4:Picture\&Background, and 5:Statistics each access more than one secondary menu.
\begin{tabular}{|c|c|}
\hline VARS Y-VARS COLOR & \\
\hline 1:Window... & \(\mathbf{X / Y}\), T/ \(\boldsymbol{\theta}\), and \(\mathbf{U / V / W}\) variables \\
\hline 2:Zoom... & \(\mathbf{Z X / Z Y , ~ Z T / Z ~} \boldsymbol{\theta}\), and \(\mathbf{Z U}\) variables \\
\hline 3:GDB... & Graph database variables \\
\hline 4:Picture \& Background... & Picture and Background (image) variables \\
\hline 5:Statistics... & XY,, , EQ, TEST, and PTS variables \\
\hline 6:Table... & TABLE variables \\
\hline 7:String... & String variables \\
\hline
\end{tabular}

Selecting a Variable from the VARS Menu or VARS Y-VARS Menu
To display the VARS Y-VARS menu, press VARS 1:Function, 2:Parametric, and 3:Polar display secondary menus of the \(Y=\) function variables.

\section*{VARS Y-VARS COLOR}
\begin{tabular}{ll} 
1: Function... & \begin{tabular}{l}
\(\mathbf{Y} n\) functions \\
2:
\end{tabular} \\
3: Parametric... & \begin{tabular}{l}
\(\mathbf{X} n \mathbf{T}, \mathbf{Y} n \mathbf{T}\) functions, also found on the \\
YVARS shortcut menu
\end{tabular} \\
4: On/Of... & \begin{tabular}{l} 
r\(n\) functions, also found on the YVARS \\
shortcut menu
\end{tabular} \\
\hline
\end{tabular}

\section*{Note:}
- The sequence variables ( \(\mathbf{u}, \mathbf{v}, \mathbf{w}\) ) are located on the keyboard as the second functions of 7 , 8 , and 9.
- These \(Y=\) function variables are also on the YVAR shortcut menu.

To select a variable from the VARS menus, follow these steps.
1. Display the VARS or VARS Y-VARS menu.
- Press VARS to display the VARS menu.
- Press VARS \(\square\) to display the VARS Y-VARS menu.
2. Select the type of variable, such as 2:Zoom from the VARS menu or 3:Polar from the VARS Y-VARS menu. A secondary menu is displayed.
3. Press \(\square\) or to display other secondary menus.
4. Select a variable name from the menu.

It is pasted to the cursor location.

\section*{Selecting an argument from the VARS COLOR Menu}

To display the VARS COLOR menu, press VARS \(\square\).
```

VARS Y-VARS COLOR
1: BLUE
2: RED

```
```

VARS Y-VARS COLOR
3: BLACK
4: MAGENTA
5: GREEN
6: ORANGE
7: BROWN
8: NAVY
9: LTBLUE
0: YELLOW
A: WHITE
B: LTGRAY
C: MEDGRAY
D: GRAY
E: DARKGRAY

```

To select an argument from the VARS COLOR menu, follow these steps.
1. Press VARS \(\square\) to display the VARS COLOR menu.
2. Select the color argument, such as 2:RED.

It is pasted to the cursor location.
Note: Although the menu numbers for COLOR are 1-9, \(0, A-E\), colors are represented by the numbers 10-24 for selected programming commands.

\section*{Grouping files}

Grouping lets you make a copy of two or more variables and store them in the Flash archive of the TI-84 Plus C. This function is similar to "zipping" a computer file and storing it. For example, suppose that you want to save data you collected for time, temperature, humidity, and barometric pressure because you may need to use the data for another assignment.

Grouping lets you keep these lists together for future use. Instead of trying to locate the correct lists and remember which ones were collected together, you can simply recall the group. Grouping also saves space on your calculator by copying variables from RAM to Flash archive.

Grouping using the GROUP feature on the graphing calculator is for sharing files in the classroom and on the web. TI Connect \({ }^{\text {TM }}\) software for PC and TI Connect \({ }^{\text {TM }}\) software for Mac each have a grouping file feature that is best for storing graphing calculator files on the computer. See the help file in the TI Connect \({ }^{\text {TM }}\) software to understand more about the software groups files.

Note: Since Image Vars and Pic Vars reside in Flash archive, not RAM, you cannot group Image Vars and Pic Vars.

\section*{To group files:}
1. Press 2nd [MEM] \(\mathbf{8} \mathbf{1}\) to select Create New on the GROUP UNGROUP screen.
2. Type a group name and press ENTER.
3. Navigate to the files you want to group and select each file by moving the cursor to the file and pressing ENTER.
4. Press \(\square 1\) to select Done.

The files you selected are grouped.

\section*{To ungroup files:}
1. Press [2nd [MEM] 8 to select UNGROUP.
2. Move the cursor to the group name that you want to ungroup and press ENTER.

\section*{3. Press \(\mathbf{3}\) to select Overwrite All.}

The files in the selected group are ungrouped.

\section*{Special Features of the TI-84 Plus C}

\subsection*{3.5 Megabytes of Available Memory}
3.5 MB of available memory is built into the TI-84 Plus C Silver Edition. About 21 kilobytes (K) of RAM (random access memory) are available for you to compute and store functions, programs, and data.

About 3.5 M of user data archive allow you to store data, programs, applications, or any other variables to a safe location where they cannot be edited or deleted inadvertently. You can also free up RAM by archiving variables to user data. For details, refer to Chapter 18 in the guidebook.

\section*{Applications}

Some applications are preloaded on your TI-84 Plus C, and others can be installed to customize the TI-84 Plus C to your needs. You can install applications and the TI Connect \({ }^{\text {TM }}\) software at education.ti.com/go/download.

The 3.5 MB archive space lets you store up to 216 applications at one time on the \(\mathrm{TI}-84 \mathrm{Plus} \mathrm{C}\). Applications can also be stored on a computer for later use or linked unit-to-unit. For details, refer to Chapter 18 in the guidebook.

\section*{Archiving}

You can store variables in the TI-84 Plus C user data archive, a protected area of memory separate from RAM. The user data archive lets you:
- Store data, programs, applications or any other variables to a safe location where they cannot be edited or deleted inadvertently.
- Create additional free RAM by archiving variables.

By archiving variables that do not need to be edited frequently, you can free up RAM for applications that may require additional memory. For details, refer to: Chapter 18 in the guidebook.

\section*{Other TI-84 Plus C Features}

\section*{Graphing}

You can store, graph in color, and analyze up to 10 functions, up to six parametric functions, up to six polar functions, and up to three sequences. You can use DRAW instructions to annotate graphs in color.

The graphing chapters appear in this order: Function, Parametric, Polar, Sequence, and DRAW. For graphing details, refer to Chapters 3, 4, 5, 6, and 8 in the guidebook.

\section*{Sequences}

You can generate sequences and graph them over time. Or, you can graph them as web plots or as phase plots. For details, refer to Chapter 6 in the guidebook.

\section*{Tables}

You can create function evaluation tables to analyze many functions simultaneously. For details, refer to Chapter 7 in the guidebook.

\section*{Split Screen}

You can split the screen horizontally to display both a graph and a related editor (such as the \(\mathrm{Y}=\) editor), the table, the stat list editor, or the home screen. Also, you can split the screen vertically to display a graph and its table simultaneously. For details, refer to Chapter 9 in the guidebook.

\section*{Matrices}

You can enter and save up to 10 matrices and perform standard matrix operations on them. For details, refer to Chapter 10 in the guidebook.

\section*{Lists}

You can enter and save as many lists as memory allows for use in statistical analyses. You can attach formulas to lists for automatic computation. You can use lists to evaluate expressions at multiple values simultaneously and to graph a family of curves. For details, refer to Chapter 11 in the guidebook.

\section*{Statistics}

You can perform one- and two-variable, list-based statistical analyses, including logistic and sine regression analysis. You can plot the data as a histogram, xyLine, scatter plot, modified or regular box-and-whisker plot, or normal probability plot. You can define and store up to three stat plot definitions. For details, refer to Chapter 12 in the guidebook.

\section*{Inferential Statistics}

You can perform 16 hypothesis tests and confidence intervals and 15 distribution functions. You can display hypothesis test results graphically or numerically. For details, refer to Chapter 13 in the guidebook.

\section*{Applications}

Press \(\triangle\) APPS to see the complete list of applications that came with your graphing calculator.
Visit education.ti.com/go/download for additional applications and guidebooks. For details, refer to Chapter 14 in the guidebook.

\section*{CATALOG}

The CATALOG is a convenient, alphabetical list of all functions and instructions on the TI-84 Plus C. You can paste any function or instruction from the CATALOG to the current cursor location. For details, refer to Chapter 15 in the guidebook.

Catalog Help is built into the TI-84 Plus C operating system. The Catalog Help contains syntax information for most of the functions in the catalog. To use Catalog Help, select a menu item and then press \(\dagger\).

\section*{Programming}

You can enter and store programs that include extensive control and input/output instructions. For details, refer to Chapter 16 in the guidebook.

\section*{Communication Link}

The TI-84 Plus C Silver Edition has a USB port using a USB unit-to-unit cable to connect and communicate with another TI-84 Plus C Silver Edition, TI-84 Plus Silver Edition, or TI-84 Plus. The TI-84 Plus C also has an I/O port using an I/O unit-to-unit cable to communicate with a TI-84 Plus C Silver Edition, TI-84 Plus Silver Edition, \(\mathrm{Tl}-84\) Plus, Tl-83 Plus Silver Edition, \(\mathrm{Tl}-83\) Plus, \(\mathrm{TI}-83, \mathrm{TI}-82, \mathrm{TI}-73\), CBL \(2^{\text {TM }}\), or a CBR \(2^{\text {TM }}\) System.

With TI Connect \({ }^{\text {TM }}\) software and a USB computer cable, you can also link the TI-84 Plus C to a personal computer. TI Connect \({ }^{\text {TM }}\) software is available as a free download from education.ti.com/go/download.

As future software upgrades become available on the TI Web site, you can download the software to your PC and then use the TI Connect \({ }^{\text {TM }}\) software and a USB computer cable to upgrade your TI-84 Plus C.

For details, refer to Chapter 19 in the guidebook.

\section*{Interchangeable Faceplates}

The TI-84 Plus C Silver Edition has interchangeable faceplates that let you customize the appearance of your unit. To purchase additional faceplates, refer to the TI Online Store at education.ti.com.

\section*{Removing a Faceplate}
1. Lift the tab at the bottom edge of the faceplate away from the TI-84 Plus C Silver Edition case.
2. Carefully lift the faceplate away from the unit until it releases. Be careful not to damage the faceplate or the keyboard.


\section*{Installing New Faceplates}
1. Align the top of the faceplate in the corresponding grooves of the TI-84 Plus C Silver Edition case.
2. Gently click the faceplate into place. Do not force.

3. Make sure you gently press each of the grooves to ensure the faceplate is installed properly. See the diagram for proper groove placement.


\section*{Battery Information}

The TI-84 Plus C graphing calculator comes equipped with a Li-ion rechargeable battery. Like a cell phone or other similar device, charge the battery for at least four hours to ensure optimum performance. The graphing calculator also comes with a USB computer cable for transferring files to and from a computer and for charging the battery.
To check the status of the TI Rechargeable Battery in a TI-84 Plus C graphing calculator, turn it on. The battery status icon on the upper right of the screen gives information on the battery life.

\section*{NORMAL FLOAT GUTO REAL RADIAN MP}

The battery icons indicate the level of battery power remaining, and indicate if the battery is charging.


Battery is charging.

Warning: RAM memory will be lost if the battery charge is lost. You should back up or archive your variables if your battery power gets low.

Displays this message when you turn on the unit.


Message A

\section*{Recharging the TI Rechargeable Battery}

You should make sure the TI-84 Plus C battery is charged for classroom use and before exams.
Use one of the following options to charge the battery in the TI-84 Plus C graphing calculator:
- Connect the graphing calculator to a computer using a USB computer cable.
- Connect to a wall outlet using a TI wall adapter (may be sold separately).
- Place the graphing calculator in a TI-84 Plus C Charging Station.

The amount of time required to fully charge the battery may vary, but charging normally takes four to six hours. It is not necessary to remove the TI Rechargeable Battery from the graphing calculator to recharge it. The graphing calculator operates normally while it is attached to a charging source.

To recharge a graphing calculator from a computer, a TI USB driver must be installed. To download TI Connect \({ }^{\text {TM }}\) or TI-SmartView \({ }^{\text {TM }}\) software that includes a driver, go to education.ti.com/go/download.

When the TI Rechargeable Battery is fully charged, the graphing calculator draws power in the following order:
- First, from a connected external power source, such as:
- A computer connected through a USB computer cable
- A TI wall adapter (may be sold separately)
- Second, from the TI Rechargeable Battery

\section*{Replacing TI Rechargeable Batteries}

Take these precautions when replacing rechargeable batteries:
- Use only the charger recommended for the battery, or the one that was provided with the original equipment.
- Remove the graphing calculator from the charger or alternating current adapter when not in use or being charged.
- Use of the battery in other devices may result in personal injury or damage to equipment or property.
- There is a risk of explosion if a battery is replaced by the wrong type.

\section*{Replacing the Battery}

Use only the TI Rechargeable Battery to replace the TI-84 Plus C battery.
To replace the battery, follow these steps.
1. Use a small screwdriver to release the panel from the back of the handheld.

2. Remove the panel.
3. Remove the old battery.
4. Insert the white connector of the new battery into the jack located at the top of the battery compartment.

5. Thread the wire into the case to secure it. Insert the rechargeable battery into its compartment.

6. Replace the back panel and fasten the screws with a screwdriver.

\section*{Disposing of Used Batteries Safely and Properly}

Do not mutilate, puncture, or dispose of batteries in fire. The batteries can burst or explode, releasing hazardous chemicals. Discard used batteries according to local regulations.

\section*{TI-84 Plus C Charging Station}

The TI-84 Plus C Charging Station is used to charge the TI Rechargeable Battery in the TI-84 Plus C Silver Edition graphing calculator.

The charging station has 10 slots, and each slot can accommodate a TI-84 Plus C Silver Edition graphing calculator.

Note: It is not necessary to fill all the slots in the charging station to charge batteries.
The charging station is designed to be easy to use and easy to move when needed in a different classroom.

Indentations on each side of the charging stations enable you to lift a charging station using both hands. When you move a charging station to another location, always use two hands to lift the charging station.


When the charging station is empty, turn it over and you will notice the bottom is indented. If necessary to ensure the charging station sits flat on a surface, thread the cable through this space.

Place the charging station on a flat, stable surface such as a table. You can also use a wheeled cart if you need to move the charging station from classroom to classroom. When deciding on a location, it is important to consider proximity to a power source such as a power strip or wall outlet.

\section*{Preparing Charging Stations for Use}

The TI-84 Plus C Charging Station is shipped with the following components in each package:
- A TI-84 Plus C Charging Station
- An AC adapter
- A regional power cord adapter
1. Insert the small end of the power adapter cord into the charging station's power jack.
2. Plug the other end of the adapter into a power outlet.

\section*{Inserting Graphing Calculators into the Charging Station}

The slots in the TI-84 Plus C Charging Station are designed to accommodate a graphing calculator without a slide case attached. The calculator will not fit in the slots if the slide case is attached.

The front of the calculator must face the front of the charging station. You may cause damage to the TI-84 Plus C graphing calculator if you try to force it into the charging station facing the wrong direction. When looking at the TI logo on the charging station, calculators are inserted into the slot with the keypad facing left.

1. Remove the slide case from the graphing calculator.
2. Align the grooves on the sides of the graphing calculator with the guides in the charging station slots. Ensure the calculator is facing the proper direction.
3. Gently push the graphing calculator into the slot. You will feel a slight resistance; continue pushing down until the graphing calculator is seated.
When the TI-84 Plus C graphing calculator is properly seated in a slot, the LED light on the side of the calculator turns amber to indicate it is charging.

\section*{Charging Batteries}

The TI-84 Plus C Silver Edition graphing calculator uses a Li Ion TI Rechargeable Battery.
The charging process starts automatically when a graphing calculator is placed in a slot on a powered charging station. You can charge a classroom set of graphing calculators overnight.

\section*{Determining Battery Status}

The LED light on each connected graphing calculator in the charging station provides basic information about the status of the rechargeable battery.
- When the light is amber, the battery is charging.
- When the light is green, the battery is fully charged.

\section*{Troubleshooting}

If the recharge fails:
- Make sure the graphing calculator is seated properly in the slot. Batteries are not charged if the connector on the graphing calculator and the connector in the slot are not aligned.
- Check the connector on the graphing calculator to ensure that it is clean. If there is build-up on the graphing calculator's connector, you can remove it with a clean, dry cloth or a pencil eraser. Never use wet cloths or solutions of any kind.

\section*{Storing Charging Stations}

Store the TI-84 Plus C Charging Station on a flat surface such as a table or a wheeled cart. You cannot damage the charging station by leaving it plugged in for extended periods of time. Also, you cannot damage the batteries by leaving them in the charging station beyond the time needed to fully charge them.

\section*{Transferring the OS from calculator to calculator}

You can transfer the operating system from one calculator to another using a USB unit-to-unit cable or an I/O unit-to-unit cable (sold separately).

Note: You cannot transfer the OS or files using the TI-84 Plus C Charging Station. The TI-84 Plus C Charging Station only charges the TI-84 Plus C graphing calculators.
Connect the two calculators by firmly inserting either the USB or I/O cable ends into the calculators. The USB and I/O ports are located on the top edge of the calculator.

Receiving unit:
2nd [LINK] \(\square\) ENTER

When you press ENTER, the graphing calculator displays the message Waiting...


Sending unit:
2nd [LINK]
\(\Delta\) ENTER

\section*{Error Conditions}

\section*{Diagnosing an Error}

The TI-84 Plus C detects errors while performing these tasks.
- Evaluating an expression
- Executing an instruction
- Plotting a graph
- Storing a value

When the TI-84 Plus C detects an error, it returns an error message with a short description. Appendix B describes each error type and possible reasons or hints about the most frequent ways an error occurs.
\begin{tabular}{l} 
NORMAL FLOAT AUTO REAL RADIAN MP \\
ERROR \\
\hline 1:Quit \\
2: Goto \\
\hline \begin{tabular}{l} 
ARGUMENT \\
Check the \(t y p e ~ a n d ~ n u m b e r ~\) \\
of arguments. \\
\\
\hline
\end{tabular} \\
\hline
\end{tabular}
- If you select 1:Quit (or press 2nd [QUIT] or CLEAR), then the home screen is displayed.
- If you select 2:Goto, then the previous screen is displayed with the cursor at or near the error location.

Note: If a syntax error occurs in the contents of a \(Y=\) function during program execution, then the Goto option returns to the \(Y=\) editor, not to the program.

\section*{Correcting an Error}

To correct an error, follow these steps.
1. Note the error type (ERROR: error type).
2. Select 2:Goto, if it is available. The previous screen is displayed with the cursor at or near the error location.
3. Determine the error. The error screens give helpful hints about what may have happened, but the errors are not always fully explained. If you cannot recognize the error, refer to Appendix B.
4. Correct the expression.

\section*{Linking Compatibility}

The TI-84 Plus C has files and variables that may or may not be compatible with the TI-84 Plus family of graphing calculators. The table below is provided as a reference for what you can SEND and RECEIVE.

Note: Not all TI-84 Plus C graphing calculator files are compatible with other TI-84 Plus Family graphing calculator files because of the high resolution of the TI-84 Plus C color screen. In general, numeric files (not limited to lists, variables, matrices, and functions) are shared between these graphing calculators but Apps are not shared between these graphing calculators even if they have the same title. When not compatible, the computer file extensions for the TI-84 Plus C are different from a similar variable from the TI-84 Plus/TI-84 Plus Silver Edition graphing calculators.
\begin{tabular}{lcc}
\multicolumn{1}{c}{ File type } & \begin{tabular}{c} 
Link from TI-84 to \\
TI-84 Plus C?
\end{tabular} & \begin{tabular}{c} 
Link from TI-84 Plus C \\
to TI-84?
\end{tabular} \\
Operating System & No & No \\
Apps & No & No \\
AppVar* & Yes & Yes \\
Programs - TI Basic* & Yes & Yes \\
Assembly & Yes & No \\
Programs* & & \\
Pictures & No & No \\
Background Images & N/A & No \\
Group files & Yes & Yes \\
User Zoom & Yes & Yes \\
String & Yes & Yes
\end{tabular}
\begin{tabular}{lcc} 
Table & Yes & Yes \\
Function file & Yes & Yes \\
GDB** & Yes & Yes \\
List & Yes & Yes \\
Matrix & Yes & Yes \\
Number & Yes & Yes \\
Complex & Yes & Yes \\
Window Setup & Yes & Yes \\
Certificate & No & No \\
Backup & No & No
\end{tabular}
* Programs created using commands available only in the latest OS version will not transfer to graphing calculators with an earlier OS version.
* App Vars and Programs should be reviewed for use after the transfer between the TI-84 Plus Family and TI-84 Plus C graphing calculators. Some App Vars may not set up an App as expected. Some Programs will need to be modified due to the difference in screen resolution and new commands.
** You may receive a version error if you used DOT-THIN line style.
Change the line style to avoid the error.

\section*{Chapter 2:}

Math, Angle, and Test Operations

\section*{Getting Started: Coin Flip}

Getting Started is a fast-paced introduction. Read the chapter for details.
Suppose you want to model flipping a fair coin 10 times. You want to track how many of those 10 coin flips result in heads. You want to perform this simulation 40 times. With a fair coin, the probability of a coin flip resulting in heads is 0.5 and the probability of a coin flip resulting in tails is 0.5 .
1. Begin on the home screen. Press MATH \(\square\) to display the MATH PROB menu. Press 7 to select 7:randBin( (random Binomial). randBin( opens in a wizard. Press 10 to enter the number of coin flips. Press \(\square\). Press \(\square 5\) to enter the probability of heads. Press \(\square\). Press 40 to enter the number of simulations. Press \(\square\) and ENTER to paste the expression on the home screen.

2. Press ENTER to evaluate. A list of 40 elements is generated. The list contains the count of heads resulting from each set of 10 coin flips. The list has 40 elements because this simulation was performed 40 times. In this example, the coin came up heads five times in the first set of 10 coin flips, five times in the second set of 10 coin flips, and so on.

3. Press \(\square\) or immediately to view the additional counts in the list. An arrow (MathPrint \({ }^{\text {™ }}\) mode) or an ellipses (Classic mode) indicate that the list continues beyond the screen.
Note: You cannot scroll a list if you enter a new line (the scrolling key \(\square\) is no longer active).
4. Press STO [2nd [L1] ENTER to store the data to the list name L1. You then can use the data for another activity, such as plotting a histogram (Chapter 12).
Note: Since randBin( generates random numbers, your list elements may differ from those in the example. Notice the busy indicator in the status bar when random numbers are generated.


Classic

\section*{Keyboard Math Operations}

\section*{Using Lists with Math Operations}

Math operations that are valid for lists return a list calculated element by element. If you use two lists in the same expression, they must be the same length.


\section*{Addition, Subtraction, Multiplication, Division}

You can use + (addition, \(\square\) ), ( subtraction, \(\square\) ), * (multiplication, \(\boxtimes\) ), and / (division, \(\dagger\) ) with real and complex numbers, expressions, lists, and matrices. You cannot use / with matrices. If you need to input \(A / 2\), enter this as \(A * 1 / 2\) or \(A * .5\).
\begin{tabular}{ll} 
value \(A+\) value B & value - valueB \\
value \(*\) value \(B\) & valueA / valueB
\end{tabular}

Note: For negation use \((-)\). You will get an error if you use \(-(-)\) and \(\square\) incorrectly.

\section*{Trigonometric Functions}

You can use the trigonometric (trig) functions (sine, SIN; cosine, COS; and tangent, TAN) with real numbers, expressions, and lists. The current angle mode setting affects interpretation. For example, \(\boldsymbol{\operatorname { s i n }}(\mathbf{3 0})\) in radian mode returns -.9880316241 ; in degree mode it returns.5.
```

\boldsymbol{sin}(value) \boldsymbol{cos(value) }\boldsymbol{tan(value)}

```

You can use the inverse trig functions (arcsine, 2nd [sin-1]; arccosine, 2nd [COS-1]; and arctangent, [2nd [TAN-1]) with real numbers, expressions, and lists. The current angle mode setting affects interpretation.
\(\boldsymbol{\operatorname { s i n }}^{-1}\) (value)
\(\cos ^{-1}\) (value)
\(\boldsymbol{\operatorname { t a n }}^{-1}\) (value)

Note: The trig functions do not operate on complex numbers.

\section*{Power, Square, Square Root}
 expressions and lists. You cannot use \(\sqrt{ }\) with matrices. .

MathPrint \(^{\text {TM }}:\) value \(^{\text {power }} \quad\) value \(^{2} \quad \sqrt{\text { (value) }}\)
Classic: value^power

\section*{Inverse}

You can use \({ }^{-1}\) (inverse, \(x-1\) ) with real and complex numbers, expressions, lists, and matrices. The multiplicative inverse is equivalent to the reciprocal, \(1 / x\).
value \({ }^{-1}\)


\section*{\(\log \left(, 10^{\wedge}(, \ln (\right.\)}

You can use \(\log (\) (logarithm, \(L 0 G)\), 10^( (power of 10, \(2 n d\left[10^{x}\right]\) ), and \(\ln (\) (natural log, \(L \mathbb{N})\) with real or complex numbers, expressions, and lists.
\begin{tabular}{ll}
\(\log\) (value) & \begin{tabular}{l} 
MathPrint \({ }^{\text {TM }}: 10^{\text {power }}\) \\
Classic: \(10^{\wedge}\) (power)
\end{tabular}\(\quad \ln\) (value)
\end{tabular}

\section*{Exponential}
\(\mathbf{e}^{\wedge}\left(\right.\) (exponential, 2nd \(\left.\left[e^{x}\right]\right)\) returns the constant \(\mathbf{e}\) raised to a power. You can use \(\mathbf{e}^{\wedge}\) ( with real or complex numbers, expressions, and lists.

MathPrint \({ }^{\text {TM }}: \mathbf{e}^{\text {power }}\)


Classic: \(\mathbf{e}^{\wedge}(p o w e r)\)
\(\theta^{*}(5) 148.4131591\)

\section*{Constant}
e (constant, 2nd [e]) is stored as a constant. Press 2nd [e] to copy e to the cursor location. In calculations, 2.718281828459 is used for \(\mathbf{e}\).


\section*{Negation}

Negation ( (--)) returns the negative of value. You can use - with real or complex numbers, expressions, lists, and matrices. For subtraction, use \(\square\).
-value
EOS \({ }^{\text {TM }}\) rules (Chapter 1 ) determine when negation is evaluated. For example, \(-\mathbf{4}^{2}\) returns a negative number, because squaring is evaluated before negation. Use parentheses to square a negated number, as in \((-4)^{2}\).


Note: The negation symbol (-) is shorter and higher than the subtraction sign (-), which is displayed when you press \(\square\).

Pi
\(\pi\) ( \(\left.\mathrm{Pi},{ }_{2 n d}^{2 n}[\pi]\right)\) is stored as a constant. In calculations, 3.1415926535898 is used for \(\pi\).


\section*{MATH Operations}

\section*{MATH Menu}

To display the MATH menu, press MATH.
\begin{tabular}{|c|c|c|}
\hline MATH & NUM CMPLX PROB & B FRAC \\
\hline 1: & -Frac & Displays the answer as a fraction. \\
\hline 2: & - Dec & Displays the answer as a decimal. \\
\hline 3: & 3 & Calculates the cube. \\
\hline 4: & \(\sqrt[3]{ } 1\) & Calculates the cube root. \\
\hline - 5: & \(x_{\sqrt{*}}\) & Calculates the \(x^{\text {th }}\) root. \\
\hline 6: & fMin ( & Finds the minimum of a function. \\
\hline 7: & fMax \((\) & Finds the maximum of a function. \\
\hline * 8: & nDeriv( & Computes the numerical derivative of a function at a point. \\
\hline * 9: & fnInt ( & Computes the numerical integral of a function over an interval. \\
\hline * 0 : & summation \(\Sigma\) ( & Computes the sum of an expression over an index. \\
\hline * A: & logBASE ( & Computes the logarithm of a specifed value determined from a specified base: logBASE(value, base). \\
\hline
\end{tabular}

\section*{MATH NUM CMPLX PROB FRAC}

B: Solver... Displays the equation solver.
* FUNC shortcut menu ALPHA F2.

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).

\section*{PFrac, \({ }^{\text {D Dec }}\)}

PFrac (display as a fraction) displays an answer as its rational equivalent. You can use PFrac with real or complex numbers, expressions, lists, and matrices. If the answer cannot be simplified or the resulting denominator is more than three digits, the decimal equivalent is returned. You can only use PFrac following value. Fraction results may be approximate up to the number of digits used by the calculator.
value PFrac


Dec (display as a decimal) displays an answer in decimal form. You can use DDec with real or complex numbers, expressions, lists, and matrices. You can only use DDec following value.
value Dec


Note: You can quickly convert from one number type to the other by using the FRAC shortcut menu. Press [ALPHA [F1] 4:)FADD to convert a value.For complex numbers, you can only use PFrac or DDec.

\section*{Cube, Cube Root}
\({ }^{3}\) (cube) returns the cube of value. You can use \({ }^{3}\) with real or complex numbers, expressions, lists, and square matrices.
value \({ }^{3}\)
\(\sqrt[3]{ }\) ( (cube root) returns the cube root of value. You can use \(\sqrt[3]{ }\) ( with real or complex numbers, expressions, and lists.
\(\sqrt[3]{(\text { value })}\)

\(\mathrm{x}_{\sqrt{ }}\) (Root)
\(\sqrt[x]{ }\left(x^{\text {th }}\right.\) root) returns the \(x^{\text {th }}\) root of value. You can use \(\sqrt[x]{ }\) with real or complex numbers, expressions, and lists..

MathPrint \({ }^{T M} \times \sqrt{\text { value }}\)


Classic: \(x^{\text {th }}\) root


\section*{fMin(, fMax(}
fMin( (function minimum) and \(\mathbf{f M a x}\) ( (function maximum) return the value at which the local minimum or local maximum value of expression with respect to variable occurs, between lower and upper values for variable. \(\mathbf{f M i n}\) ( and \(\mathbf{f M a x}(\) are not valid in expression. The accuracy is controlled by tolerance (if not specified, the default is \(1 \mathrm{E}-5\) ).
fMin(expression,variable,lower,upper[,tolerance])
fMax(expression,variable,lower,upper[,tolerance])
Note: In this guidebook, optional arguments and the commas that accompany them are enclosed in brackets ([ ]).


\section*{nDeriv(}
nDeriv( (numerical derivative) returns an approximate derivative of expression with respect to variable, given the value at which to calculate the derivative and \(\varepsilon\) (if not specified, the default is \(1 \mathrm{E}-3\) ). \(\mathbf{n D e r i v}\) ( is valid only for real numbers.

\section*{MathPrint \(^{\mathrm{TM}}: \frac{\mathrm{d}}{\mathrm{d}:: \%}(\vdots:)_{\square=::}\)}

Classic: nDeriv(expression,variable, value \([, \varepsilon]\) )
nDeriv( uses the symmetric difference quotient method, which approximates the numerical derivative value as the slope of the secant line through these points.
\(f^{\prime}(x) \approx \frac{f(x+\varepsilon)-f(x-\varepsilon)}{2 \varepsilon}\)
As \(\varepsilon\) becomes smaller, the approximation usually becomes more accurate. In MathPrint \({ }^{\top T M}\) mode, the default \(\varepsilon\) is \(1 E^{-} 3\). You can switch to Classic mode to change \(\varepsilon\) for investigations.

\section*{MathPrint \({ }^{\text {TM }}\)}


\section*{Classic}
nDeriv(3Xz \(, X,-1)\)

You can use nDeriv( once in expression. Because of the method used to calculate nDeriv(, the TI-84 Plus C can return a false derivative value at a nondifferentiable point.

\section*{fnlnt(}
fnint( (function integral) returns the numerical integral (Gauss-Kronrod method) of expression with respect to variable, given lower limit, upper limit, and a tolerance (if not specified, the default is \(1 \mathrm{E}-5\) ). fnlnt( is valid only for real numbers.

MathPrint \({ }^{\mathrm{TM}}: \int_{:}^{\square}(\mathrm{O}) \mathrm{m}\)


Classic:
fnInt(expression,variable,lower,upper[,tolerance])
fnInt \(\left(3 X^{2}+1 / 2 X, X, 1,5\right)\)
130.

In MathPrint \({ }^{\top M}\) mode, the default \(\varepsilon\) is \(1 E^{-} 3\). You can switch to Classic mode to change \(\varepsilon\) for investigations.
Note: To speed the drawing of integration graphs (when fnlnt( is used in a \(Y=\) equation), increase the value of the Xres window variable before you press GRAPH or set "Detect Asymptotes" off in FORMAT.

\section*{Using the Equation Solver}

\section*{Solver}

Solver displays the equation solver, in which you can solve for any variable in an equation. Solver is valid only for real numbers.

When you select Solver, one of two screens is displayed.
- The equation editor (see step 1 picture below) is displayed when the equation variable is empty.
- The interactive solver editor (see step 3 picture below) is displayed when an equation is stored.

\section*{Entering an Expression in the Equation Solver}

To enter an expression in the equation solver, assuming that the variable eqn is empty, follow these steps.
1. Select B: Solver from the MATH menu to display the equation editor.

\section*{MathPrint \({ }^{\text {™ }}\)}


\section*{Classic}

EDUATIDH SOLVER
Ean: \(\mathrm{d}=\square\)
2. Enter the expression in any of three ways.
- Enter the expression directly into the equation solver.
- Paste a \(Y=\) variable name from the YVARS shortcut menu ( \(\overline{\operatorname{LLPHA}}[\mathrm{F} 4]\) ) to the equation solver.
- Press 2nd [RCL], paste a \(Y=\) variable name from the YVARS shortcut menu, and press ENTER]. The expression is pasted to the equation solver.

The expression is stored to variables E1, E2 (MathPrint \({ }^{\text {TM }}\) mode) or eqn (Classic mode) as you enter it.
3. Press \(\square\) (MathPrint \({ }^{\top \mathrm{TM}}\) mode) or ENTER (Classic mode). The interactive solver editor is displayed.

\section*{MathPrint \({ }^{\text {TM }}\)}


\section*{Classic}
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& 0 \times 3+\mathrm{P}^{2}-125=6 \\
& \mathrm{Q}=6 \\
& \mathrm{bound}=6-1 \mathrm{E} 99,1 \ldots
\end{aligned}\right.
\]} \\
\hline \\
\hline
\end{tabular}

The equation stored in eqn is set equal to zero and displayed on the top line.
- Variables in the equation are listed in the order in which they appear in the equation. Any values stored to the listed variables also are displayed.
- The default lower and upper bounds appear in the last line of the editor (bound=\{-1E99, 1E99\}).
- \(A \downarrow\) is displayed in the first column of the bottom line if the editor continues beyond the screen.

Note: To use the solver to solve an equation such as \(\mathbf{K}=. \mathbf{5 M} \mathbf{V}^{2}\), enter eqn: \(\mathbf{0}=\mathbf{K}-\mathbf{. 5 M} \mathbf{V}^{2}\) (Classic mode) or \(\mathbf{K}=. \mathbf{5 M} \mathbf{V}^{2}\) (MathPrint \({ }^{\text {TM }}\) mode), in the equation editor.

\section*{Entering and Editing Variable Values}

When you enter or edit a value for a variable in the interactive solver editor, the new value is stored in memory to that variable.

You can enter an expression for a variable value. It is evaluated when you move to the next variable. Expressions must resolve to real numbers at each step during the iteration.

You can store equations to any VARS Y-VARS variables, such as Y1 or r6, and then reference the variables in the equation. The interactive solver editor displays all variables of all \(Y=\) functions recalled in the equation.



\section*{Solving for a Variable in the Equation Solver}

To solve for a variable using the equation solver after the equation has been stored on the equation entry screen, follow these steps.
1. Select B: Solver from the MATH menu to display the interactive solver editor, if not already displayed.

2. Enter or edit the value of each known variable. All variables, except the unknown variable, must contain a value. To move the cursor to the next variable, press ENTER or \(\square\).
\begin{tabular}{|c|}
\hline  \\
\hline \(\mathrm{Q}^{3}=125-\mathrm{P}^{2}\) \\
\hline \[
\begin{aligned}
& Q=0 \\
& P=5 \\
& \text { bound=\{-1E99,1E99\} }
\end{aligned}
\] \\
\hline
\end{tabular}
3. Enter an initial guess for the variable for which you are solving. This is optional, but it may help find the solution more quickly. Also, for equations with multiple roots, the TI-84 Plus C will attempt to display the solution that is closest to your educated guess.
\begin{tabular}{|c|c|}
\hline mormal float auto refl radian m select variable; press alpha solve & \\
\hline \(Q^{3}=125-P^{2}\) & \\
\hline \[
\begin{aligned}
& Q=4 \llbracket \\
& P=5 \\
& \text { bound }=\{-50,50\}
\end{aligned}
\] & \\
\hline
\end{tabular}

The default guess is calculated as \(\frac{(\text { upper }+ \text { lower })}{2}\).
4. Edit bound=\{lower,upper\}. lower and upper are the bounds between which a solution is searched. This is optional, but it may help find the solution more quickly. The default is bound=\{-1E99,1E99\}.
5. Move the cursor to the variable for which you want to solve and press ALPHA [SOLVE]. The solution is displayed next to the variable for which you solved..

\section*{MathPrint \({ }^{\text {TM }}\)}


\section*{Classic}

- A solid square in the first column marks the variable for which you solved and indicates that the equation is balanced.
- An arrow (MathPrint \({ }^{\top M}\) mode) or ellipsis (Classic mode) shows that the value continues beyond the screen.

Note: When a number continues beyond the screen, be sure to press \(\square\) to scroll to the end of the number to see whether it ends with a negative or positive exponent. A very small number may appear to be a large number until you scroll right to see the exponent.
- The values of the variables are updated in memory.
- diff is the difference between the left and right sides of the equation when evaluated at the calculated solution. left-rt=diff is displayed in the last line of the editor (Classic mode) and as E1-E2=diff in (MathPrint \({ }^{\text {TM }}\) mode).

\section*{Editing an Equation Stored to eqn}

To edit or replace an equation stored to eqn or EQ1=EQ2 in the interactive equation solver, press \(\Delta\) until the equation editor is displayed. Then edit the equation.

\section*{Equations with Multiple Roots}

Some equations have more than one solution. You can enter a new initial guess or new bounds to look for additional solutions. Use the graph or a table of values to locate a guess as the starting value for the solver routine.

\section*{Further Solutions}

After you solve for a variable, you can continue to explore solutions from the interactive solver editor. Edit the values of one or more variables. When you edit any variable value, the solid squares next to the previous solution and EQ1-EQ2=diff (or left-rt=diff) disappear. Move the cursor to the variable for which you now want to solve and press ALPHA [SOLVE].

\section*{Controlling the Solution for Solver or solve(}

The TI-84 Plus C solves equations through an iterative process. To control that process, enter bounds that are relatively close to the solution and enter an initial guess within those bounds. This will help to find a solution more quickly. Also, it will define which solution you want for equations with multiple solutions.

\section*{Using solve( on the Home Screen or from a Program}

The function solve( is available only from CATALOG or from within a program. It returns a solution (root) of expression for variable, given an initial guess, and lower and upper bounds within which the solution is sought. The default for lower is -1 E 99 . The default for upper is -1 E 99 . solve( is valid only for real numbers.
solve(expression,variable,guess[,\{lower,upper\}])
expression is assumed equal to zero. The value of variable will not be updated in memory. guess may be a value or a list of two values. Values must be stored for every variable in expression, except variable, before expression is evaluated. lower and upper must be entered in list format.

MathPrint \({ }^{\text {™ }}\)
\begin{tabular}{|c|}
\hline MORMAL FLOAt muto real radifin mp \\
\hline \[
\begin{aligned}
& \text { solve }\left(Q^{3}+\left(P^{2}-125\right), Q, 4,\{-50\right. \\
& \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~
\end{aligned} 41588834
\] \\
\hline
\end{tabular}

\section*{Classic}


\section*{MATH NUM (Number) Operations}

\section*{MATH NUM Menu}

To display the MATH NUM menu, press MATH

\section*{MATH NUM CMPLX PROB FRAC}
\begin{tabular}{rlrl} 
* & \(1:\) & abs ( & \\
2 & Absolute value \\
& \(3:\) & iPart ( & \\
Round \\
& & & Integer part
\end{tabular}
```

MATH NUM CMPLX PROB FRAC
4: fPart(Fractional part
5: int(Greatest integer
6: min(Minimum value
7: max(Maximum value
8: lcm(Least common multiple
9: gcd(Greatest common divisor
0: remainder(Reports the remainder as a whole number from a division of two
whole numbers where the divisor is not zero.
** A: n/d\Un/d Converts an improper fraction to a mixed number or a mixed
number to an improper fraction.
** B: F| D Converts a decimal to a fraction or a fraction to a decimal.
** C: Un/d Displays the mixed number template in MathPrint }\mp@subsup{}{}{TM}\mathrm{ mode. In
Classic mode, displays a small u between the whole number and
fraction.
** D: n/d Displays the fraction template in MathPrint }\mp@subsup{}{}{TM}\mathrm{ mode. In Classic
mode, displays a thick fraction bar between the numerator and the
denominator.

* FUNC shortcut menu ALPHA F2.
** FRAC shortcut menu ALPHA F1.

```

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).
abs(
abs( (absolute value) returns the absolute value of real or complex (modulus) numbers, expressions, lists, and matrices.

Note: abs( is also found on the FUNC shortcut menu ( \((\overline{A L P H A}[\) [F2] 1) and MATH CMPLX menu.
abs(value)
MathPrint \({ }^{\text {™ }}\)
\begin{tabular}{|c|}
\hline Mormal float auto real Radian mp \\
\hline  \\
\hline
\end{tabular}

\section*{Classic}


\section*{round(}
round( returns a number, expression, list, or matrix rounded to \#decimals ( \(\leq 9\) ). If \#decimals is omitted, value is rounded to the digits that are displayed, up to 10 digits.
round(value[,\#decimals])


\section*{iPart(, fPart(}
iPart( (integer part) returns the integer part or parts of real or complex numbers, expressions, lists, and matrices.
iPart(value)

fPart( (fractional part) returns the fractional part or parts of real or complex numbers, expressions, lists, and matrices.

\section*{fPart(value)}

Note: The way the fractional result is displayed depends on the Answers mode setting. To convert from one format to another, use \(>\) F 1 D on the FRAC shortcut menu ( \(\overline{\operatorname{ALPHA}}[\mathrm{F} 1]\) 4). For strictly complex numbers, use \(>\) Frac and Dec.

\begin{tabular}{|l|l|}
\hline MORHAL FLOAT RUTO RERL RADTAN MP \\
\hline fPart \(\left(\frac{9}{2}+\frac{7}{3} i\right)\) PFrac & \\
\hline & \\
\hline
\end{tabular}
int(
int( (greatest integer) returns the largest integer \(\leq\) real or complex numbers, expressions, lists, and matrices.
int(value)
\begin{tabular}{|c|c|}
\hline MOBMAL Float muto real radian mp & (1) \\
\hline int (3.58) & \\
\hline int (-3) & 3 \\
\hline int ( \(-2 \frac{5}{6}\) ) & -3 \\
\hline int (-3.58) & -3. \\
\hline - & -4 \\
\hline
\end{tabular}

Note: For a given value, the result of int( is the same as the result of iPart( for nonnegative numbers and negative integers, but one integer less than the result of iPart( for negative non-integer numbers.

\section*{\(\min (, \max (\)}
\(\boldsymbol{m i n}(\) (minimum value) returns the smaller of value \(A\) and \(v a l u e B\) or the smallest element in list. If listA and list \(B\) are compared, \(\boldsymbol{\operatorname { m i n }}\) (returns a list of the smaller of each pair of elements. If list and value are compared, \(\boldsymbol{m i n}\) ( compares each element in list with value.
\(\boldsymbol{\operatorname { m a x }}(\) (maximum value) returns the larger of \(v a l u e A\) and \(v a l u e B\) or the largest element in list. If listA and listB are compared, \(\boldsymbol{\operatorname { m a x }}\) (returns a list of the larger of each pair of elements. If list and value are compared, max( compares each element in list with value.
```

min(valueA,valueB)
max(valueA,valueB)
min(list)
min(listA,listB)
max(list)
max(listA,listB)
min(list,value)
max(list,value)

```



Note: \(\boldsymbol{\operatorname { m i n }}(\) and \(\boldsymbol{\operatorname { m a x }}(\) also are available on the LIST MATH menu.

\section*{Icm(, gcd(}

Icm( returns the least common multiple of valueA and valueB, both of which must be nonnegative integers. When listA and listB are specified, Icm( returns a list of the least common multiple of each pair of elements. If list and value are specified, Icm( finds the least common multiple of each element in list and value.
gcd( returns the greatest common divisor of valueA and valueB, both of which must be nonnegative integers. When listA and listB are specified, gcd( returns a list of the greatest common divisor of each pair of elements. If list and value are specified, \(\mathbf{g c d}(f i n d s\) the greatest common divisor of each element in list and value.
```

Icm(valueA,valueB) gcd(valueA,valueB)
Icm(listA,listB)
Icm(list,value)
gcd(listA,listB)
gcd(list,value)

```


\section*{remainder(}
remainder( returns the remainder resulting from the division of two positive whole numbers, dividend and divisor, each of which can be a list. The divisor cannot be zero. If both arguments are lists, they must have the same number of elements. If one argument is a list and the other a non-list, the non-list is paired with each element of the list, and a list is returned..
remainder(dividend, divisor)

remainder(list, divisor)

remainder(dividend, list)
\begin{tabular}{|c|}
\hline Mormal float auto real radian mp \\
\hline remainder (3.L1)
\[
\{3 \text { 3 3 3 } 3\}
\] \\
\hline
\end{tabular}
remainder(list, list)


\section*{n/d4}
n/d4 Un/d converts an improper fraction to a mixed number or a mixed number to an improper



DF4 D
-F4DD converts a fraction to a decimal or a decimal to a fraction. You can also access \(\mathbf{~ F}\) - \(>\mathbf{D}\) from the MATH FRAC and the FRAC shortcut menu (ALPHA [F1] 4). For complex number conversion, use Prac or Dec only (MATH 1 or 2).
\begin{tabular}{|c|}
\hline NURMAL FLUAT FUTU REAL RADITIN MP \\
\hline \(\frac{17}{21}>F 4>D\) \\
\hline  \\
\hline \(\frac{17}{21}\) \\
\hline \\
\hline
\end{tabular}

\section*{Un/d}

Un/d displays the mixed number template. You can also access Un/d from MATH FRAC and the FRAC shortcut menu ( \(\overline{\operatorname{ALPHA}}[\mathrm{F} 1] \mathbf{2}\) ). In the fraction, \(n\) and \(d\) must be non-negative integers. \(\mathbf{U}, \mathbf{n}\), and \(\mathbf{d}\) must all be integers. If \(\mathbf{U}\) is a non-integer, the result may be converted \(\mathbf{U} * \mathbf{n} / \mathbf{d}\). If n or d is a non-integer, a syntax error is displayed. The whole number, numerator, and denominator may each contain a maximum of three digits..

\section*{MathPrint \({ }^{\text {TM }}\)}


Note: To perform division with a complex number in the numerator or denominator, use regular division instead of the \(\mathrm{n} / \mathrm{d}\) template
n/d
n/d displays the mixed number template. You can also access n/d from MATH FRAC and the FRAC shortcut menu ( \(\overline{A L P H A}[F 1]\) 1). n and d can be real numbers or expressions but may not contain strictly complex numbers.

\section*{MathPrint \({ }^{\text {TM }}\)}


Classic

\section*{\(4 / 5\)}

\section*{Entering and Using Complex Numbers}

\section*{Complex-Number Modes}

Complex numbers are displayed in rectangular form and polar form. To select a complex-number mode, press MODE, and then select either of the two modes.
- \(\mathbf{a + b} \boldsymbol{i}\) (rectangular-complex mode)
- \(\quad \mathbf{r e}^{\wedge}\) ( \(\theta i\) ) (polar-complex mode)


Complex numbers can be stored to variables. Also, complex numbers are valid list elements.
In Real mode, complex-number results return an error, unless you entered a complex number as input. For example, in Real mode \(\mathbf{I n}(-\mathbf{1})\) returns an error; in \(\mathbf{a + b} i\) mode \(\operatorname{In}(-\mathbf{1})\) returns an answer.

\section*{Real mode}
\begin{tabular}{|c|}
\hline MORMAL FLOAT RUTO REAL RADIAN MP [ \\
\hline \(\ln (-1)\) \\
\hline Error. \\
\hline MoRMfil flofit futo kefl radifin mp \\
\hline \begin{tabular}{l}
ERROR: NONRERL RINSWERS \\
1:Quit \\
2: Goto
\end{tabular} \\
\hline \begin{tabular}{l}
In REAL MODE, all \\
calculations must result in a real number.
\end{tabular} \\
\hline
\end{tabular}
\(\mathbf{a}+\mathbf{b} i\) mode
\begin{tabular}{|c|c|}
\hline गRHRL FLI & bi Radian mp \\
\hline \(\ln (-1)\) & \\
\hline & 3.141592654i \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Entering Complex Numbers}

Complex numbers are stored in rectangular form, but you can enter a complex number in rectangular form or polar form, regardless of the mode setting. The components of complex numbers can be real numbers or expressions that evaluate to real numbers; expressions are evaluated when the command is executed.

You can enter fractions in complex numbers, but the output will always be a decimal value.


When you use the \(\mathrm{n} / \mathrm{d}\) template, a fraction cannot contain a complex number.


You can use division to compute the answer:


\section*{Note about Radian Versus Degree Mode}

Radian mode is recommended for complex number calculations. Internally, the calculator converts all entered trigonometric values to radians, but it does not convert values for exponential, logarithmic, or hyperbolic functions.

In degree mode, complex identities such as \(e^{\wedge}(i \theta)=\cos (\theta)+i \sin (\theta)\) are not generally true because the values for cos and sin are converted to radians, while those for \(\mathrm{e}^{\wedge}()\) are not. For example,
\(e^{\wedge}(i 45)=\cos (45)+i \sin (45)\) is treated internally as \(e^{\wedge}(i 45)=\cos (\pi / 4)+i \sin (\pi / 4)\). Complex identities are always true in radian mode.

\section*{Interpreting Complex Results}

Complex numbers in results, including list elements, are displayed in either rectangular or polar form, as specified by the mode setting or by a display conversion instruction.

In the example below, polar-complex re^ ( \(\theta i\) ) and Radian modes are set.

\section*{MathPrint \({ }^{\text {™ }}\)}


\section*{Classic}
\(\left[\begin{array}{l}2+i)-\left(1 e^{\wedge}(\pi / 4 i)\right. \\ 1.325654296 e^{\wedge}(. . .\end{array}\right.\)

\section*{Rectangular-Complex Mode}

Rectangular-complex mode recognizes and displays a complex number in the form \(\mathbf{a + b} \boldsymbol{b}\), where \(\mathbf{a}\) is the real component, \(\mathbf{b}\) is the imaginary component, and \(i\) is a constant equal to \(\sqrt{-1}\).


To enter a complex number in rectangular form, enter the value of \(a\) (real component), press \(⿴\) or \(\square\), enter the value of \(b\) (imaginary component), and press [nd [ \(i]\) (constant).
real component \((+\) or -)imaginary component \(i\)
\(4+2 i\)
\(4+2 \mathrm{i}\).

\section*{Polar-Complex Mode}

Polar-complex mode recognizes and displays a complex number in the form \(r e^{\wedge}(\theta i)\), where \(r\) is the magnitude, \(e\) is the base of the natural \(\log , \theta\) is the angle, and \(i\) is a constant equal to \(\sqrt{-1}\).


To enter a complex number in polar form, enter the value of \(r\) (magnitude), press \([\) [nd \([\mathrm{e} x]\) (exponential function), enter the value of \(\theta\) (angle), press [2nd [i] (constant), and then press \(\square\). magnitudee^(anglei)

\section*{MathPrint \({ }^{\text {TM }}\)}


\section*{Classic}


16e* 1.04719755

\section*{MATH CMPLX (Complex) Operations}

\section*{MATH CMPLX Menu}

To display the MATH CMPLX menu, press MATH \(\square\).

\section*{MATH NUM CMPLX PROB FRAC}
\begin{tabular}{lll}
\(1:\) & conj( & Returns the complex conjugate. \\
\(2:\) & real( & Returns the real part. \\
\(3:\) & imag( & Returns the imaginary part. \\
\(4:\) & angle( & Returns the polar angle. \\
\(5:\) & abs ( & Returns the magnitude (modulus). \\
\(6:\) & Rect & Displays the result in rectangular form. \\
\(7:\) & Polar & Displays the result in polar form.
\end{tabular}

Note: Use Catalog Help for more syntax help when needed. Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).
conj(
conj( (conjugate) returns the complex conjugate of a complex number or list of complex numbers.
conj \((a+b i)\) returns \(a-b i\) in \(\mathbf{a + b} i\) mode.
conj( \(r \mathbf{e}^{\wedge}(\theta i)\) ) returns \(r \mathbf{e}^{\wedge}(-\theta i)\) in \(\mathbf{r e}^{\wedge} \theta i\) mode.

\section*{MathPrint \({ }^{\text {™ }}\)}


Classic
```

00nj(3+4i)
3-4i.

```

real(
real( (real part) returns the real part of a complex number or list of complex numbers.
real \((a+b i)\) returns \(a\).
real( \(r \mathbf{e}^{\wedge}(\theta i)\) ) returns \(r * \cos (\theta)\)
MathPrint \({ }^{\text {TM }}\)


\section*{Classic}

\section*{imag(}
imag( (imaginary part) returns the imaginary (nonreal) part of a complex number or list of complex numbers.
\(\operatorname{imag}(a+b i)\) returns \(b\).
\(\operatorname{imag}\left(r \mathbf{e}^{\wedge}(\theta i)\right)\) returns \(r * \sin (\theta)\)

\section*{MathPrint \({ }^{\text {TM }}\)}


\section*{Classic}

\section*{i \(19.9(3+4 i)\)}

4


\section*{angle(}
angle( returns the polar angle of a complex number or list of complex numbers, calculated as \(\tan ^{-1}(b / a)\), where \(b\) is the imaginary part and \(a\) is the real part. The calculation is adjusted by \(+\pi\) in the second quadrant or \(-\pi\) in the third quadrant.
angle \((a+b i)\) returns \(\tan ^{-1}(b / a)\).
angle \(\left(r \mathbf{e}^{\wedge}(\theta i)\right.\) ) returns \(\theta\), where \(-\pi<\theta<\pi\).
MathPrint \({ }^{\text {TM }}\)


Classic


\section*{abs(}
abs( (absolute value) returns the magnitude (modulus), \(\sqrt{r^{e a} l^{2}+i m a g^{2}}\), of a complex number or list of complex numbers. You can also access abs( from the FUNC shortcut menu ([ALPHA [F2] 1).
\(\mathbf{a b s}(a+b i)\) returns \(\sqrt{a^{2}+b^{2}}\).
abs( \(r \mathbf{e}^{\wedge}(\theta i)\) ) returns \(r\) (magnitude)

\section*{MathPrint \({ }^{\text {TM }}\)}


\section*{Classic}

\section*{\(a b s(3+4 i)\)}
\(\operatorname{bsc}\left(3 e^{\wedge}(4 \mathrm{i}) \mathrm{O}\right.\)

\section*{Rect}

Rect (display as rectangular) displays a complex result in rectangular form. It is valid only at the end of an expression. It is not valid if the result is real.
complex result \(\downarrow\) Rect returns \(a+b i\).
\begin{tabular}{|c|}
\hline NORMAL FLOAT AUTO \(a+b i\) Radian mp [] \\
\hline \multirow[t]{2}{*}{\(\sqrt{(-2)}\) PRect
1.4.14213562i.} \\
\hline \\
\hline
\end{tabular}

\section*{-Polar}

PPolar (display as polar) displays a complex result in polar form. It is valid only at the end of an expression. It is not valid if the result is real.
complex result»Polar returns \(r \mathbf{e}^{\wedge}(\theta i)\).


\section*{MATH PROB (Probability) Operations}

\section*{MATH PROB Menu}

To display the MATH PROB menu, press MATH 0.
MATH NUM CMPLX PROB FRAC
\begin{tabular}{lll} 
& \(1:\) & rand \\
* & \(2: n P r\) & Random-number generator \\
* & \(3:\) & nCr
\end{tabular}\(\quad\) Number of permutations

Note: Use Catalog Help for more syntax help when needed. Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).

\section*{rand}
rand (random number) generates and returns one or more random numbers \(>0\) and \(<1\). To generate a list of random-numbers, specify an integer \(>1\) for numtrials (number of trials). The default for numtrials is 1 .
rand[(numtrials)]
Note: To generate random numbers beyond the range of 0 to 1 , you can include rand in an expression. For example, rand5 generates a random number \(>0\) and \(<5\).

Each rand execution generates the same random-number sequence for a given seed value. The factoryset seed value for rand is 0 . To generate a different random-number sequence, store any nonzero seed value to rand. To restore the factory-set seed value, store 0 to rand or reset the defaults (Chapter 18).

Note: The seed value also affects randInt(, randNorm(, randBin( and randIntNoRep( instructions.
\begin{tabular}{|c|}
\hline Normal floht ruto real radian mp \\
\hline \multirow[t]{2}{*}{rand
\(1 \rightarrow\) rand} \\
\hline \\
\hline \[
\left|\begin{array}{l}
\text { rand (3) } \\
\text { K.7455607728. } 8559005971 .
\end{array}\right|
\] \\
\hline
\end{tabular}

\section*{nPr, \(\mathbf{n C r}\)}
\(\mathbf{n P r}\) (number of permutations) returns the number of permutations of items taken number at a time. items and number must be nonnegative integers. Both items and number can be lists.

\section*{MathPrint \({ }^{\boldsymbol{T M}: ~: ~}\)}

Classic: items \(\mathbf{n P r}\) number
nCr (number of combinations) returns the number of combinations of items taken number at a time. items and number must be nonnegative integers. Both items and number can be lists.

MathPrint \({ }^{T M}:{ }^{C}\)
Classic: items \(\mathbf{n C r}\) number

\section*{MathPrint \({ }^{\text {TM }}\)}


\section*{Classic}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\(5 \mathrm{rar}^{2}\)} \\
\hline \(5 \mathrm{nCr}^{2}\) & \\
\hline (2, 3 M MPr & 42,29 \\
\hline
\end{tabular}

\section*{Factorial}
\(!\) (factorial) returns the factorial of either an integer or a multiple of .5. For a list, it returns factorials for each integer or multiple of .5 . value must be \(\geq-.5\) and \(\leq 69\).
value!
\begin{tabular}{|c|}
\hline NORMAL Float muto real radian mp \\
\hline 6! 720 \\
\hline \[
\{5.4 .6\}\}
\] \\
\hline
\end{tabular}

Note: The factorial is computed recursively using the relationship \((n+1)!=n * n!\), until \(n\) is reduced to either 0 or \(-1 / 2\). At that point, the definition \(0!=1\) or the definition \((-1 / 2)!=\sqrt{\pi}\) is used to complete the calculation. Hence:
\(n!=n *(n-1) *(n-2) * \ldots * 2 * 1\), if \(n\) is an integer \(\geq 0\)
\(n!=n *(n-1) *(n-2) * \ldots * 1 / 2 * \sqrt{\pi}\), if \(n+1 / 2\) is an integer \(\geq 0\)
\(n!\) is an error, if neither \(n\) nor \(n+1 / 2\) is an integer \(\geq 0\).
(The variable n equals value in the syntax description above.)

\section*{randInt(}
randint( (random integer) generates and displays a random integer within a range specified by lower and upper integer bounds. To generate a list of random numbers, specify an integer \(>1\) for numtrials (number of trials); if not specified, the default is 1 .
randInt(lower,upper [numtrials]).



\section*{randNorm(}
randNorm( (random Normal) generates and displays a random real number from a specified Normal distribution. Each generated value could be any real number, but most will be within the interval \([\mu-3(\sigma), \mu+3(\sigma)]\). To generate a list of random numbers, specify an integer \(>1\) for numtrials (number of trials); if not specified, the default is 1 .
randNorm( \(\mu, \sigma[\) numtrials \(]\) ).


\section*{randBin(}
randBin( (random Binomial) generates and displays a random integer from a specified Binomial distribution. numtrials (number of trials) must be \(\geq 1\). prob (probability of success) must be \(\geq 0\) and \(\leq 1\). To generate a list of random numbers, specify an integer \(>1\) for numsimulations (number of simulations); if not specified, the default is 1 .
randBin(numtrials,prob,[numsimulations])

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
randBin(7..4.10) \\
\(\left\{\begin{array}{llllllll}\{24 & 5 & 3 & 4 & 3 & 4 & 1\end{array}\right\}\)
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

Note: The seed value stored to rand also affects randInt(, randNorm(, randBin( and randIntNoRep( instructions.

\section*{randIntNoRep(}
randIntNoRep( returns a random ordered list of integers from a lower integer to an upper integer. The list of integers may include the lower integer and the upper integer. Numtrials is optional and lists the first numtrials in the output.
randIntNoRep(lowerint, upperint, [numtrials])


\section*{ANGLE Operations}

\section*{ANGLE Menu}

To display the ANGLE menu, press 2nd [ANGLE]. The ANGLE menu displays angle indicators and instructions. The Radian/Degree mode setting affects the interpretation of ANGLE menu entries.
\begin{tabular}{lll}
\hline ANGLE & \\
\(1:\) & \(\circ\) & Degree notation \\
\(2:\) & \(\quad\) & DMS minute notation \\
\(3:\) & \(r\) & Radian notation \\
\(4:\) & & \(\operatorname{DMS}\)
\end{tabular} Displays as degree/minute/second

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).

\section*{Entry Notation}

DMS (degrees/minutes/seconds) entry notation comprises the degree symbol ( \({ }^{\circ}\) ), the minute symbol ('), and the second symbol ("). degrees must be a real number; minutes and seconds must be real numbers \(\geq 0\).

Note: DMS entry notation does not support fractions in minutes or seconds.

\section*{degrees \({ }^{\circ}\) minutes'seconds"}

For example, we know that 30 degrees is the same as \(\pi / 6\) radians, and we can verify that by looking at the values in degree and radian modes. If the angle mode is not set to Degree, you must use \({ }^{\circ}\) so that the TI-84 Plus C can interpret the argument as degrees, minutes, and seconds.


\section*{Degree}
\({ }^{\circ}\) (degree) designates an angle or list of angles as degrees, regardless of the current angle mode setting. In Radian mode, you can use \({ }^{\circ}\) to convert degrees to radians.
value \({ }^{\circ}\)
\(\left\{\right.\) value 1,value2,value3,value4,...,value n\} \({ }^{\circ}\)
\({ }^{\circ}\) also designates degrees (D) in DMS format.
' (minutes) designates minutes (M) in DMS format.
" (seconds) designates seconds (S) in DMS format.
Note: " is not on the ANGLE menu. To enter ", press ALPHA ["].

\section*{Radians}
\({ }^{r}\) (radians) designates an angle or list of angles as radians, regardless of the current angle mode setting. In Degree mode, you can use \({ }^{r}\) to convert radians to degrees.
value \({ }^{r}\)

\section*{Degree mode}


\section*{-DMS}
-DMS (degree/minute/second) displays answer in DMS format. The mode setting must be Degree for answer to be interpreted as degrees, minutes, and seconds. \(\boldsymbol{D}\) DSS is valid only at the end of a line.
answer DMS


\section*{}
\(\mathbf{R} \triangleright \mathbf{P r}\) (converts rectangular coordinates to polar coordinates and returns \(\mathbf{r}\). \(\mathbf{R} \triangleright \mathbf{P} \theta\) ( converts rectangular coordinates to polar coordinates and returns \(\theta . x\) and \(y\) can be lists.

\section*{\(\mathbf{R} \triangleright \mathbf{P r}(x, y), \mathbf{R} \triangleright \mathbf{P} \theta(x, y)\)}


Note: Radian mode is set.
\(\mathbf{P > R x}(\) converts polar coordinates to rectangular coordinates and returns \(\mathbf{x} . \mathbf{P > R y}\) ( converts polar coordinates to rectangular coordinates and returns \(\mathbf{y} . r\) and \(\theta\) can be lists.
```

P>Rx}(r,0),\mathbf{P}>\mathbf{Ry}(r,0

```


Note: Radian mode is set.

\section*{TEST (Relational) Operations}

\section*{TEST Menu}

To display the TEST menu, press [2nd [TEST].
\begin{tabular}{ll}
\hline This operator... & Returns 1 (true) if... \\
\hline TEST & LOGIC \\
\(1:=\) & Equal \\
\(2: \neq\) & Not equal to \\
\(3:>\) & Greater than \\
\(4: \geq\) & Greater than or equal to \\
\(5:<\) & Less than \\
\(6: \leq\) & Less than or equal to \\
\hline
\end{tabular}

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).
\(=, \neq,>, \geq,<, \leq\)
Relational operators compare value \(A\) and value \(B\) and return 1 if the test is true or 0 if the test is false. value \(A\) and value \(B\) can be real numbers, expressions, or lists. For \(=a n d \neq o n l y\), value \(A\) and value \(B\) also can be matrices or complex numbers. If value \(A\) and value \(B\) are matrices, both must have the same dimensions.

Relational operators are often used in programs to control program flow and in graphing to control the graph of a function over specific values.
\begin{tabular}{ll} 
value \(A=\) value \(B\) & value \(A \neq\) value \(B\) \\
value \(A>\) value \(B\) & value \(A \geq\) value \(B\) \\
value \(A<\) value \(B\) & value \(A \leq\) value \(B\)
\end{tabular}



\section*{Using Tests}

Relational operators are evaluated after mathematical functions according to EOS rules (Chapter 1).
- The expression \(\mathbf{2 + 2 = 2 + 3}\) returns \(\mathbf{0}\).Addition is performed first because of EOS rules, and then \(\mathbf{4}\) is compared to 5.
- The expression \(\mathbf{2 + ( 2 = 2 ) + \mathbf { 3 }}\) returns 6. The relational test is performed first because it is in parentheses, and then it adds 2,1 , and 3.

\section*{TEST LOGIC (Boolean) Operations}

\section*{TEST LOGIC Menu}

To display the TEST LOGIC menu, press [2nd [TEST] \(\square\).
\begin{tabular}{ll}
\hline This operator... & Returns a 1 (true) if... \\
\hline TEST LOGIC & \\
\(1:\) and & Both values are nonzero (true). \\
\(2:\) or & At least one value is nonzero (true). \\
\(3:\) xor & Only one value is zero (false). \\
\(4:\) not ( & The value is zero (false).
\end{tabular}

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).

\section*{Boolean Operators}

Boolean operators are often used in programs to control program flow and in graphing to control the graph of the function over specific values. Values are interpreted as zero (false) or nonzero (true).

\section*{and, or, xor}
and, or, and xor (exclusive or) return a value of 1 if an expression is true or 0 if an expression is false, according to the table below. value \(A\) and value \(B\) can be real numbers, expressions, or lists.
value \(A\) and value \(B\)
value \(A\) or value \(B\)
valueA xor valueB
\begin{tabular}{cclccc}
\hline value \(\mathbf{A}\) & valueB & & and & or & xor \\
\hline\(\neq 0\) & \(\neq 0\) & returns & 1 & 1 & 0 \\
\hline\(\neq 0\) & 0 & returns & 0 & 1 & 1 \\
\hline 0 & \(\neq 0\) & returns & 0 & 1 & 1 \\
\hline 0 & 0 & returns & 0 & 0 & 0 \\
\hline
\end{tabular}
not(
not( returns 1 if value (which can be an expression) is 0 .
not(value)

\section*{Using Boolean Operations}

Boolean logic is often used with relational tests. In the following program, the instructions store 4 into \(C\).
\begin{tabular}{|l|}
\hline NORMAL FLOAT AUTO REGL RGDIAN MP \\
PROGRAM \(: B O O L E A N\) \\
\(: 2 \rightarrow A: 3 \rightarrow B\) \\
\(:\) If \(A=2\) and \(B=3\) \\
\(:\) Then: \(4 \rightarrow C\) \\
\(:\) Else \(: 5 \rightarrow C\) \\
\(:\) End \\
\(:\)
\end{tabular}

\section*{Chapter 3: \\ Function Graphing}

\section*{Getting Started: Graphing a Circle}

Getting Started is a fast-paced introduction. Read the chapter for details.
Graph a parabola in the standard viewing window. Then translate this parabola to see a family of curves. Use ZDecimal to adjust the display to trace by 0.1.
1. In Func mode, press \(Y=\) to display the \(Y=\) editor. Press\(2 X, T, \Theta, n x^{2}\) ENTER to enter the function \(Y=.2 X^{2}\), which defines a parabola.


You can define one function in terms of another. To define \(Y 2=Y 1+1\), press ALPHA [F4] to display the Y-VARS shortcut menu, and then press ENTER to select Y1. Press \(\square 1\) and press ENTER.

Repeat these steps to enter \(\mathrm{Y} 3=\mathrm{Y} 1+2\). To define \(\mathrm{Y} 3=\mathrm{Y} 1+2\), press ALPHA [F4] to display the Y-VARS shortcut menu, and then press ENTER to select Y1. Press \(\square 2\) and press ENTER.
2. Press ZOOM \(\mathbf{6}\) to select 6:ZStandard. This is a quick way to reset the window variables to the default values. It also graphs the functions; you do not need to press GRAPH.

3. Since the graph of the parabola does not have an asymptote, you can increase the speed of the graph by turning asymptote detection off. To turn off asymptote detection, press 2nd [FORMAT] \(\square\) ENTER.
4. To trace the family of parabolas by 0.1 step size, press ZOOM 4:ZDecimal. Press TRACE and use \(\square \square\) to trace along a graph. Use \(\Delta\) to switch functions.


\section*{Defining Graphs}

\section*{Graphing Mode Similarities}

Chapter 3 specifically describes function graphing, but the steps shown here are similar for each graphing mode. Chapters 4, 5, and 6 describe aspects that are unique to parametric graphing, polar graphing, and sequence graphing.

\section*{Defining a Graph}

To define a graph in any graphing mode, follow these steps. Some steps are not always necessary.
1. Press MODE and set the appropriate graph mode.
2. Press \(Y=\) and enter, edit, or select one or more functions in the \(Y=\) editor.
3. Deselect stat plots, if necessary.
4. Set the graph color and line style for each function.
5. Press WINDOW and define the viewing window variables.
6. Press 2nd [FORMAT] and select the graph format settings such as GridLine or Background Image.

\section*{Displaying and Exploring a Graph}

After you have defined a graph, press GRAPH to display it. Explore the behavior of the function or functions using the tools described in this chapter.

\section*{Saving a Graph for Later Use}

You can store the elements that define the current graph to any of 10 graph database variables (GDB1 through GDB9, and GDB0; Chapter 8). To recreate the current graph later, simply recall the graph database to which you stored the original graph. Store and recall graph database variables from the 2nd [DRAW] STO menu.

These types of information are stored in a GDB.
- \(Y=\) functions
- Graph style settings
- Window settings
- Format settings

You can store a picture of the current graph display to any of 10 graph picture variables (Pic1 through Pic9, and Pic0; Chapter 8). Then you can superimpose one or more stored pictures onto the current graph.
Note: If you have a Background Image set in the graph area, and you save a picture variable (Pic Var), the Pic Var does not include the Background Image.

\section*{Setting the Graph Modes}

\section*{Checking and Changing the Graphing Mode}

To display the mode screen, press MODE. The default settings are highlighted below. To graph functions, you must select Func mode before you enter values for the window variables and before you enter the functions.
```

NORMAL FLOAT GUTO REAL RADIGN MP \
MATHPRINT CLASSIC
NORMAL SCI ENG
FLOAT O123456789
RADIAN DEGREE
FUNCTION PARAMETRIC POLAR SEQ
THICK DOT-THICK THIN DOT-THIN
SEQUENTITAL SIMUL
REAL a+bi re^(0i)
FULL HORIZONTAL GRAPH-TABLE
FRACTIONTYPE:MPd Un/d
ANSWERS:GUTO DEC FRAC-APPROX
GO TO 2ND FORMAT GRAPH:END YES
STATDIAGNOSTICS: OFF ON
STAT WIZARDS: ON OFF
SET CLOCK 01/01/1300:26

```

The TI-84 Plus C has four graphing modes.
- Func (function graphing)
- Par (parametric graphing; Chapter 4)
- Pol (polar graphing; Chapter 5)
- \(\quad\) Seq (sequence graphing; Chapter 6)

Other mode settings affect graphing results or view. Chapter 1 describes each mode setting.
- FLOAT or 0123456789 (fixed) decimal mode affects displayed graph coordinates.
- RADIAN or DEGREE angle mode affects interpretation of some functions.
- THICK, DOT-THICK, THIN, or DOT-THIN graphing mode resets all \(\mathrm{Y}=\) line styles.
- SEQUENTIAL or SIMUL graphing-order mode affects function plotting when more than one function is selected.
- FULL, HORIZONTAL, and GRAPH-TABLE modes affect how the graph is displayed; as a full screen, a split horizontal screen, or a split graph-table screen.

\section*{Setting Modes from a Program}

To set the graphing mode and other modes from a program, begin on a blank line in the program editor and follow these steps.
1. Press MODE to display the mode settings.
2. Press \(\square, \square, \square\), and \(\Delta\) to place the cursor on the mode that you want to select.
3. Press ENTER to paste the mode name to the cursor location.

The mode is changed when the program is executed.

\section*{Defining Functions}

\section*{Displaying Functions in the \(\mathbf{Y}=\) Editor}

To display the \(Y=\) editor, press \(Y=\). You can store up to 10 functions to the function variables \(Y 1\) through Y9, and Y0. You can graph one or more defined functions at once. In this example, functions Y1 and Y2 are defined and selected.


\section*{Defining or Editing a Function}

To define or edit a function, follow these steps.
1. Press \(Y=\) to display the \(Y=\) editor.
2. Press to move the cursor to the function you want to define or edit. To erase a function, press CLEAR.
3. Enter or edit the expression to define the function.
- You may use functions and variables (including matrices and lists) in the expression. When the expression evaluates to a nonreal number, the value is not plotted; no error is returned.
- You can access the shortcut menus by pressing ALPHA [F1] - [F4].
- The independent variable in the function is \(X\). Func mode defines \(X, T, \Theta, n\) as \(X\). To enter \(X\), press X,T,, , П or press ALPHA [ \(\mathbf{X}\) ].
- When you enter the first character, the \(=\) is highlighted, indicating that the function is selected.

As you enter the expression, it is stored to the variable \(\mathbf{Y} n\) as a user-defined function in the \(Y=\) editor.
4. Press ENTER or to move the cursor to the next function.

Note: If you are working in MathPrint \({ }^{\text {TM }}\) mode and edit your entry, be sure to delete all empty MathPrint \({ }^{\text {TM }}\) template boxes before pressing GRAPH. An empty MathPrint \({ }^{\text {TM }}\) box causes an error, and the TI-84 Plus C will not graph.


\section*{Defining a Function from the Home Screen or a Program}

To define a function from the home screen or a program, begin on a blank line and follow these steps.
1. Press ALPHA ["], enter the expression, and then press ALPHA ['] again.
2. Press STOD.
3. Press ALPHA [F4] to display the YVAR shortcut menu, move the cursor to the function name, and then press ENTER.
＂expression＂\(\rightarrow \mathbf{Y} n\)

\begin{tabular}{|c|c|c|}
\hline ＂X2＂¢Y1 & －ロトに｜ &  \\
\hline
\end{tabular}

When the instruction is executed，the Tl－84 Plus C stores the expression to the designated variable \(\mathbf{Y} n\) ， selects the function，and displays the message Done．

\section*{Evaluating \(\mathbf{Y}=\) Functions in Expressions}

You can calculate the value of a \(Y=\) function \(\mathbf{Y} n\) at a specified value of \(X\) ．A list of values returns a list．
\(\mathbf{Y} n\)（value）
\(\mathbf{Y} n(\{\) value1，value2，value3，．．．，value \(n\})\)
\begin{tabular}{|l|}
\hline F1oti F1otz F1ots \\
\(Y_{1} 1.2 X^{3}-2 X+6\) \\
\(Y_{3}=\) \\
\(Y_{4}=\) \\
\(Y_{5}=\) \\
\hline
\end{tabular}
\[
\left\lvert\, \begin{array}{ll}
Y_{1}(0) \\
Y_{1}(60,1,2,3,43) \\
664.2 & 3.6 \\
5.4
\end{array}\right.
\]

\section*{Selecting and Deselecting Functions}

\section*{Selecting and Deselecting a Function}

You can select and deselect（turn on and turn off）a function in the \(Y=\) editor．A function is selected when the \(=\) sign is highlighted．The TI－84 Plus C graphs only the selected functions．You can select any or all functions Y1 through Y9，and Y0．
To select or deselect a function in the \(Y=\) editor，follow these steps．
1．Press \(Y=\) to display the \(Y=\) editor．
2．Move the cursor to the function you want to select or deselect．
3．Press to place the cursor on the function＇s＝sign．
4．Press ENTER to change the selection status．
When you enter or edit a function，it is selected automatically．When you clear a function，it is deselected．

\section*{Turning On or Turning Off a Stat Plot in the \(\mathbf{Y}=\) Editor}

To view and change the on／off status of a stat plot in the \(Y=\) editor，use Plot1 Plot2 Plot3（the top line of the \(\mathrm{Y}=\) editor）．When a plot is on，its name is highlighted on this line．

To change the on／off status of a stat plot from the \(Y=\) editor，press \(\Delta\) and \(\square\) to place the cursor on Plot1，Plot2，or Plot3，and then press ENTER．
\begin{tabular}{|c|}
\hline \multirow[t]{6}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Plot1 is turned on．
Plot2 and Plot3 are turned
off．

\section*{Selecting and Deselecting Functions from the Home Screen or a Program}

To select or deselect a function from the home screen or a program，begin on a blank line and follow these steps．

1．Press VARS to display the VARS Y－VARS menu．
2．Select 4：On／Off to display the ON／OFF secondary menu．
3．Select 1：FnOn to turn on one or more functions or 2：FnOff to turn off one or more functions．The instruction you select is copied to the cursor location．
4．Enter the number（1 through 9，or 0；not the variable \(\mathbf{Y} n\) ）of each function you want to turn on or turn off．
－If you enter two or more numbers，separate them with commas．
－To turn on or turn off all functions，do not enter a number after FnOn or FnOff．
FnOn［function\＃，function\＃，．．．，function n］
FnOff［function\＃，function\＃，．．．function n］
5．Press ENTER．When the instruction is executed，the status of each function in the current mode is set and Done is displayed．

For example，in Func mode，FnOff ：FnOn 1，3 turns off all functions in the \(Y=\) editor，and then turns on Y1 and Y3．



\section*{Setting Graph Styles for Functions}

\section*{MATH Graph Style Icons in the \(\mathbf{Y}=\) Editor}

This table describes the graph styles available for function graphing．Use the styles to visually differentiate functions to be graphed together．For example，you can set Y1 as a solid line，Y2 as a dotted line，and Y3 as a thick line．You can also set the line color．
\begin{tabular}{|c|c|c|}
\hline Icon & Style & Description \\
\hline 气 & Thin & A solid line connects plotted points；this is the default in Connected mode \\
\hline ＂ & Thick & A thick solid line connects plotted points \\
\hline ＂ & Above & Shading covers the area above the graph \\
\hline 堇 & Below & Shading covers the area below the graph \\
\hline 4 & Path & A circular cursor traces the leading edge of the graph and draws a path \\
\hline
\end{tabular}
\begin{tabular}{cll}
\hline Icon & Style & Description \\
\hline\(\vdots\) & Animate & \begin{tabular}{l} 
A circular cursor traces the leading edge of the graph without \\
drawing a path
\end{tabular} \\
\hline\(\because\) & Dot-Thick & \begin{tabular}{l} 
A dot (3 x 3 pixel) enhances the view around the actual \\
plotted point; this is the default in Dot mode.
\end{tabular} \\
\hline\(\ddots\) & Dot-Thin & A small dot (1 \(\times 1\) pixel) represents each plotted point. \\
\hline
\end{tabular}

Note: Some graph styles are not available in all graphing modes. Chapters 4, 5, and 6 list the styles for Par, Pol, and Seq modes.

\section*{Setting the Graph Style}

To set the graph style for a function, follow these steps.
1. Press \(Y\) to display the \(Y=\) editor.
2. Press \(\square\) and \(\Delta\) to move the cursor to the function.
3. Press \(\square\) to move the cursor left, past the = sign, to the graph style icon in the first column. (Steps 2 and 3 are interchangeable.)
4. Press ENTER to display the color and line styles menu.
5. Press \(\square\) and to scroll the available colors in the Color menu.
6. Press to go to the Line menu.
7. Press \(\square\) and \(\square\) to select a line style.
8. Press to highlight OK and press ENTER. (Or choose CLEAR to cancel your selections.)


Note: Color and line style settings are preserved if you clear the expression in a function.

\section*{Shading Above and Below}

When you select or \({ }^{\underline{m} \text {. }}\) for two or more functions, the TI-84 Plus C rotates through four shading patterns.

- Horizontal lines shade the second.
- Negatively sloping diagonal lines shade the third.
- Positively sloping diagonal lines shade the fourth.
- The rotation returns to vertical lines for the fifth or \({ }^{\text {m }}\). function, repeating the order described above.
When shaded areas intersect, the patterns overlap.

 four shading patterns rotate for each member of the family of curves. In this case, all three graphs of \(\mathrm{Y} 1=\{1,2,3\} \mathrm{X}\) will be the same color.

\section*{Setting a Graph Style from a Program}

To set the graph style from a program, select H:GraphStyle( from the PRGM CTL menu. To display this menu, press PRGM while in the program editor. function\# is the number of the \(Y=\) function name in the current graphing mode. graphstyle\# is an integer from 1 to 8 that corresponds to the graph style, as shown below.
\begin{tabular}{ll}
\(1=\) (thin) & \(5=4\) (path) \\
\(2=\%\) (thick) & \(6=0\) (animate) \\
\(3=\) (above) & \(7=\because\) (dot-thick) \\
\(4=\) 色 (below) & \(8=\because\) (dot-thin)
\end{tabular}

\section*{GraphStyle(function\#, graphstyle\#)}

For example, when this program is executed in Func mode, GraphStyle(1,3) sets Y1 to \({ }^{\text {Win }}\) (above).
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
PROGRAM: SHADE \\
\(: " .2 X^{\wedge} 3-2 X+6^{\prime \prime} \rightarrow Y_{1}\) \\
: GraphStyle (1,3) \\
: GraphColor (1,14) \\
: DispGraph
\end{tabular}} \\
\hline \\
\hline
\end{tabular}


\section*{Setting the Viewing Window Variables}

\section*{The Viewing Window}

The viewing window is the portion of the coordinate plane defined by Xmin, Xmax, Ymin, and Ymax. Xscl ( X scale) defines the distance between tick marks on the x -axis. Yscl (Y scale) defines the distance between tick marks on the \(y\)-axis. To turn off tick marks, set Xscl=0 and Yscl=0.
```

NORMaL FLOAT quto real radian mp \
WINDOW
Xmin=-10
Xmax=10
Xscl=1
Ymin=-10
Ymax=10
Yscl=1
Xres=1
\DeltaX=.07575757575757
TraceStep=.15151515151515

```

\section*{Displaying the Window Variables}

To display the current window variable values, press WINDOW. The window editor above and to the right shows the default values in Func graphing mode and Radian angle mode. The window variables differ from one graphing mode to another.

Xres sets pixel resolution (1 through 8) for function graphs only. The default is 1.
- At Xres=1, functions are evaluated and graphed at each graphed pixel on the x-axis.
- At Xres=8, functions are evaluated and graphed at every eighth graphed pixel along the \(x\)-axis.

Note: Small Xres values improve graph resolution but may cause the graphing calculator to draw graphs more slowly.

\section*{Changing a Window Variable Value}

To change a window variable value from the window editor, follow these steps.
1. Press \(\square\) or \(\Delta\) to move the cursor to the window variable you want to change.
2. Edit the value, which can be an expression.
- Enter a new value, which clears the original value.
- Move the cursor to a specific digit, and then edit it.
3. Press ENTER, \(\square\), or \(\triangle\). If you entered an expression, the TI-84 Plus \(C\) evaluates it. The new value is stored.
Note: Xmin<Xmax and \(\mathbf{Y m i n}<Y \max\) must be true in order to graph.

\section*{Storing to a Window Variable from the Home Screen or a Program}

To store a value, which can be an expression, to a window variable, begin on a blank line and follow these steps.
1. Enter the value you want to store.
2. Press STO.
3. Press VARS to display the VARS menu.
4. Select 1:Window to display the Func window variables (X/Y secondary menu).
- Press \(\square\) to display the Par and Pol window variables (T/日 secondary menu).
- Press \(\square\) to display the Seq window variables (U/V/W secondary menu).
5. Select the window variable to which you want to store a value. The name of the variable is pasted to the current cursor location.
6. Press ENTER to complete the instruction.

When the instruction is executed, the \(\mathrm{Tl}-84\) Plus C stores the value to the window variable and displays the value.


\section*{\(\Delta X\) and \(\Delta Y\)}

The variables \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) (items 8 and 9 on the VARS (1:Window) X/Y secondary menu; \(\Delta \mathbf{X}\) is also on the Window screen) define the distance from the center of one pixel to the center of any adjacent pixel on a graph (graphing accuracy). \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) are calculated from Xmin, Xmax, Ymin, and Ymax when you display a graph. In Func graphing mode, TraceStep and \(\Delta \mathbf{X}\) are related as shown in the table below.
\begin{tabular}{l|l|l} 
FULL & HORIZONTAL & GRAPH-TABLE \\
\(\Delta X=\frac{(X \max -X \min )}{264}\) & \(\Delta X=\frac{(X \max -X \min )}{264}\) & \(\Delta X=\frac{(X \max -X \min )}{184}\) \\
\(\Delta Y=\frac{(Y \max -Y \min )}{164}\) & \(\Delta Y=\frac{(Y \max -Y \min )}{80}\) & \(\Delta Y=\frac{(Y \max -Y \min )}{144}\) \\
\begin{tabular}{ll} 
TraceStep \(=2 \Delta \mathrm{X}\) \\
(Function graphing only)
\end{tabular} & \begin{tabular}{l} 
TraceStep \(=2 \Delta \mathrm{X}\) \\
(Function graphing only)
\end{tabular} & \begin{tabular}{l} 
TraceStep = 2 2 X \\
(Function graphing only)
\end{tabular}
\end{tabular}

You can store values to \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\). If you do, \(\mathbf{X m a x}\) and \(\mathbf{Y m a x}\) are calculated from \(\Delta \mathbf{X}, \mathbf{X m i n}, \Delta \mathbf{Y}\), and Ymin.

Note: The ZFrac ZOOM settings (Zfrac \(1 / 2\), ZFrac \(1 / 3\), ZFrac1/4, ZFrac \(1 / 5\), ZFrac \(1 / 8\), ZFrac \(1 / 10\) ) change \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) to fractional values. On the TI-84 Plus C, these settings also change the TraceStep to fractional values. If fractions are not needed for your problem, you can adjust \(\Delta \mathbf{X}, \Delta \mathbf{Y}\), or TraceStep to suit your needs.

\section*{TraceStep}

On the TI-84 Plus C Silver Edition, TraceStep sets the step increment for tracing. When you set the TraceStep, the trace tool moves across the graph in steps of that size.

\section*{Setting the Graph Format}

\section*{Displaying the Format Settings}

To display the format settings, press 2nd [FORMAT]. The default settings are highlighted below.
Note: You can also go to the Format Graph screen from the Mode screen by selecting YES at the GoTo Format Graph prompt. After you make changes, press MODE to return to the Mode screen.
\begin{tabular}{|c|c|c|c|}
\hline RectGC & PolarGC & & Sets cursor coordinates. \\
\hline Coordon & CoordOff & & Sets coordinates display on or off. \\
\hline GridOff & GridDot & GridLine & Sets grid off, or displays dots or lines. \\
\hline GridColor: & & & Displays a menu to choose a grid color. \\
\hline Axes: & & & Displays a menu to choose an axes color, or to turn off the axes. \\
\hline Labeloff & Labelon & & Sets axes label off or on. \\
\hline Expron & Exproff & & Sets expression display on or off. \\
\hline BorderColor: & & & Displays a menu to choose a border color. \\
\hline Background: & & & Displays a menu to select a background image or color. \\
\hline DetectAsymptotes: & & & Sets asymptotes detection on or off while plotting a graph. \\
\hline
\end{tabular}

Format settings define a graph's appearance on the display. Seq graphing mode has an additional mode setting (Chapter 6).

\section*{Changing a Format Setting}

To change a format setting, follow these steps.
1. Press \(\square, \square, \Delta\), and \(\square\) as necessary to move the cursor to the setting you want to select.
2. Press ENTER to select the highlighted setting.

When the cursor is on a setting that has a menu, follow these steps:
3. Press \(\square\) and to scroll the available options.

Note: There is no need to press Enter to choose the menu options. The last option displayed will be the setting.
4. Press to go to the next setting.

The options displayed on the format screen are the settings that will be applied to the graph.

\section*{RectGC, PolarGC}

RectGC (rectangular graphing coordinates) displays the cursor location as rectangular coordinates \(X\) and Y .

PolarGC (polar graphing coordinates) displays the cursor location as polar coordinates R and \(\theta\).
The RectGC/PolarGC setting determines which variables are updated when you plot the graph, move the free-moving cursor, or trace.
- RectGC updates \(X\) and \(Y\); if CoordOn format is selected, \(X\) and \(Y\) are displayed.
- PolarGC updates \(X, Y, R\), and \(\theta\); if CoordOn format is selected, \(R\) and \(\theta\) are displayed.

\section*{CoordOn, CoordOff}

CoordOn (coordinates on) displays the cursor coordinates at the bottom of the graph. If ExprOff format is selected, the function number is displayed in the top-right corner.

CoordOff (coordinates off) does not display the function number or coordinates.

\section*{GridOff, GridDot, GridLine}

Grid points cover the viewing window in rows that correspond to the tick marks on each axis.
GridOff does not display grid points.
GridDot displays grid dots.
GridLine displays grid lines.

\section*{LabelOff, LabeIOn}

LabelOff and LabelOn determine whether to display labels for the axes ( X and Y ), if axes are set to a color.

\section*{ExprOn, ExprOff}

ExprOn and ExprOff determine whether to display the \(Y=\) expression when the trace cursor is active. This format setting also applies to stat plots.

When ExprOn is selected, the expression is displayed in the top-left corner of the graph screen.
When ExprOff and CoordOn both are selected, the number in the top-right corner specifies which function is being traced.

\section*{Displaying Graphs}

\section*{Displaying a New Graph}

To display the graph of the selected function or functions, press GRAPH. TRACE, ZOOM instructions, and CALC operations display the graph automatically. As the TI-84 Plus C plots the graph, the busy indicator is on. As the graph is plotted, X and Y are updated.

\section*{Pausing or Stopping a Graph}

While plotting a graph, you can pause or stop graphing.
- Press ENTER to pause; then press ENTER to resume.
- Press ON to stop; then press GRAPH to redraw.

\section*{Smart Graph}

Smart Graph is a TI-84 Plus C feature that re-displays the last graph immediately when you press GRAPH, but only if all graphing factors that would cause replotting have remained the same since the graph was last displayed.

If you performed any of the following actions since the graph was last displayed, the TI-84 Plus C will replot the graph based on new values when you press GRAPH.
- Changed a mode setting that affects graphs
- Changed a function in the current picture
- Selected or deselected a function or stat plot
- Changed the value of a variable in a selected function
- Changed a window variable or graph format setting
- Cleared drawings by selecting ClrDraw
- Changed a stat plot definition

\section*{Overlaying Functions on a Graph}

You can graph one or more new functions without replotting existing functions. For example, store \(\boldsymbol{\operatorname { s i n }}(\mathbf{X})\) to Y 1 in the \(\mathrm{Y}=\) editor and press GRAPH. Then store \(\boldsymbol{\operatorname { c o s } ( \mathbf { X } )}\) to Y 2 and press GRAPH again. The function \(Y 2\) is graphed on top of \(Y 1\), the original function.


\section*{Graphing a Family of Curves}

If you enter a list (Chapter 11) as an element in an expression, the TI-84 Plus C plots the function for each value in the list, thereby graphing a family of curves. In Simul graphing-order mode, it graphs all functions sequentially for the first element in each list, and then for the second, and so on.
\(\{\mathbf{2}, \mathbf{4}, \mathbf{6}\} \boldsymbol{\operatorname { s i n }}(\mathbf{X})\) graphs three functions: \(2 \boldsymbol{\operatorname { s i n }}(\mathrm{X}), 4 \boldsymbol{\operatorname { s i n }}(\mathrm{X})\), and \(\mathbf{6} \boldsymbol{\operatorname { s i n }}(\mathrm{X})\).
\begin{tabular}{|c|c|}
\hline Normal float auto real radian mp & П \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(\backslash \mathrm{Y}_{2}=\)} \\
\hline \multicolumn{2}{|l|}{- VY3 \(^{\text {a }}\)} \\
\hline \multicolumn{2}{|l|}{- VY4=} \\
\hline \multicolumn{2}{|l|}{-1Y5 \({ }^{\text {P }}\)} \\
\hline \multicolumn{2}{|l|}{- \(\mathrm{Y}_{6}=\)} \\
\hline \multicolumn{2}{|l|}{-VY7=} \\
\hline - \(\mathrm{Y}_{8 \mathrm{~s}=}=\) & \\
\hline -\Y9= & \\
\hline
\end{tabular}

\(\{2,4,6\} \sin (\{1,2,3\} X)\) graphs \(2 \sin (X), 4 \sin (2 X)\), and \(6 \sin (3 X)\).



Note: When using more than one list, the lists must have the same dimensions.

\section*{Exploring Graphs with the Free-Moving Cursor}

\section*{Free-Moving Cursor}

When a graph is displayed, press \(\square, \square, \square\), or \(\square\) to move the cursor around the graph. When you first display the graph, no cursor is visible. When you press \(\square, \square, \Delta\), or \(\square\), the cursor moves from the center of the viewing window.

As you move the cursor around the graph, the coordinate values of the cursor location are displayed at the bottom of the screen if CoordOn format is selected. The Float/Fix decimal mode setting determines the number of decimal digits displayed for the coordinate values

To display the graph with no cursor and no coordinate values, press [CLEAR or [ENTER. When you press 0 \(\square, \square\), or \(\square\), the cursor moves from the same position.

\section*{Graphing Accuracy}

The free-moving cursor moves from pixel to pixel on the screen. When you move the cursor to a pixel that appears to be on the function, the cursor may be near, but not actually on, the function. The coordinate value displayed at the bottom of the screen actually may not be a point on the function. To move the cursor along a function, use TRACE.

The coordinate values displayed as you move the cursor approximate actual math coordinates, accurate to within the width and height of the pixel. As Xmin, Xmax, Ymin, and Ymax get closer together (as in a Zoom In) graphing accuracy increases, and the coordinate values more closely approximate the math coordinates.


Note: The graph screen is activly graphing \(X\) values between \(X \min\) and \(X m a x\), even if the corresponding Y value is not in the graph area window. The busy indicator shows during the entire window graphing.

\section*{Exploring Graphs with TRACE}

\section*{Beginning a Trace}

Use TRACE to move the cursor from one plotted point to the next along a function. To begin a trace, press TRACE. If the graph is not displayed already, press TRACE to display it. The trace cursor is on the first selected function in the \(\mathrm{Y}=\) editor, at the middle X value on the screen. The cursor coordinates are displayed at the bottom of the screen if CoordOn format is selected. The \(\mathrm{Y}=\) expression is displayed in the top-left corner of the screen, if ExprOn format is selected.

\section*{Moving the Trace Cursor}
\begin{tabular}{ll}
\hline To move the TRACE cursor & do this: \\
\hline To the previous or next plotted point, & press \(\square\) or \(\square\). \\
\hline \begin{tabular}{l} 
Five plotted points on a function (Xres \\
affects this),
\end{tabular} & press \(2 n d\) or 2nd \(\square\). \\
\hline To any valid \(X\) value on a function, & enter a value, and then press ENTER. \\
\hline From one function to another, & press \(\triangle\) or \(\square\). \\
\hline
\end{tabular}

When the trace cursor moves along a function, the \(Y\) value is calculated from the \(X\) value; that is, \(\mathbf{Y}=\mathbf{Y} n(\mathbf{X})\). If the function is undefined at an X value, the Y value is blank.


If you move the trace cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

\section*{Moving the Trace Cursor from Function to Function}

To move the trace cursor from function to function, press \(\square\) and \(\triangle\). The cursor follows the order of the selected functions in the \(Y=\) editor. The trace cursor moves to each function at the same \(X\) value. If ExprOn format is selected, the expression is updated.

\section*{Moving the Trace Cursor to Any Valid X Value}

To move the trace cursor to any valid \(X\) value on the current function, enter the value. When you enter the first digit, an \(\mathbf{X}=\) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(\mathbf{X}=\) prompt. The value must be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.


Note: This feature does not apply to stat plots.

\section*{Panning to the Left or Right}

If you trace a function beyond the left or right side of the screen, the viewing window automatically pans to the left or right. Xmin and Xmax are updated to correspond to the new viewing window.

\section*{Quick Zoom}

While tracing, you can press ENTER to adjust the viewing window so that the cursor location becomes the center of the new viewing window, even if the cursor is above or below the display. This allows panning up and down. After Quick Zoom, the cursor remains in TRACE.

\section*{Leaving and Returning to TRACE}

When you leave and return to TRACE, the trace cursor is displayed in the same location it was in when you left TRACE, unless Smart Graph has replotted the graph.

\section*{Using TRACE in a Program}

On a blank line in the program editor, press TRACE. The instruction Trace is pasted to the cursor location. When the instruction is encountered during program execution, the graph is displayed with the trace cursor on the first selected function. As you trace, the cursor coordinate values are updated. When you finish tracing the functions, press ENTER to resume program execution.

\section*{Exploring Graphs with the ZOOM Instructions}

\section*{ZOOM Menu}

To display the ZOOM menu, press ZOOM. You can adjust the viewing window of the graph quickly in several ways. All ZOOM instructions are accessible from programs.
\begin{tabular}{|c|c|c|}
\hline ZOO & M MEMORY & \\
\hline 1: & ZBox & Draws a box to define the viewing window. \\
\hline 2 & Zoom In & Magnifies the graph around the cursor. \\
\hline \(3:\) & Zoom Out & Views more of a graph around the cursor. \\
\hline 4 & zDecimal & Sets \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) to 0.05, and sets TraceStep to 0.1. \\
\hline 5: & ZSquare & Sets equal-size pixels on the X and Y axes. \\
\hline 6: & ZStandard & Sets the standard window variables. \\
\hline 7: & ZTrig & Sets the built-in trig window variables. \\
\hline 8: & ZInteger & Sets integer values on the X and Y axes. \\
\hline 9 & ZoomStat & Sets the values for current stat lists. \\
\hline 0 : & ZoomFit & Fits YMin and YMax between XMin and XMax. \\
\hline A: & ZQuadrant1 & Displays the portion of the graph that is in quadrant 1 \\
\hline B : & ZFrac1/2 & Sets the window variables so that you can trace in increments of \(\frac{1}{4}\), if possible. Sets \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) to \(\frac{1}{4}\). TraceStep is set to \(\frac{1}{2}\). \\
\hline C : & ZFrac1/3 & Sets the window variables so that you can trace in increments of \(\frac{1}{6}\), if possible. Sets \(\Delta \mathbf{X}\) and \(\Delta \boldsymbol{Y}\) to \(\frac{1}{6}\). TraceStep is set to \(\frac{1}{3}\). \\
\hline D: & ZFrac1/4 & Sets the window variables so that you can trace in increments of \(\frac{1}{8}\), if possible. Sets \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) to \(\frac{1}{8}\). TraceStep is set to \(\frac{1}{4}\). \\
\hline E: & ZFrac1/5 & Sets the window variables so that you can trace in increments of \(\frac{1}{10}\), if possible. Sets \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) to \(\frac{1}{10}\). TraceStep is set to \(\frac{1}{5}\). \\
\hline F: & ZFrac1/8 & Sets the window variables so that you can trace in increments of \(\frac{1}{16}\), if possible. Sets \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) to \(\frac{1}{16}\). TraceStep is set to \(\frac{1}{8}\). \\
\hline G : & ZFrac1/10 & Sets the window variables so that you can trace in increments of \(\frac{1}{20}\), if possible. Sets \(\Delta \mathbf{X}\) and \(\Delta \mathbf{Y}\) to \(\frac{1}{20}\). TraceStep is set to \(\frac{1}{10}\). \\
\hline
\end{tabular}

Note: You can adjust all window variables from the VARS menu by pressing VARS 1:Window and then selecting the variable from the \(\mathbf{X} / \mathbf{Y}, \mathbf{T} / \theta\), or \(\mathbf{U} / \mathbf{V} / \mathbf{W}\) menu.

\section*{Zoom Cursor}

When you select 1:ZBox, 2:Zoom In, or 3:Zoom Out, the cursor on the graph becomes the trace cursor (8)

\section*{ZBox}

To define a new viewing window using ZBox, follow these steps.
1. Select 1:ZBox from the ZOOM menu. The zoom cursor is displayed at the center of the screen.
2. Move the zoom cursor to any spot you want to define as a corner of the box, and then press ENTER. When you move the cursor away from the first defined corner, a small, square dot indicates the spot.
3. Press \(\square, \square, \square\), or \(\square\). As you move the cursor, the sides of the box lengthen or shorten proportionately on the screen.
Note: To cancel ZBox before you press ENTER, press [CLEAR.
4. When you have defined the box, press ENTER to replot the graph.


To use ZBox to define another box within the new graph, repeat steps 2 through 4. To cancel ZBox, press CLEAR.

\section*{Zoom In, Zoom Out}

Zoom In magnifies the part of the graph that surrounds the cursor location. Zoom Out displays a greater portion of the graph, centered on the cursor location. The XFact and YFact settings determine the extent of the zoom.

To zoom in on a graph, follow these steps.
1. Check XFact and YFact; change as needed.
2. Select 2:Zoom In from the ZOOM menu. The zoom cursor is displayed.
3. Move the zoom cursor to the point that is to be the center of the new viewing window.
4. Press ENTER. The TI-84 Plus C adjusts the viewing window by XFact and YFact; updates the window variables; and replots the selected functions, centered on the cursor location.
5. Zoom in on the graph again in either of two ways.
- To zoom in at the same point, press ENTER.
- To zoom in at a new point, move the cursor to the point that you want as the center of the new viewing window, and then press ENTER.

To zoom out on a graph, select 3:Zoom Out and repeat steps 3 through 5.
To cancel Zoom In or Zoom Out, press CLEAR.

\section*{ZDecimal}

ZDecimal replots the functions immediately. It updates the window variables to preset values, as shown below.
\begin{tabular}{rcccccccc} 
& [Xmin, Xmax] & Xscl & [Ymin, Ymax] & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & {\([-6.6,6.6]\)} & 1 & {\([-4.1,4.1]\)} & 1 & 1 & .05 & .05 & .1 \\
HORIZONTAL & {\([-6.6,6.6]\)} & 1 & {\([-2,2]\)} & 1 & 1 & .05 & .05 & .1 \\
GRAPH-TABLE & {\([-4.6,4.6]\)} & 1 & {\([-3.6,3.6]\)} & 1 & 1 & .05 & .05 & .1
\end{tabular}

\section*{ZSquare}

ZSquare replots the functions immediately. It redefines the viewing window based on the current values of the window variables. It adjusts in only one direction so that \(\Delta \mathbf{X}=\Delta \mathbf{Y}\), which makes the graph of a circle look like a circle. Xscl and Yscl remain unchanged. The midpoint of the current graph (not the intersection of the axes) becomes the midpoint of the new graph.

\section*{ZStandard}

ZStandard replots the functions immediately. It updates the window variables to the standard values shown below.
\begin{tabular}{rcccccccc} 
& \begin{tabular}{c} 
[Xmin, \\
Xmax]
\end{tabular} & Xscl & \begin{tabular}{c} 
[Ymin, \\
Ymax]
\end{tabular} & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL \\
{\([-10,10]\)} & 1 & {\([-10,10]\)} & 1 & 1 & \(.07575 \ldots\) & .12195 & \(.151515 \ldots\) \\
HORIZONTAL \\
GRAPH-TABLE 10\(]\) & 1 & {\([-10,10]\)} & 1 & 1 & \(.07575 \ldots\) & .25 & \(.151515 \ldots\) \\
{\([-10,10]\)} & 1 & {\([-10,10]\)} & 1 & 1 & \(.1086956 \ldots\) & \(.1388888889 \ldots\) & \(.21739130 \ldots\)
\end{tabular}

\section*{ZTrig}

ZTrig replots the functions immediately. It updates the window variables to preset values that are appropriate for plotting trig functions. Those preset values in Radian mode are shown below.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & [Xmin, Xmax] & Xscl & [Ymin, Ymax] & Yscl & Xre
\[
\mathbf{s}
\] & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & \[
\begin{gathered}
\text { TraceSte } \\
p
\end{gathered}
\] \\
\hline FULL & [-2.75, \(2.75 \pi]\) & \(\pi / 2\) & [-4, 4] & 1 & 1 & . \(\pi / 48\) & . 0487804878 & \(\pi / 24\) \\
\hline HORIZONTAL & [-2.75, \(2.75 \pi]\) & \(\pi / 2\) & [-4, 4] & 1 & 1 & \(\pi / 48\) & . 1 & \(\pi / 24\) \\
\hline GRAPH-TABLE & [-2.75, \(2.75 \pi]\) & \(\pi / 2\) & [-4, 4] & 1 & 1 & .093906... & .05555... & \(\pi / 24\) \\
\hline
\end{tabular}

\section*{ZInteger}

ZInteger redefines the viewing window to the dimensions shown below. To use ZInteger, move the cursor to the point that you want to be the center of the new window, and then press ENTER; ZInteger replots the functions.
\begin{tabular}{rccccc} 
& Xscl & \(\mathbf{Y s c l}\) & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & 10 & 10 & .5 & 1 & 1 \\
HORIZONTAL & 10 & 10 & .5 & 1 & 1 \\
GRAPH-TABLE & 10 & 10 & .5 & 1 & 1
\end{tabular}

\section*{ZoomStat}

ZoomStat redefines the viewing window so that all statistical data points are displayed. For regular and modified box plots, only Xmin and Xmax are adjusted.

\section*{ZoomFit}

ZoomFit replots the functions immediately. ZoomFit recalculates YMin and YMax to include the minimum and maximum \(Y\) values of the selected functions between the current XMin and XMax. XMin and XMax are not changed.

\section*{ZQuadrant1}

ZQuandrant1 replots the function immediately. It redefines the window settings so that only quadrant 1 is displayed.

\section*{ZFrac1/2}

ZFrac1/2 replots the functions immediately. It updates the window variables to preset values, as shown below..
\begin{tabular}{rcccccccc} 
& [Xmin, Xmax] & Xscl & {\([Y \operatorname{Min}, \mathbf{Y m a x}]\)} & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & {\([-33,33]\)} & 1 & {\([-41 / 2,41 / 2]\)} & 1 & 1 & \(1 / 4\) & \(1 / 4\) & \(1 / 2\) \\
HORIZONTAL & {\([-33,33]\)} & 1 & {\([-10,10]\)} & 1 & 1 & \(1 / 4\) & \(1 / 4\) & \(1 / 2\) \\
GRAPH-TABLE & {\([-23,23]\)} & 1 & {\([-18,18]\)} & 1 & 1 & \(1 / 4\) & \(1 / 4\) & \(1 / 2\)
\end{tabular}

\section*{ZFrac1/3}

ZFrac1/3 replots the functions immediately. It updates the window variables to preset values, as shown below.
\begin{tabular}{rcccccccc} 
& [Xmin, Xmax] & Xscl & {\([\) Ymin, \(\mathbf{Y m a x}]\)} & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & {\([-22,22]\)} & 1 & {\([-41 / 3,41 / 3]\)} & 1 & 1 & \(1 / 6\) & \(1 / 6\) & \(1 / 3\) \\
HORIZONTAL & {\([-22,22]\)} & 1 & {\([-20 / 3,20 / 3]\)} & 1 & 1 & \(1 / 6\) & \(1 / 6\) & \(1 / 3\) \\
GRAPH-TABLE & {\([-46 / 3,46 / 3]\)} & 1 & {\([-12,12]\)} & 1 & 1 & \(1 / 6\) & \(1 / 6\) & \(1 / 3\)
\end{tabular}

\section*{ZFrac1/4}

ZFrac1/4 replots the functions immediately. It updates the window variables to preset values, as shown below.
\begin{tabular}{rcccccccc} 
& {\([\) Xmin, Xmax] } & Xscl & [Ymin, Ymax] & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & {\([-33 / 2,33 / 2]\)} & 1 & {\([-41 / 4,41 / 4]\)} & 1 & 1 & \(1 / 8\) & \(1 / 8\) & \(1 / 4\) \\
HORIZONTAL & {\([-33 / 2,33 / 2]\)} & 1 & {\([-5,5]\)} & 1 & 1 & \(1 / 8\) & \(1 / 8\) & \(1 / 4\) \\
GRAPH-TABLE & {\([-23 / 2,23 / 2]\)} & 1 & {\([-9,9]\)} & 1 & 1 & \(1 / 8\) & \(1 / 8\) & \(1 / 4\)
\end{tabular}

\section*{ZFrac1/5}

ZFrac1/5 replots the functions immediately. It updates the window variables to preset values, as shown below.
\begin{tabular}{rcccccccc} 
& {\([\) Xmin, Xmax] } & Xscl & [Ymin, Ymax] & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & {\([-66 / 5,66 / 5]\)} & 1 & {\([-41 / 5,41 / 5]\)} & 1 & 1 & \(1 / 10\) & \(1 / 10\) & \(1 / 5\) \\
HORIZONTAL & {\([-66 / 5,66 / 5]\)} & 1 & {\([-4,4]\)} & 1 & 1 & \(1 / 10\) & \(1 / 10\) & \(1 / 5\) \\
GRAPH-TABLE & {\([-46 / 5,46 / 5]\)} & 1 & {\([-36 / 5,36 / 5]\)} & 1 & 1 & \(1 / 10\) & \(1 / 10\) & \(1 / 5\)
\end{tabular}

\section*{ZFrac1/8}

ZDecimal replots the functions immediately. It updates the window variables to preset values, as shown below.
\begin{tabular}{rcccccccc} 
& [Xmin, Xmax] & Xscl & [Ymin, Ymax] & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & {\([-33 / 4,33 / 4]\)} & 1 & {\([-41 / 8,41 / 8]\)} & 1 & 1 & \(1 / 16\) & \(1 / 16\) & \(1 / 8\) \\
HORIZONTAL & {\([-33 / 4,33 / 4]\)} & 1 & {\([-5 / 2,5 / 2]\)} & 1 & 1 & \(1 / 16\) & \(1 / 16\) & \(1 / 8\) \\
GRAPH-TABLE & {\([-23 / 4,23 / 4]\)} & 1 & {\([-9 / 2,9 / 2]\)} & 1 & 1 & \(1 / 16\) & \(1 / 16\) & \(1 / 8\)
\end{tabular}

\section*{ZFrac1/10}

ZFrac1/10 replots the functions immediately. It updates the window variables to preset values, as shown below.
\begin{tabular}{rcccccccc} 
& [Xmin, Xmax] & Xscl & [Ymin, Ymax] & Yscl & Xres & \(\Delta \mathbf{X}\) & \(\Delta \mathbf{Y}\) & TraceStep \\
FULL & {\([-33 / 5,33 / 5]\)} & 1 & {\([-41 / 10,41 / 10]\)} & 1 & 1 & \(1 / 20\) & \(1 / 20\) & \(1 / 10\) \\
HORIZONTAL & {\([-33 / 5,33 / 5]\)} & 1 & {\([-2,2]\)} & 1 & 1 & \(1 / 20\) & \(1 / 20\) & \(1 / 10\) \\
GRAPH-TABLE & {\([-23 / 5,23 / 5]\)} & 1 & {\([-18 / 5,18 / 5]\)} & 1 & 1 & \(1 / 20\) & \(1 / 20\) & \(1 / 10\)
\end{tabular}

\section*{Using ZOOM MEMORY}

\section*{ZOOM MEMORY Menu}

To display the ZOOM MEMORY menu, press ZOOM \(\square\).
\begin{tabular}{ll}
\hline ZOOM MEMORY & \\
1: ZPrevious & Uses the previous viewing window. \\
\(2:\) & ZoomSto
\end{tabular} Stores the user-defined window. \(\quad\) Recalls the user-defined window. \(\quad\) 3: ZoomRcl \(\quad\) Changes Zoom In and Zoom Out factors.

\section*{ZPrevious}

ZPrevious replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction.

\section*{ZoomSto}

ZoomSto immediately stores the current viewing window. The graph is displayed, and the values of the current window variables are stored in the user-defined ZOOM variables ZXmin, ZXmax, ZXscl, ZYmin, ZYmax, ZYscl, and ZXres.

These variables apply to all graphing modes. For example, changing the value of ZXmin in Func mode also changes it in Par mode.

\section*{ZoomRcl}

ZoomRcl graphs the selected functions in a user-defined viewing window. The user-defined viewing window is determined by the values stored with the ZoomSto instruction. The window variables are updated with the user-defined values, and the graph is plotted.

\section*{ZOOM FACTORS}

The zoom factors, XFact and YFact, are positive numbers (not necessarily integers) greater than or equal to 1. They define the magnification or reduction factor used to Zoom In or Zoom Out around a point.

\section*{Checking XFact and YFact}

To display the ZOOM FACTORS screen, where you can review the current values for XFact and YFact, select 4:SetFactors from the ZOOM MEMORY menu. The values shown are the defaults.

\section*{Changing XFact and YFact}

You can change XFact and YFact in either of two ways.
- Enter a new value. The original value is cleared automatically when you enter the first digit.
- Place the cursor on the digit you want to change, and then enter a value or press DEL to delete it.

\section*{Using ZOOM MEMORY Menu Items from the Home Screen or a Program}

From the home screen or a program, you can store directly to any of the user-defined ZOOM variables.
\begin{tabular}{|c|}
\hline -5*2xmins 5 - 2 ¢max \\
\hline 5 \\
\hline
\end{tabular}

From a program, you can select the ZoomSto and ZoomRcl instructions from the ZOOM MEMORY menu.

\section*{Using the CALC (Calculate) Operations}

\section*{CALCULATE Menu}

To display the CALCULATE menu, press 2nd [CALC]. Use the items on this menu to analyze the current graph functions.
\begin{tabular}{lll} 
CALCULATE & \\
1: & value & Calculates a function \(Y\) value for a given \(X\). \\
\(2:\) & zero & Finds a zero (x-intercept) of a function. \\
\(3:\) & minimum & Finds a minimum of a function. \\
\(4:\) & maximum & Finds a maximum of a function. \\
\(5:\) & intersect & Finds an intersection of two functions. \\
\(6:\) & \(d y / d x\) & Finds a numeric derivative of a function. \\
\(7:\) & \(\int f(x) d x\) & Finds a numeric integral of a function. \\
\hline
\end{tabular}

\section*{value}
value evaluates one or more currently selected functions for a specified value of \(X\).
Note: When a value is displayed for \(X\), press CLEAR to clear the value. When no value is displayed, press CLEAR to cancel the value operation.

To evaluate a selected function at X , follow these steps.
1. Select 1:value from the CALCULATE menu. The graph is displayed with \(\mathbf{X}=\) in the bottom-left corner.
2. Enter a real value, which can be an expression, for \(\mathbf{X}\) between \(\mathbf{X m i n}\) and \(\mathbf{X m a x}\).
3. Press ENTER.


The cursor is on the first selected function in the \(Y=\) editor at the \(\mathbf{X}\) value you entered, and the coordinates are displayed, even if CoordOff format is selected.

To move the cursor from function to function at the entered \(\mathbf{X}\) value, press \(\Delta\) or \(⿴\). To restore the freemoving cursor, press \(\square\) or \(\square\).

\section*{zero}
zero finds a zero (x-intercept or root) of a function using solve(. Functions can have more than one \(x\)-intercept value; zero finds the zero closest to your guess.

The time zero spends to find the correct zero value depends on the accuracy of the values you specify for the left and right bounds and the accuracy of your guess.
To find a zero of a function, follow these steps.
1. Select 2:zero from the CALCULATE menu. The current graph is displayed with Left Bound? in the bottom-left corner.
2. Press \(\Delta\) or to move the cursor onto the function for which you want to find a zero.
3. Press \(\square\) or (or enter a value) to select the \(x\)-value for the left bound of the interval, and then press ENTER. A indicator on the graph screen shows the left bound. Right Bound? is displayed in the bottom-left corner. Press \(\square\) or \(\square\) (or enter a value) to select the x-value for the right bound, and then press ENTER. A 4 indicator on the graph screen shows the right bound. Guess? is then displayed in the bottom-left corner.

4. Press \(\square\) or (or enter a value) to select a point near the zero of the function, between the bounds, and then press ENTER.


The cursor is on the solution and the coordinates are displayed, even if CoordOff format is selected. To move to the same \(x\)-value for other selected functions, press \(\Delta\) or \(\nabla\). To restore the free-moving cursor, press \(\square\) or \(\square\).

\section*{minimum, maximum}
minimum and maximum find a minimum or maximum of a function within a specified interval to a tolerance of \(1 \mathrm{E}-5\).

To find a minimum or maximum, follow these steps.
1. Select 3:minimum or 4:maximum from the CALCULATE menu. The current graph is displayed.
2. Select the function and set left bound, right bound, and guess as described for zero.

The cursor is on the solution, and the coordinates are displayed, even if you have selected CoordOff format; Minimum or Maximum is displayed in the bottom-left corner.

To move to the same \(x\)-value for other selected functions, press \(\Delta\) or \(\square\). To restore the free-moving cursor, press \(\square\) or \(\square\).

\section*{intersect}
intersect finds the coordinates of a point at which two or more functions intersect using solve(. The intersection must appear on the display to use intersect.

To find an intersection, follow these steps.
1. Select 5:intersect from the CALCULATE menu. The current graph is displayed with First curve? in the bottom-left corner.

2. Press \(\square\) or \(\triangle\), if necessary, to move the cursor to the first function, and then press ENTER. Second curve? is displayed in the bottom-left corner.
3. Press \(\square\) or \(\triangle\), if necessary, to move the cursor to the second function, and then press ENTER.
4. Press \(\square\) or to move the cursor to the point that is your guess as to location of the intersection, and then press ENTER.

The cursor is on the solution and the coordinates are displayed, even if CoordOff format is selected.
Intersection is displayed in the bottom-left corner. To restore the free-moving cursor, press \(\square, \square, \square\), or \(\square\).

\section*{\(d y / d x\)}
\(\mathbf{d y} / \mathbf{d x}\) (numerical derivative) finds the numerical derivative (slope) of a function at a point, with \(\varepsilon=1 \mathrm{E}-3\).
To find a function's slope at a point, follow these steps.
1. Select 6:dy/dx from the CALCULATE menu. The current graph is displayed.
2. Press \(\triangle\) or \(\square\) to select the function for which you want to find the numerical derivative.
3. Press \(\square\) or (or enter a value) to select the \(X\) value at which to calculate the derivative, and then press ENTER.

The cursor is on the solution and the numerical derivative is displayed.


To move to the same x-value for other selected functions, press \(\Delta\) or \(\square\). To restore the free-moving cursor, press \(\square\) or \(\square\).

\section*{\(\int f(x) d x\)}
\(\int \mathbf{f}(\mathbf{x}) \mathbf{d x}\) (numerical integral) finds the numerical integral of a function in a specified interval. It uses the fnint( function, with a tolerance of \(\varepsilon=1 \mathrm{E}-3\).

To find the numerical integral of a function, follow these steps.
1. Select 7: \(\int \mathbf{f}(\mathbf{x}) \mathbf{d x}\) from the CALCULATE menu. The current graph is displayed with Lower Limit? in the bottom-left corner.
2. Press \(\square\) or to move the cursor to the function for which you want to calculate the integral.
3. Set lower and upper limits as you would set left and right bounds for zero. The integral value is displayed, and the integrated area is shaded.


Note: The shaded area is a drawing. Use ClrDraw (Chapter 8) or any action that invokes Smart Graph to clear the shaded area.

\section*{Chapter 4: \\ Parametric Graphing}

\section*{Getting Started: Path of a Ball}

Getting Started is a fast-paced introduction. Read the chapter for details.
Graph the parametric equation that describes the path of a ball hit at an initial speed of 30 meters per second, at an initial angle of 25 degrees with the horizontal from ground level. How far does the ball travel? When does it hit the ground? How high does it go? Ignore all forces except gravity.
For initial velocity \(v_{o}\) and angle \(\theta\), the position of the ball as a function of time has horizontal and vertical components.

Horizontal: \(\mathrm{X} 1(\mathrm{t})=\mathrm{tv}_{0} \cos (\theta) \quad\) Vertical: \(\mathrm{Y} 1(\mathrm{t})=\mathrm{tv}_{0} \sin (\theta)-\frac{1}{2} \mathrm{gt}^{2}\)
The vertical and horizontal vectors of the ball's motion also will be graphed.
\begin{tabular}{lll} 
Vertical vector: & \(\mathrm{X} 2(\mathrm{t})=0\) & \(\mathrm{Y} 2(\mathrm{t})=\mathrm{Y} 1(\mathrm{t})\) \\
Horizontal vector: & \(\mathrm{X} 3(\mathrm{t})=\mathrm{X} 1(\mathrm{t})\) & \(\mathrm{Y} 3(\mathrm{t})=0\)
\end{tabular}

Gravity constant: \(\quad \mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}\)
1. Press \(\operatorname{MODE}\). Press \(\square \square \square\) ENTER to select Par mode. Press \(\square \square\) ENTER to select Simul for simultaneous graphing of all three parametric equations in this example.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{NORMAL FLOAT GUTO REAL RADIGN MP GRAPHING} \\
\hline \multicolumn{2}{|l|}{MATHPRINT CLASSIC} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NORMAL SCI ENG}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Radian degree} \\
\hline FUNCTION PARAMETRIC POLAR SEQ & \\
\hline \multicolumn{2}{|l|}{THICK DOT-THICK THIN DOT-THIN} \\
\hline \multicolumn{2}{|l|}{SEQUENTIAL SIMUL,} \\
\hline \multicolumn{2}{|l|}{REFLL \({ }^{\text {a }}\) +bi \(\mathrm{re}^{\wedge}(8 \mathrm{l})\)} \\
\hline \multicolumn{2}{|l|}{FULL HORIZONTAL GRAPH-TABLE} \\
\hline \multicolumn{2}{|l|}{FRACTIONTYPE: had Unod} \\
\hline \multicolumn{2}{|l|}{ANSWERS: AUTO DEC FRAC-APPROX} \\
\hline \multicolumn{2}{|l|}{GOTO 2ND FORMAT GRAPH: NO YES} \\
\hline STAT DIAGNOSTICS: DFF ON & \\
\hline STAT WIZARDS: ON OFF & \\
\hline SETCLOCK \(08124 \% 12\) 12:36PM & \\
\hline
\end{tabular}
2. Go to the Format Graph screen, and turn off the axes.
- Press 2nd [FORMAT] to go to the Format Graph screen. Press \(\square_{\square}\) to select Axes, the spinner menu becomes active. Press \(\square\) as necessary to turn off the axes.

3. Press YZ. Press 30 X,T, \(\Theta, n\) COS 25 [nd [ANGLE] 1 (to select \({ }^{\circ}\) ) \(\square\) ENTER to define X1T in terms of \(\mathbf{T}\).
4. Press \(\mathbf{3 0} X, T, \Theta, n\) SIN 25 [2nd [ANGLE] \(1 \square \square\) ALPHA [F1] 1 (to select n/d) \(9.8 \square 2 \square \triangle, T, \Theta, n \times x^{2}\) ENTER to define Y1T.

The vertical component vector is defined by X2T and Y2T.
5. Press \(\mathbf{0}\) ENTER to define X2T.
6. Press ALPHA \([F 4]\) ENTER ENTER to define Y2T.
\begin{tabular}{|c|c|}
\hline normal float muto real radian mp & П \\
\hline Plot1 Plot2 Plot3 & \\
\hline  & \\
\hline \(\mathrm{Y}_{1 \text { t }} \mathrm{E} 30 \mathrm{~T} \sin \left(25^{\circ}\right)-\frac{9.8}{2} \mathrm{~T}^{2}\) & \\
\hline  & \\
\hline \(\mathrm{Y}_{2 \mathrm{~T}}=\) & \\
\hline - X \(_{3 \text { т }}=\) & \\
\hline \(Y_{3 \text { ¢ }}=\) & \\
\hline - \(\times_{4 \text { t }}=\) & \\
\hline \(\mathrm{Y}_{4} \mathrm{~T}=\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Normal flont auto real radian mp & [1] \\
\hline Plot1 Plot2 Plot3 & \\
\hline \(10 \times 1\) ¢ \(\mathrm{B} 30 \mathrm{Tcos}\left(25^{\circ}\right.\) ) & \\
\hline \(\mathrm{Y}_{1 \text { t }} \mathrm{E} 30 \mathrm{~T} \sin \left(25^{\circ}\right)-\frac{9.8}{2} \mathrm{~T}^{2}\) & \\
\hline  & \\
\hline - \(\times^{\text {¢ }}\) ¢ \(=\) & \\
\hline \(\mathrm{Y}_{3 \text { T }}=\) & \\
\hline - \(\times_{4 \text { 4 }}=\) & \\
\hline \(\mathrm{Y}_{4} \mathrm{~T}=\) & \\
\hline
\end{tabular}

The horizontal component vector is defined by X3T and Y3T.
7. Press ALPHA [F4] ENTER ENTER to define X3T.
8. Press \(\mathbf{0}\) to define Y3T.
9. Press ENTER.

Note: The cursor moves to X4T.
10. Change the graph line styles.
- Press \(\triangle \square \square \square\) ENTER \(\square\). Press \(\square\) as necessary to change the graph style to 4 (Path) for X3T and Y3T. Press ENTER twice to select the graph style.
- Press \(\triangle\) ENTER \(\square\). Press \(\square\) as necessary to change the graph style to 4 for X2T and Y2T. Press ENTER twice to select the graph style.
- Press \(\triangle\) ENTER \(\square\). Press \(\square\) as necessary to change the graph style to 4 for X1T and Y1T. Press ENTER twice to select the graph style.
11. Press WINDOW. Enter these values for the window variables.
\begin{tabular}{lcc} 
Tmin=0 & Xmin=-10 & Ymin=-5 \\
Tmax \(=5\) & Xmax \(=100\) & Ymax=15 \\
Tstep=.1 & Xscl=50 & Yscl=10
\end{tabular}

Note: You can check all WINDOW variables, including \(\Delta X\) and \(\Delta Y\) by pressing VARS 1:Window.

\begin{tabular}{|c|c|}
\hline NORMAL FLOAT futo real radian mp & \(\square\) \\
\hline Plot1 Plot2 Plot3 & \\
\hline  & \\
\hline \(\mathrm{Y}_{1 \text { т }} \mathrm{\theta} 30 \mathrm{~T} \sin \left(25^{\circ}\right)-\frac{9.8}{2} \mathrm{~T}^{2}\) & \\
\hline -0X2т \(\mathrm{m}^{\text {- }}\) & \\
\hline Y2t \(\mathrm{EY}_{1}\) т & \\
\hline -0X \({ }_{\text {¢ }}\) т \(\mathrm{XX}_{1}\) т & \\
\hline Y 3 т \(\boldsymbol{1} 0\) & \\
\hline - \(\times_{4}{ }_{4}=\) & \\
\hline \(Y_{4 t}=\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline NORMAL FLOAT RUTO REAL RADIAN MP \\
WINDOW \\
Tmin=0 \\
Tmax=5 \\
Tstep=.1 \\
Xmin \(=-10\) \\
Xmax \(=100\) \\
Xscl=50 \\
Ymin= \\
Ymax \(=15\) \\
\(Y\) Scl=10 \\
\hline
\end{tabular}
12. Press GRAPH. The plotting action simultaneously shows the ball in flight and the vertical and horizontal component vectors of the motion.

Note: To simulate the ball flying through the air, set graph style to 0 (animate) for X1T and Y1T.

13. Press TRACE to obtain numerical results and answer the questions at the beginning of this section.

Tracing begins at Tmin on the first parametric equation (X1T and Y1T). As you press to trace the curve, the cursor follows the path of the ball over time. The values for \(\mathbf{X}\) (distance), \(\mathbf{Y}\) (height), and \(\mathbf{T}\) (time) are displayed at the bottom of the screen.


\section*{Defining and Displaying Parametric Graphs}

\section*{Graphing Mode Similarities}

The steps for defining a parametric graph are similar to the steps for defining a function graph. Chapter 4 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 4 details aspects of parametric graphing that differ from function graphing.

\section*{Setting Parametric Graphing Mode}

To display the mode screen, press MODE. To graph parametric equations, you must select parametric graphing mode before you enter window variables and before you enter the components of parametric equations.

\section*{Displaying the Parametric \(\mathbf{Y}=\) Editor}

After selecting parametric graphing mode, press \(Y \neq\) to display the parametric \(Y=\) editor.
\begin{tabular}{|l|} 
MORMAL FLOAT GUTO REAL RADIAN MP \\
Plot1 Plot2 Plot3 \\
\(X_{1 T}=\) \\
\(X_{1 T}=\) \\
\(X_{2 T}=\) \\
\(Y_{2 T}=\) \\
\(X_{3 T}=\) \\
\(Y_{3 T}=\) \\
\(X_{4 T}=\) \\
\(Y_{4 T}=\) \\
\(X_{5 T}=\) \\
\hline
\end{tabular}

In this editor, you can display and enter both the \(X\) and \(Y\) components of up to six equations, X1T and Y1T through X6T and Y6T. Each is defined in terms of the independent variable T. A common application of parametric graphs is graphing equations over time.

\section*{Selecting a Graph Style}

The icons to the left of X1T through X6T represent the graph style of each parametric equation. Use the styles and color to visually differentiate equations to be graphed together. This table describes the graph styles available for parametric graphing.
\begin{tabular}{cll}
\hline Icon & Style & Description \\
\hline\(\because\) & Thin & A solid line connects plotted points.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Icon & Style & Description \\
\hline " & Thick & A thick solid line connects plotted points. \\
\hline " & Above & Shading covers the area above the graph \\
\hline 㐌 & Below & Shading covers the area below the graph \\
\hline 4 & Path & A circular cursor traces the leading edge of the graph and draws a path \\
\hline 4 & Animate & A circular cursor traces the leading edge of the graph without drawing a path \\
\hline \(\because\) & Dot-Thick & A dot ( \(3 \times 3\) pixel) enhances the view around the actual plotted point; this is the default in Dot mode. \\
\hline \(\because\) & Dot-Thin & A small dot ( \(1 \times 1\) pixel) represents each plotted point. \\
\hline
\end{tabular}

\section*{Defining and Editing Parametric Equations}

To define or edit a parametric equation, follow the steps in Chapter 3 for defining a function or editing a function. The independent variable in a parametric equation is \(T\). In parametric graphing mode, you can enter the parametric variable \(T\) in either of two ways.
- Press \(X, T, \Theta, \eta\).
- Press ALPHA [T].

Two components, \(X\) and \(Y\), define a single parametric equation. You must define both of them.

\section*{Selecting and Deselecting Parametric Equations}

The TI-84 Plus C graphs only the selected parametric equations. In the \(\mathrm{Y}=\) editor, a parametric equation is selected when the \(=\) signs of both the \(X\) and \(Y\) components are highlighted. You may select any or all of the equations X1T and Y1T through X6T and Y6T.
To change the selection status, move the cursor onto the \(=\) sign of either the X or Y component and press ENTER. The status of both the X and Y components is changed.

\section*{Setting Window Variables}

To display the window variable values, press WINDOW. These variables define the viewing window. The values below are defaults for parametric graphing in Radian angle mode.
\begin{tabular}{ll}
\hline Tmin \(=0\) & Smallest T value to evaluate \\
Tmax \(=6.2831853 \ldots\) & Largest T value to evaluate \((2 \pi)\) \\
Tstep \(=.1308996 \ldots\) & T value increment \((\pi / 24)\) \\
Xmin \(=-10\) & Smallest \(X\) value to be displayed \\
Xmax \(=10\) & Largest \(X\) value to be displayed \\
Xscl \(=1\) & Spacing between the \(X\) tick marks \\
Ymin \(=-10\) & Smallest \(Y\) value to be displayed \\
Ymax \(=10\) & Largest \(Y\) value to be displayed \\
Yscl \(=1\) & Spacing between the \(Y\) tick marks
\end{tabular}

Note: To ensure that sufficient points are plotted, you may want to change the \(\mathbf{T}\) window variables.

\section*{Setting the Graph Format}

To display the current graph format settings, press 2nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings; Seq graphing mode has an additional axes format setting.

\section*{Displaying a Graph}

When you press GRAPH, the TI-84 Plus C plots the selected parametric equations. It evaluates the X and Y components for each value of \(\mathbf{T}\) (from Tmin to Tmax in intervals of Tstep), and then plots each point defined by X and Y . The window variables define the viewing window.

As the graph is plotted, \(\mathrm{X}, \mathrm{Y}\), and T are updated.
Smart Graph (see Chapter 3) applies to parametric graphs.

\section*{Window Variables and Y-VARS Menus}

You can perform these actions from the home screen or a program.
- Access functions by using the name of the \(X\) or \(Y\) component of the equation as a variable.
K1т*:54.76916375
- Store parametric equations.
\begin{tabular}{|c|c|}
\hline NORMAL FLOAt aUto real radian mp \} & Normal float auto real radian mp \} \\
\hline " \(\sin (T){ }^{\prime} \rightarrow X_{1 T}\) & Plot1 Plot2 Plot3 \\
\hline Done. &  \\
\hline ii \(\cos (\mathrm{T}) \mathrm{i}^{\rightarrow} \mathrm{Y} 1 \mathrm{~T}\) & \(\mathrm{Y}_{1 \text { т }} \mathrm{Bcos}(\mathrm{T})\) \\
\hline Donene. & - \(\times^{14}\) ( \(=\) \\
\hline & \(\mathrm{Y}_{2 \mathrm{t}}=\) \\
\hline &  \\
\hline & \(\mathrm{Y}_{3 \mathrm{~T}}=\) \\
\hline & - \(\mathrm{X}_{4 \text { т }}=\) \\
\hline & \(\mathrm{Y}_{4} \mathrm{~T}=\) \\
\hline & - \(\times_{54}=\) \\
\hline
\end{tabular}
- Select or deselect parametric equations.


- Store values directly to window variables.


360

\section*{Exploring Parametric Graphs}

\section*{Free-Moving Cursor}

The free-moving cursor in parametric graphing works the same as in Func graphing.
In RectGC format, moving the cursor updates the values of \(X\) and \(Y\); if CoordOn format is selected, \(X\) and \(Y\) are displayed.

In PolarGC format, \(\mathrm{X}, \mathrm{Y}, \mathrm{R}\), and \(\theta\) are updated; if CoordOn format is selected, R and \(\theta\) are displayed.

\section*{TRACE}

To activate TRACE, press TRACE. When TRACE is active, you can move the trace cursor along the graph of the equation one Tstep at a time. When you begin a trace, the trace cursor is on the first selected function at Tmin. If ExprOn is selected, then the function is displayed.

In RectGC format, TRACE updates and displays the values of \(X, Y\), and \(T\) if CoordOn format is on.
In PolarGC format, X, Y, R, \(\theta\) and T are updated; if CoordOn format is selected, R, \(\theta\), and T are displayed. The \(X\) and \(Y\) (or \(R\) and \(\theta\) ) values are calculated from \(T\).

To move five plotted points at a time on a function, press 2nd 0 or 2nd \(\square\). If you move the cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Quick Zoom (see Chapter 3) is available in parametric graphing; panning is not.

\section*{Moving the Trace Cursor to Any Valid T Value}

To move the trace cursor to any valid \(\mathbf{T}\) value on the current function, press TRACE, enter the number. When you enter the first digit, a \(\mathbf{T}=\) prompt and the number you entered are displayed in the bottomleft corner of the screen. You can enter an expression at the \(\mathbf{T}=\) prompt. The value must be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.



\section*{ZOOM}

ZOOM operations in parametric graphing work the same as in Func graphing. Only the \(\mathbf{X}\) (Xmin, Xmax, and \(\mathbf{X s c l}\) ) and \(\mathbf{Y}\) ( \(\mathbf{Y m i n}, \mathbf{Y m a x}\), and \(\mathbf{Y s c l}\) ) window variables are affected.

The \(\mathbf{T}\) window variables (Tmin, Tmax, and Tstep) are only affected when you select ZStandard. The VARS ZOOM secondary menu ZT/Z \(\theta\) items 1:ZTmin, 2:ZTmax, and 3:ZTstep are the zoom memory variables for parametric graphing.

\section*{CALC}

CALC operations in parametric graphing work the same as in Func graphing. The CALCULATE menu items available in parametric graphing are 1:value, 2:dy/dx, 3:dy/dt, and 4:dx/dt.

\section*{Chapter 5: \\ Polar Graphing}

\section*{Getting Started: Polar Rose}

Getting Started is a fast-paced introduction. Read the chapter for details.
The polar equation \(R=A \sin (B \theta)\) graphs a rose. Graph the rose for \(A=8\) and \(B=2.5\), and then explore the appearance of the rose for other values of \(A\) and \(B\).
1. Press \(M O D E\) to display the MODE screen. Press \(\square \square \square \square\) ENTER to select Pol graphing mode. Select the defaults (the options on the left) for the other mode settings.
2. Press \(Y\) to display the polar \(Y=\) editor. Press \(\mathbf{8}\) SIN \(\mathbf{2 . 5}\) X,T,,\(\square \square\) ENTER to define \(\mathbf{r 1}\).
\begin{tabular}{|c|}
\hline NORMAL FLOAT AUTO REal radian mp \} \\
\hline \begin{tabular}{l}
Plot1 Plot2 Plot3 \\
 \\
- 1 r2 \(=\) \\
-1) r3 \(^{\text {= }}\) \\
- \1r4= \\
- 1 r5 = \\
- 1 r6=
\end{tabular} \\
\hline
\end{tabular}
3. Press ZOOM \(\mathbf{6}\) to select \(\mathbf{6 : Z S t a n d a r d}\) and graph the equation in the standard viewing window. The graph shows only five petals of the rose, and the rose does not appear to be symmetrical. This is because the standard window sets \(\theta \boldsymbol{m a x}=2 \pi\) and defines the window, rather than the pixels, as square.

4. Press WINDOW to display the window variables. Press \(\square 4\) 2nd \([\pi]\) to increase the value of \(\theta\) max to \(4 \pi\).
\begin{tabular}{|c|c|}
\hline NORMAL FLOAT AUTO REAL RADIAN MP & \\
\hline WINDOW & \\
\hline Omin=0 & \\
\hline \(\theta_{\text {max }}=4 \pi\) & \\
\hline Ostep=. 13089969389957 & \\
\hline Xmin=-10 & \\
\hline \(X_{\text {max }}=10\) & \\
\hline \(\mathrm{Xscl}=1\) & \\
\hline Ymin \(=-10\) & \\
\hline \(Y_{\text {max }}=10\) & \\
\hline \(\mathrm{Yscl}=1\) & \\
\hline
\end{tabular}
5. Press \(Z 000 \mathbf{5}\) to select \(\mathbf{5 : Z S q u a r e}\) and plot the graph.

6. Repeat steps 2 through 5 with new values for the variables \(\mathbf{A}\) and \(\mathbf{B}\) in the polar equation \(\mathbf{r} \mathbf{1 = A} \mathbf{s i n}(\mathbf{B} \theta)\). Observe how the new values affect the graph.

\section*{Defining and Displaying Polar Graphs}

\section*{Graphing Mode Similarities}

The steps for defining a polar graph are similar to the steps for defining a function graph. Chapter 5 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 5 details aspects of polar graphing that differ from function graphing.

\section*{Setting Polar Graphing Mode}

To display the mode screen, press MODE. To graph polar equations, you must select Pol graphing mode before you enter values for the window variables and before you enter polar equations.

\section*{Displaying the Polar \(\mathbf{Y}=\) Editor}

After selecting Pol graphing mode, press \(Y=\) to display the polar \(Y=\) editor.


In this editor, you can enter and display up to six polar equations, \(\mathbf{r 1}\) through \(\mathbf{r 6}\). Each is defined in terms of the independent variable \(\theta\).

\section*{Selecting Graph Styles}

The icons to the left of \(\mathbf{r 1}\) through \(\mathbf{r 6}\) represent the graph style of each polar equation. The default in polar graphing mode for the TI-84 Plus C is \({ }^{\prime \prime}\) (thick line). Use the styles and color to visually differentiate equations to be graphed together. This table describes the graph styles available for polar graphing.
\begin{tabular}{|c|c|c|}
\hline Icon & Style & Description \\
\hline 气 & Thin & A solid line connects plotted points. \\
\hline " & Thick & A thick solid line connects plotted points. \\
\hline " & Above & Shading covers the area above the graph. \\
\hline m & Below & Shading covers the area below the graph. \\
\hline 4 & Path & A circular cursor traces the leading edge of the graph and draws a path. \\
\hline 4 & Animate & A circular cursor traces the leading edge of the graph without drawing a path. \\
\hline \(\because\) & Dot-Thick & A dot ( \(3 \times 3\) pixel) enhances the view around the actual plotted point; this is the default in Dot mode. \\
\hline \(\because\) & Dot-Thin & A small dot ( \(1 \times 1\) pixel) represents each plotted point. \\
\hline
\end{tabular}

To define or edit a polar equation, follow the steps in Chapter 3 for defining a function or editing a function. The independent variable in a polar equation is \(\theta\). In Pol graphing mode, you can enter the polar variable \(\theta\) in either of two ways.
- Press \(\chi, T, \Theta, n\).
- Press ALPHA [ \(\theta\) ].

\section*{Selecting and Deselecting Polar Equations}

The TI-84 Plus C graphs only the selected polar equations. In the \(\mathrm{Y}=\) editor, a polar equation is selected when the \(=s i g n\) is highlighted. You may select any or all of the equations.

To change the selection status, move the cursor onto the \(=\) sign, and then press ENTER.

\section*{Setting Window Variables}

To display the window variable values, press WINDOW. These variables define the viewing window. The values below are defaults for Pol graphing in Radian angle mode.
\begin{tabular}{ll}
\hline\(\theta \min =0\) & Smallest \(\theta\) value to evaluate \\
\(\theta \max =6.2831853 \ldots\) & Largest \(\theta\) value to evaluate \((2 \pi)\) \\
\(\theta\) step \(=.1308996 \ldots\) & Increment between \(\theta\) values \((\pi / 24)\) \\
Xmin \(=-10\) & Smallest \(X\) value to be displayed \\
Xmax \(=10\) & Largest \(X\) value to be displayed \\
\(\mathrm{Xscl}=1\) & Spacing between the \(X\) tick marks \\
\(\mathrm{Ymin}=-10\) & Smallest \(Y\) value to be displayed \\
\(\mathrm{Ymax}=10\) & Largest \(Y\) value to be displayed \\
Yscl=1 & Spacing between the Y tick marks
\end{tabular}

Note: To ensure that sufficient points are plotted, you may want to change the \(\theta\) window variables.

\section*{Setting the Graph Format}

To display the current graph format settings, press [nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings.
Note: Detect Asymptotes option is available in Func mode only.

\section*{Displaying a Graph}

When you press GRAPH, the TI-84 Plus C plots the selected polar equations. It evaluates R for each value of \(\theta\) (from \(\theta \mathbf{m i n}\) to \(\theta \mathbf{m a x}\) in intervals of \(\theta \mathbf{s t e p}\) ) and then plots each point. The window variables define the viewing window.

As the graph is plotted, \(X, Y, R\), and \(\theta\) are updated.
Smart Graph (see Chapter 3) applies to polar graphs.

\section*{Window Variables and Y.VARS Menus}

You can perform these actions from the home screen or a program.
- Access functions by using the name of the equation as a variable. These function names are available on the YVARS shortcut menu ([ALPHA [F4]).
\begin{tabular}{|c|c|}
\hline Normal float huto real radian mp & NORMAL FLOAT AUTO REAL Radian mp \\
\hline \begin{tabular}{l}
Plot1 Plot2 Plot3 \\
- 1 r1 1 日 \(8 \sin (2.50)\) \\
 \\
-1) r3 \(^{-1}\) \\
-1r4= \\
-1r5= \\
1r6=
\end{tabular} & \[
r_{1}+r_{2}
\]
\[
8 .
\] \\
\hline
\end{tabular}
- Store polar equations.


- Select or deselect polar equations.

\begin{tabular}{|c|c|c|}
\hline NORMAL FLOAT & To Refl radian mp & \(\square\) \\
\hline \begin{tabular}{l}
Plot1 \\
Plot2 \\
- \(\\) r1 \(=50\) \\
- Vr2 = \\
- Vr3 = \\
- Vr4 = \\
- Vr \(5=\) \\
- Vr6=
\end{tabular} & Plot3 & \\
\hline
\end{tabular}
- Store values directly to window variables.

6جのin 6

\section*{Exploring Polar Graphs}

\section*{Free-Moving Cursor}

The free-moving cursor in Pol graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of \(X\) and \(Y\); if CoordOn format is selected, \(X\) and \(Y\) are displayed. In PolarGC format, \(X, Y, R\), and \(\theta\) are updated; if CoordOn format is selected, \(R\) and \(\theta\) are displayed.

\section*{TRACE}

To activate TRACE, press TRACE. When TRACE is active, you can move the trace cursor along the graph of the equation one \(\theta\) step at a time. When you begin a trace, the trace cursor is on the first selected function at \(\theta \mathbf{m i n}\). If ExprOn format is selected, then the equation is displayed.

In RectGC format, TRACE updates the values of \(X, Y\), and \(\theta\); if CoordOn format is selected, \(X, Y\), and \(\theta\) are displayed. In PolarGC format, TRACE updates \(X, Y, R\), and \(\theta\); if CoordOn format is selected, \(R\) and \(\theta\) are displayed.

To move five plotted points at a time on a function, press 2nd \(\square\) or 2nd \(\square\). If you move the trace cursor beyond the top or bottom of the screen, the coordinate values at the bottom of the screen continue to change appropriately.

Quick Zoom (see Chapter 3) is available in Pol graphing mode; panning is not.

\section*{Moving the Trace Cursor to Any Valid Theta Value}

To move the trace cursor to any valid \(\theta\) value on the current function, press TRACE and enter the number. When you enter the first digit, a \(\theta=\) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(\theta=\) prompt. The value must be valid for the current viewing window. When you complete the entry, press ENTER to move the cursor.

\section*{ZOOM}

ZOOM operations in Pol graphing work the same as in Func graphing. Only the \(\mathbf{X}\) ( \(\mathbf{X m i n}, \mathbf{X m a x}\), and \(\mathbf{X s c l})\) and \(\mathbf{Y}(\mathbf{Y m i n}, \mathbf{Y m a x}\), and \(\mathbf{Y s c l})\) window variables are affected.

The \(\theta\) window variables ( \(\theta \mathbf{m i n}, \theta \mathbf{m a x}\), and \(\theta\) step) are not affected, except when you select \(\mathbf{Z S t a n d a r d}\). The VARS ZOOM secondary menu \(\mathrm{ZT} / \mathrm{Z} \theta\) items 4:Z \(\theta\) min, \(\mathbf{5 : Z \theta m a x}\), and 6:Z \(\theta\) step are zoom memory variables for Pol graphing.

\section*{CALC}

CALC operations in Pol graphing work the same as in Func graphing. The CALCULATE menu items available in Pol graphing are 1:value, 2:dy/dx, and 3:dr/d \(\theta\).

\section*{Chapter 6: \\ Sequence Graphing}

\section*{Getting Started: Forest and Trees}

Note: Getting Started is a fast-paced introduction. Read the chapter for details.
A small forest of 4,000 trees is under a new forestry plan. Each year 20 percent of the trees will be harvested and 1,000 new trees will be planted. Will the forest eventually disappear? Will the forest size stabilize? If so, in how many years and with how many trees?
1. Press MODE. Press \(\square \square \square \square \square\) ENTER to select Seq graphing mode.
\begin{tabular}{|c|c|}
\hline NORMAL FLOAT AUTO REAL RADIAN MP FUNCTION TYPES & \(\square\) \\
\hline MATHPRINT CLASSIC & \\
\hline NORMAL SCI ENG & \\
\hline FLOAT 0123456789 & \\
\hline Radian degree & \\
\hline FUNCTION PARAMETRIC POLAR SEQ & \\
\hline THICK DOT-THICK THIN DOT-THIN & \\
\hline SEqUENTITAL SIMUL & \\
\hline REAL \({ }^{\text {a }}\) +bi \(\mathrm{re}^{\wedge}(8 \mathrm{i})\) & \\
\hline FULL HORIZONTAL GRAPH-TABLE & \\
\hline FRACTIONTYPE: med Unod & \\
\hline ANSWERS: FIUTO DEC FRAC-APPROX & \\
\hline GO TO 2ND FORMAT GRAPH: ND YES & \\
\hline STATDIAGNOSTICS: DFF ON & \\
\hline STAT WIZARDS: ON OFF & \\
\hline SET CLOCK 09Pe7\%12 1:23PM & \\
\hline
\end{tabular}
2. Press 2nd [FORMAT] and select Time axes format and ExprOn format if necessary.

3. Press \(Y=\).

If the graph-style icon is not : (Dot-Thick), follow these steps to change it to Dot-Thick.
- Press \(\square\) ENTER. Press \(\square\) to go to the Line Spinner menu. Press \(\square\) or \(\square\) until (Dot-Thick) is displayed. Press ENTER, and then press \(\square \square\).
Note: You can also use Dot-Thin to see a sequence point as one pixel ( \(1 \times 1\) ).
4. Press MATH \(\square \mathbf{3}\) to select iPart( (integer part) because only whole trees are harvested. After each annual harvest, 80 percent (.80) of the trees remain.
Press8 2nd [u] \(\square\) \(X, T, \Theta, \eta\) \(\square\)to define the number of trees after each harvest. Press \(\square 1000 \square\) to define the new trees. Press 4000 to define the number of trees at the beginning of the program.
Note: You can also press \(\overline{\text { ALPHA }[F 4]} \mathbf{1}\) to select [u].
5. Press WINDOW \(\mathbf{0}\) to set \(n \mathbf{M i n}=\mathbf{0}\). Press \(\mathbf{5 0}\) to set \(n \mathbf{M a x}=50\). \(n \mathbf{M i n}\) and \(n \mathbf{M a x}\) evaluate forest size over 50 years. Set the other window variables.
```

PlotStart=1 Xmin=0 Ymin=0
PlotStep=1 Xmax=50 Ymax=6000
Xscl=10 Yscl=1000

```
\begin{tabular}{|c|c|}
\hline NORMAL FLOAT AUTO REAL RADIAN MP DISTANCE BETWEEN TICK MARKS ON AXI & П \\
\hline WINDOW & \\
\hline \(\uparrow n \mathrm{Max}=50\) & \\
\hline PlotStart=1 & \\
\hline PlotStep=1 & \\
\hline Xmin=0 & \\
\hline \(X_{\text {max }}=50\) & \\
\hline Xscl=10 & \\
\hline \(Y_{\text {min }}=0\) & \\
\hline \(Y_{\text {max }}=6000\) & \\
\hline \(\mathrm{Yscl}=1000\) & \\
\hline
\end{tabular}
6. Press TRACE. Tracing begins at \(n \mathbf{M i n}\) (the start of the forestry plan). Press \(\square\) to trace the sequence year by year. The sequence is displayed at the top of the screen. The values for \(n\) (number of years), \(\mathbf{X}(\mathbf{X}=n\), because \(n\) is plotted on the \(\mathbf{x}\)-axis), and \(\mathbf{Y}\) (tree count) are displayed at the bottom. When will the forest stabilize? With how many trees?


\section*{Defining and Displaying Sequence Graphs}

\section*{Graphing Mode Similarities}

The steps for defining a sequence graph are similar to the steps for defining a function graph. Chapter 6 assumes that you are familiar with Chapter 3: Function Graphing. Chapter 6 details aspects of sequence graphing that differ from function graphing.

\section*{Setting Sequence Graphing Mode}

To display the mode screen, press MODE. To graph sequence functions, you must select Seq graphing mode before you enter window variables and before you enter sequence functions.

Sequence graphs automatically plot in Simul mode, regardless of the current plotting-order mode setting.

\section*{Sequence Functions \(\mathbf{u}\), \(\mathbf{v}\), and \(\mathbf{w}\)}

The TI-84 Plus \(C\) has three sequence functions that you can enter from the keyboard: \(u, v\), and \(w\). They are second functions of the 77, 8, and 9 keys. Press 2nd [u] to enter \(\mathbf{u}\), for example.

The Sequence functions \(\mathbf{u}, \mathbf{v}\) and \(\mathbf{w}\) can also be entered using the Y-VARS shortcut menu ALPHA [F4].
You can define sequence functions in terms of:
- The independent variable \(n\)
- The previous term in the sequence function, such as \(\mathbf{u}(n-1)\)
- The term that precedes the previous term in the sequence function, such as \(\mathbf{u}(n-\mathbf{2})\)
- The previous term or the term that precedes the previous term in another sequence function, such as \(\mathbf{u}(n-\mathbf{1})\) or \(\mathbf{u}(n-2)\) referenced in the sequence \(\mathbf{v}(n)\).

Note: Statements in this chapter about \(\mathbf{u}(n)\) are also true for \(\mathbf{v}(n)\) and \(\mathbf{w}(n)\); statements about \(\mathbf{u}(n-1)\) are also true for \(\mathbf{v}(n-1)\) and \(\mathbf{w}(n-1)\); statements about \(\mathbf{u}(n-2)\) are also true for \(\mathbf{v}(n-2)\) and \(\mathbf{w}(n-2)\).

\section*{Displaying the Sequence \(\mathbf{Y}=\) Editor}

After selecting Seq mode, press \(Y \neq\) to display the sequence \(Y=\) editor.


In this editor, you can display and enter sequences for \(\mathbf{u}(n), \mathbf{v}(n)\), and \(\mathbf{w}(n)\). Also, you can edit the value for \(n \mathbf{M i n}\), which is the sequence window variable that defines the minimum \(n\) value to evaluate.

The sequence \(\mathrm{Y}=\) editor displays the \(n \mathbf{M i n}\) value because of its relevance to \(\mathbf{u}(n \mathbf{M i n}), \mathbf{v}(n \mathbf{M i n})\), and \(\mathbf{w}(n \mathbf{M i n})\), which are the initial values for the sequence equations \(\mathbf{u}(n), \mathbf{v}(n)\), and \(\mathbf{w}(n)\), respectively.
\(n \mathbf{M i n}\) in the \(\mathrm{Y}=\) editor is the same as \(n \mathbf{M i n}\) in the window editor. If you enter a new value for \(n \mathbf{M i n}\) in one editor, the new value for \(n \mathbf{M i n}\) is updated in both editors.

Note: Use \(\mathbf{u}(n \mathbf{M i n}), \mathbf{v}(n \mathbf{M i n})\), or \(\mathbf{w}(n \mathbf{M i n})\) only with a recursive sequence, which requires an initial value.

\section*{Selecting Graph Styles}

The icons to the left of \(\mathbf{u}(n), \mathbf{v}(n)\), and \(\mathbf{w}(n)\) represent the graph style of each sequence (Chapter 3 ). The default in Seq mode is : (Dot-Thick), which shows discrete values.
\begin{tabular}{|c|c|c|}
\hline Icon & Style & Description \\
\hline , & Thin & A solid line connects plotted points; this is the default in Connected mode \\
\hline " & Thick & A thick solid line connects plotted points \\
\hline " & Above & Shading covers the area above the graph \\
\hline 党 & Below & Shading covers the area below the graph \\
\hline 4 & Path & A circular cursor traces the leading edge of the graph and draws a path \\
\hline 4 & Animate & A circular cursor traces the leading edge of the graph without drawing a path \\
\hline \(\because\) & Dot-Thick & A dot ( \(3 \times 3\) pixel) enhances the view around the actual plotted point; this is the default in Dot mode. \\
\hline \(\because\) & Dot-Thin & A small dot ( \(1 \times 1\) pixel) represents each plotted point. \\
\hline
\end{tabular}

\section*{Selecting and Deselecting Sequence Functions}

The TI-84 Plus C graphs only the selected sequence functions. In the \(\mathrm{Y}=\) editor, a sequence function is selected when the \(=\) signs of both \(\mathbf{u}(n)=\) and \(\mathbf{u}(n \mathbf{M i n})=\) are highlighted.
To change the selection status of a sequence function, move the cursor onto the \(=\) sign of the function name, and then press ENTER. The status is changed for both the sequence function \(\mathbf{u}(n)\) and its initial value \(\mathbf{u}(n \mathbf{M i n})\).

\section*{Defining and Editing a Sequence Function}

To define or edit a sequence function, follow the steps in Chapter 3 for defining a function. The independent variable in a sequence is \(n\).

In Seq graphing mode, you can enter the sequence variable by pressing X,T, \(, n, \pi\).

You can enter the function name from the keyboard (2nd [u], 2nd [v], 2nd [w]) or use the shortcut menu ALPHA [F4].

Generally, sequences are either nonrecursive or recursive. Sequences are evaluated only at consecutive integer values. \(n\) is always a series of consecutive integers, starting at zero or any positive integer.

\section*{Nonrecursive Sequences}

In a nonrecursive sequence, the \(n\)th term is a function of the independent variable \(n\). Each term is independent of all other terms.

For example, in the nonrecursive sequence below, you can calculate \(\mathbf{u}(5)\) directly, without first calculating \(\mathbf{u}(1)\) or any previous term.


The sequence equation above returns the sequence \(2,4,6,8,10, \ldots\) for \(n=1,2,3,4,5, \ldots\).
Note: You may leave blank the initial value \(\mathbf{u}(n \mathbf{M i n})\) when calculating nonrecursive sequences.

\section*{Recursive Sequences}

In a recursive sequence, the \(n\)th term in the sequence is defined in relation to the previous term or the term that precedes the previous term, represented by \(\mathbf{u}(n-\mathbf{1})\) and \(\mathbf{u}(n-\mathbf{2})\). A recursive sequence may also be defined in relation to \(n\), as in \(\mathbf{u}(n)=\mathbf{u}(n-\mathbf{1})+n\).

For example, in the sequence below you cannot calculate \(\mathbf{u}(\mathbf{5})\) without first calculating \(\mathbf{u ( 1 )}, \mathbf{u}(\mathbf{2}), \mathbf{u}(\mathbf{3})\), and \(\mathbf{u}(4)\).


Using an initial value \(\mathbf{u}(n \mathbf{M i n})=1\), the sequence above returns \(1,2,4,8,16, \ldots\).
You must type each character of the terms. For example, to enter \(\mathbf{u}(n-\mathbf{1})\), press \(2 n d[\mathbf{u}] \square X, T, \Theta, n \square \square\) 1.

Note: The Sequence function u can also be entered using the Y-VARS shortcut menu ALPHA [F4].
Recursive sequences require an initial value or values, since they reference undefined terms
- If each term in the sequence is defined in relation to the previous term, as in \(\mathbf{u}(n-\mathbf{1})\), you must specify an initial value for the first term.


Note: Use ZOOM 0: ZoomFit to display the graph.
- If each term in the sequence is defined in relation to the term that precedes the previous term, as in \(\mathbf{u}(n-2)\), you must specify initial values for the first two terms. Enter the initial values as a list enclosed in brackets \(\}\) with commas separating the values.
\begin{tabular}{|c|c|}
\hline & drmal floft auto real radian mp \\
\hline & Plot1 Plot2 Plot3 \(n\) Min=1 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& \because u(n) \text { 日. } 8 \mathrm{u}(n-1)+\mathrm{u}(n-2) \\
& u(n \operatorname{Min}) \mathrm{a}\{1,1\} \\
& \because v(n)= \\
& \vee(n \operatorname{Min})= \\
& \because w(n)= \\
& \mathrm{w}(n \operatorname{Min})=
\end{aligned}
\]}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

The value of the first term is 0 and the value of the second term is 1 for the sequence \(\mathbf{u}(n)\).

\section*{Setting Window Variables}

To display the window variables, press WINDOW. These variables define the viewing window. The values below are defaults for Seq graphing in both Radian and Degree angle modes.
\begin{tabular}{ll}
\hline nMin=1 & Smallest \(n\) value to evaluate \\
nMax \(=10\) & Largest \(n\) value to evaluate \\
PlotStart=1 & First term number to be plotted \\
PlotStep=1 & Incremental \(n\) value (for graphing only) \\
Xmin \(=-10\) & Smallest \(X\) value to be displayed \\
Xmax \(=10\) & Largest \(X\) value to be displayed \\
Xscl=1 & Spacing between the \(X\) tick marks \\
Ymin \(=-10\) & Smallest \(Y\) value to be displayed \\
Ymax \(=10\) & Largest \(Y\) value to be displayed \\
Yscl=1 & Spacing between the Y tick marks \\
\hline
\end{tabular}
\(n \mathbf{M i n}\) must be an integer \(\geq 0\). \(n \mathbf{M a x}\), PlotStart, and PlotStep must be integers \(\geq 1\).
\(n \mathbf{M i n}\) is the smallest \(n\) value to evaluate. \(n \mathbf{M i n}\) also is displayed in the sequence \(\mathbf{Y}=\) editor. \(n \mathbf{M a x}\) is the largest \(n\) value to evaluate. Sequences are evaluated at \(\mathbf{u}(n \mathbf{M i n}), \mathbf{u}(n \mathbf{M i n + 1}), \mathbf{u}(n \mathbf{M i n}+2), \ldots, \mathbf{u}(n \mathbf{M a x})\).
PlotStart is the first term to be plotted. PlotStart=1 begins plotting on the first term in the sequence. If you want plotting to begin with the fifth term in a sequence, for example, set PlotStart=5. The first four terms are evaluated but are not plotted on the graph.

PlotStep is the incremental \(n\) value for graphing only. PlotStep does not affect sequence evaluation; it only designates which points are plotted on the graph. If you specify PlotStep=2, the sequence is evaluated at each consecutive integer, but it is plotted on the graph only at every other integer.

\section*{Selecting Axes Combinations}

\section*{Setting the Graph Format}

To display the current graph format settings, press 2nd [FORMAT]. Chapter 3 describes the format settings in detail. The other graphing modes share these format settings. The axes setting on the top line of the screen is available only in Seq mode.
\begin{tabular}{lll}
\hline Time Web uv vw uw & Type of sequence plot (axes) \\
RectGC & PolarGC & Sets cursor coordinates. \\
CoordOn & CoordOff & Sets coordinates display on or off. \\
GridOff & GridDot GridLine & Sets grid off or sets dots or lines as the grid. \\
GridColor & & \begin{tabular}{l} 
Displays a menu to choose a grid color. \\
Axes
\end{tabular} \\
& & \begin{tabular}{l} 
Spinner menu allows you to choose an axes color and set \\
the axes off.
\end{tabular} \\
Labeloff & Labelon & Sets axes label off or on. \\
Expron & Exproff & \begin{tabular}{l} 
Sets expression display on or off. \\
Border Color
\end{tabular} \\
Background & & \begin{tabular}{l} 
Spinner menu allows you to set the border color.
\end{tabular} \\
\hline
\end{tabular}

\section*{Setting Axes Format}

For sequence graphing, you can select from five axes formats. The table below shows the values that are plotted on the \(x\)-axis and \(y\)-axis for each axes setting.
\begin{tabular}{ccc}
\hline Axes Setting & \(\mathbf{x}\)-axis & \(\mathbf{y}\)-axis \\
\hline Time & \(n\) & \(\mathbf{u}(n), \mathbf{v}(n), \mathbf{w}(n)\) \\
\hline \(\mathbf{W e b}\) & \(\mathbf{u}(n-\mathbf{1}), \mathbf{v}(n-\mathbf{1}), \mathbf{w}(n-\mathbf{1})\) & \(\mathbf{u}(n), \mathbf{v}(n), \mathbf{w}(n)\) \\
\hline \(\mathbf{u v}\) & \(\mathbf{u}(n)\) & \(\mathbf{v}(n)\) \\
\hline \(\mathbf{v w}\) & \(\mathbf{v}(n)\) & \(\mathbf{w}(n)\) \\
\hline \(\mathbf{u w}\) & \(\mathbf{u}(n)\) & \(\mathbf{w}(n)\) \\
\hline
\end{tabular}

\section*{Displaying a Sequence Graph}

To plot the selected sequence functions, press GRAPH. As a graph is plotted, the TI-84 Plus C updates X, Y, and \(n\).

Smart Graph applies to sequence graphs (Chapter 3).

\section*{Exploring Sequence Graphs}

\section*{Free-Moving Cursor}

The free-moving cursor in Seq graphing works the same as in Func graphing. In RectGC format, moving the cursor updates the values of \(X\) and \(Y\); if CoordOn format is selected, \(X\) and \(Y\) are displayed. In PolarGC format, \(\mathrm{X}, \mathrm{Y}, \mathrm{R}\), and \(\theta\) are updated; if CoordOn format is selected, R and \(\theta\) are displayed.

\section*{TRACE}

The axes format setting affects TRACE.
When Time, uv, vw, or uw axes format is selected, TRACE moves the cursor along the sequence one PlotStep increment at a time. To move five plotted points at once, press 2nd \(\square\) or 2nd \(\square\).
- When you begin a trace, the trace cursor is on the first selected sequence at the term number specified by PlotStart, even if it is outside the viewing window.
- Quick Zoom applies to all directions. To center the viewing window on the current cursor location after you have moved the trace cursor, press ENTER. The trace cursor returns to \(n \mathbf{M i n}\).

In Web format, the trail of the cursor helps identify points with attracting and repelling behavior in the sequence. When you begin a trace, the cursor is on the \(x\)-axis at the initial value of the first selected function.

Note: To move the cursor to a specified \(n\) during a trace, enter a value for \(n\), and press ENTER. For example, to quickly return the cursor to the beginning of the sequence, paste \(n \mathbf{M i n}\) to the \(n=\) prompt and press ENTER.

\section*{Moving the Trace Cursor to Any Valid \(n\) Value}

To move the trace cursor to any valid \(n\) value on the current function, press TRACE and enter the number. When you enter the first digit, an \(n=\) prompt and the number you entered are displayed in the bottom-left corner of the screen. You can enter an expression at the \(n=\) prompt. The value must be valid for the current viewing window. When you have completed the entry, press ENTER to move the cursor.


\section*{ZOOM}

ZOOM operations in Seq graphing work the same as in Func graphing. Only the \(\mathbf{X}\) ( \(\mathbf{X m i n}, \mathbf{X m a x}\), and \(\mathbf{X s c l})\) and \(\mathbf{Y}(\mathbf{Y m i n}, \mathbf{Y m a x}\), and \(\mathbf{Y s c l})\) window variables are affected.

PlotStart, PlotStep, \(n \mathbf{M i n}\), and \(n \mathbf{M a x}\) are only affected when you select ZStandard. The VARS Zoom secondary menu ZU items 1 through 7 are the ZOOM MEMORY variables for Seq graphing.

\section*{CALC}

The only CALC operation available in Seq graphing is value.
- When Time axes format is selected, value displays \(Y\) (the \(\mathbf{u}(n)\) value) for a specified \(n\) value.
- When Web axes format is selected, value draws the web and displays \(Y\) (the \(\mathbf{u}(n)\) value) for a specified \(n\) value.
- When uv, vw, or uw axes format is selected, value displays \(X\) and \(Y\) according to the axes format setting. For example, for \(\mathbf{u v}\) axes format, X represents \(\mathbf{u}(n)\) and Y represents \(\mathbf{v}(n)\).

\section*{Evaluating \(\mathbf{u}, \mathbf{v}\), and \(\mathbf{w}\)}

To enter the sequence names \(\mathbf{u}, \mathbf{v}\), or \(\mathbf{w}\), press 2nd [ \(\mathbf{u}\) ], 2nd [ \(\mathbf{v}]\), or 2nd [w] or ALPHA [F4].
. You can evaluate these names in any of three ways.
- Calculate the \(n\)th value in a sequence.
- Calculate a list of values in a sequence.
- Generate a sequence with \(\mathbf{u}(n s t a r t, n s t o p[, n s t e p])\). nstep is optional; default is 1 .


\section*{Graphing Web Plots}

\section*{Graphing a Web Plot}

To select Web axes format, press 2nd [FORMAT] \(\square\) ENTER. A web plot graphs \(\mathbf{u}(n)\) versus \(\mathbf{u}(n-\mathbf{1})\), which you can use to study long-term behavior (convergence, divergence, or oscillation) of a recursive sequence. You can see how the sequence may change behavior as its initial value changes.

\section*{Valid Functions for Web Plots}

When Web axes format is selected, a sequence will not graph properly or will generate an error.
- It must be recursive with only one recursion level ( \(\mathbf{u}(n-\mathbf{1})\) but not \(\mathbf{u}(n-\mathbf{2})\) ).
- It cannot reference \(n\) directly.
- It cannot reference any defined sequence except itself.

\section*{Displaying the Graph Screen}

In Web format, press GRAPH to display the graph screen. The TI-84 Plus C:
- Draws a \(\mathbf{y = x}\) reference line in AxesOn format.
- Plots the selected sequences with \(\mathbf{u}(n-\mathbf{1})\) as the independent variable.

Note: A potential convergence point occurs whenever a sequence intersects the \(\mathbf{y}=\mathbf{x}\) reference line. However, the sequence may or may not actually converge at that point, depending on the sequence's initial value.

\section*{Drawing the Web}

To activate the trace cursor, press TRACE. The screen displays the sequence and the current \(n, \mathrm{X}\), and Y values (X represents \(\mathbf{u}(n-1)\) and Y represents \(\mathbf{u}(n)\) ). Press \(\square\) repeatedly to draw the web step by step, starting at \(n \mathbf{M i n}\). In Web format, the trace cursor follows this course.
1. It starts on the \(x\)-axis at the initial value \(\mathbf{u}(n \mathbf{M i n})\) (when PlotStart=1).
2. It moves vertically (up or down) to the sequence.
3. It moves horizontally to the \(\mathbf{y}=\mathbf{x}\) reference line.
4. It repeats this vertical and horizontal movement as you continue to press \(\square\).

\section*{Using Web Plots to IIlustrate Convergence}

\section*{Example: Convergence}
1. Press \(Y\) in Seq mode to display the sequence \(Y=\) editor. Make sure the graph style is set to a default \(\because\) (Dot-Thick), and then define \(n \mathbf{M i n}, \mathbf{u}(n)\) and \(\mathbf{u}(n \mathbf{M i n})\) as \(\mathbf{u}(\mathrm{n})=-.8 \mathbf{u}(\mathrm{n}-1)+3.6\).

2. Press 2nd [FORMAT] ENTER to set Time axes format.
3. Press WINDOW and set the variables as shown below.
\begin{tabular}{lll} 
nMin=1 & Xmin=0 & Ymin=-10 \\
nMax=25 & Xmax=25 & Ymax \(=10\) \\
PlotStart=1 & Xscl=1 & Yscl=1 \\
PlotStep \(=1\) & &
\end{tabular}
4. Press GRAPH to graph the sequence.

5. Press 2nd [FORMAT] and select the Web axes setting.
6. Press WINDOW and change the variables below.

\section*{Xmin=-10 \\ Xmax=10}
7. Press GRAPH to graph the sequence.
8. Press TRACE, and then press \(\square\) to draw the web. The displayed cursor coordinates \(n, \mathbf{X}(\mathbf{u}(n-\mathbf{1})\) ), and \(\mathbf{Y}(\mathbf{u}(n))\) change accordingly. When you press \(\square\), a new \(n\) value is displayed, and the trace cursor is on the sequence. When you press \(\square\) again, the \(n\) value remains the same, and the cursor moves to the \(\mathbf{y}=\mathbf{x}\) reference line. This pattern repeats as you trace the web.


\section*{Graphing Phase Plots}

\section*{Graphing with uv，vw，and uw}

The phase－plot axes settings uv，vw，and uw show relationships between two sequences．To select a phase－plot axes setting，press 2nd［FORMAT］，press \(\square\) until the cursor is on uv，vw，or uw，and then press ENTER．
\begin{tabular}{ccc}
\hline Axes Setting & \(\mathbf{x}\)－axis & \(\mathbf{y}\)－axis \\
\hline \(\mathbf{u v}\) & \(\mathbf{u}(n)\) & \(\mathbf{v}(n)\) \\
\hline \(\mathbf{v w}\) & \(\mathbf{v}(n)\) & \(\mathbf{w}(n)\) \\
\hline \(\mathbf{u w}\) & \(\mathbf{u}(n)\) & \(\mathbf{w}(n)\) \\
\hline
\end{tabular}

\section*{Example：Predator－Prey Model}

Use the predator－prey model to determine the regional populations of a predator and its prey that would maintain population equilibrium for the two species．

This example uses the model to determine the equilibrium populations of foxes and rabbits，with initial populations of 200 rabbits（ \(\mathbf{u}(n \mathbf{M i n})\) ）and 50 foxes（ \(\mathbf{v}(n \mathbf{M i n})\) ）．

These are the variables（given values are in parentheses）：
\begin{tabular}{ll}
R & \(=\) number of rabbits \\
M & \(=\) rabbit population growth rate without foxes \\
K & \(=\) rabbit population death rate with foxes \\
W & \(=\) number of foxes \\
G & \(=\) fox population growth rate with rabbits \\
D & \(=\) fox population death rate without rabbits \\
\(n\) & \(=\) time（in months） \\
\(\mathrm{R}_{n}\) & \(=\mathrm{R}_{\mathrm{n}-1}\left(1+\mathrm{M}-\mathrm{KW}_{\mathrm{n}-1}\right)\) \\
\(\mathrm{W}_{n}\) & \(=\mathrm{W}_{\mathrm{n}-1}\left(1+G \mathrm{R}_{\mathrm{n}-1}-\mathrm{D}\right)\)
\end{tabular}
．Press \(Y=\) in Seq mode to display the sequence \(Y=\) editor．Define the sequences and initial values for \(\mathrm{R}_{\mathrm{n}}\) and \(\mathrm{W}_{\mathrm{n}}\) as shown below．Enter the sequence \(\mathrm{R}_{\mathrm{n}}\) as \(\mathbf{u}(n)\) and enter the sequence \(\mathrm{W}_{\mathrm{n}}\) as \(\mathbf{v}(n)\) ．
```

u(n)=u(n-1)\times(1+0.05-0.001\timesv(n-1))
v(n)=v(n-1)\times(1+0.0002\timesu(n-1)-0.03)
Normal float muto real radifm mp

Plot1 Plot2 Plot3
nMin=1

```

```

u(nMin)日{200}
|v(n)日v(n-1)*(1+.0002*u(r)
v(nMin)日{50}
|
w(nMin})

```

2．Press［2nd［FORMAT］ENTER to select Time axes format．
3. Press WINDOW and set the variables as shown below.
\begin{tabular}{lll}
\(n\) Min=0 & Xmin=0 & Ymin=0 \\
\(n\) Max=400 & Xmax=400 & Ymax=300 \\
PlotStart=1 & Xscl=100 & Yscl=100 \\
PlotStep=1 & &
\end{tabular}
4. Press GRAPH to graph the sequence.

5. Press TRACE \(\square\) to individually trace the number of rabbits \((\mathbf{u}(n))\) and foxes \((\mathbf{v}(n))\) over time \((n)\).

Note: Press a number, and then press ENTER to jump to a specific \(n\) value (month) while in TRACE.


6. Press [2nd [FORMAT] \(\square \square\) ENTER to select uv axes format.
7. Press WINDOW and change these variables as shown below.
\begin{tabular}{ll} 
Xmin=84 & Ymin=25 \\
Xmax=237 & Ymax=75 \\
Xscl=50 & Yscl=10
\end{tabular}
8. Press TRACE. Trace both the number of rabbits (X) and the number of foxes ( \(\mathbf{Y}\) ) through 400 generations.
NORHAL FLOAT AUTO RERL RADIAN MP

Note: When you press TRACE, the equation for \(\mathbf{u}\) is displayed in the top-left corner. Press \(\Delta\) or \(\square\) to see the equation for \(\mathbf{v}\).

\section*{Chapter 7:}

\section*{Tables}

\section*{Getting Started: Roots of a Function}

Getting Started is a fast-paced introduction. Read the chapter for details.
Evaluate the function \(Y=X^{3}-2 X\) at each integer between -10 and 10. How many sign changes occur, and at what \(X\) values?
1. Press MODE \(\square\) ENTER to set Func graphing mode.
2. Press \(Y\). Press \(X, T, \Theta, n\) MATH \(\mathbf{3}\) to select \({ }^{3}\). Then press \(\square \mathbf{X} \triangle, T, \Theta, \square\) to enter the function \(\mathbf{Y} \mathbf{1}=\mathbf{X}^{3}-\mathbf{2 X}\).
3. Press [2nd [TBLSET] to display the TABLE SETUP screen:
- Press -10 ENTER to set TbIStart= -10.
- Press 1 ENTER to set \(\Delta \mathbf{T b l}=1\).
- Press ENTER to select Indpnt: Auto (automatically generated independent values).
- Press \(\square_{\text {ENTER }}\) to select Depend: Auto (automatically generated dependent values).
4. Press 2nd [TABLE] to display the table screen.

Note: The message on the status bar, "Press + for \(\Delta \mathrm{Tbl}\) " is a reminder that you can change \(\Delta \mathbf{T b l}\) from this table view.

5. Press until you see the sign changes in the value of Y1. How many sign changes occur, and at what \(X\) values?

In this case, you can also see the roots of the function by finding when \(\mathrm{Y} 1=0\). You can explore changes in X by pressing \(\dagger\) to display the \(\Delta\) Tbl prompt, entering a new value, and searching for your answer.


\section*{Setting Up the Table}

\section*{TABLE SETUP Screen}

To display the TABLE SETUP screen, press 2nd [TBLSET].


TbIStart, \(\Delta\) Tbl
TbIStart (table start) defines the initial value for the independent variable. TblStart applies only when the independent variable is generated automatically (when Indpnt: Auto is selected).

You can adjust TbIStart and \(\Delta \mathbf{T} \mathbf{I}\) while in the Table screen. Independent and dependent variables vary with Func mode settings ( \(X, T, \theta, n\) ). For example, select an \(X\) value in the \(X\) column, press + and edit the \(\Delta\) Tbl value. The table will update and the cursor will be on the new TblStart \(X\) value.
\(\Delta \mathbf{T} \mathbf{I}\) (table step) defines the increment for the independent variable.
Indpnt: Auto, Indpnt: Ask, Depend: Auto, Depend: Ask
\begin{tabular}{ll}
\hline Selections & Table Characteristics \\
\hline \begin{tabular}{l} 
Indpnt: Auto \\
Depend: Auto
\end{tabular} & \begin{tabular}{l} 
Values are displayed automatically in both the independent- \\
variable column and in all dependent-variable columns.
\end{tabular} \\
\hline \begin{tabular}{ll} 
Indpnt: Ask \\
Depend: Auto
\end{tabular} & \begin{tabular}{l} 
The table is empty. When you enter a value for the \\
independent variable, all corresponding dependent-variable \\
values are calculated and displayed automatically.
\end{tabular} \\
\hline \begin{tabular}{ll} 
Indpnt: Auto & \begin{tabular}{l} 
Values are displayed automatically for the independent \\
vepend: Ask
\end{tabular} \\
\begin{tabular}{ll} 
variable. To generate a value for a dependent variable, move \\
the cursor to that cell and press ENTER.
\end{tabular} \\
\hline Indpnt: Ask & \begin{tabular}{l} 
The table is empty; enter values for the independent variable. \\
To generate a value for a dependent variable, move the \\
Depend: Ask
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{Setting Up the Table from the Home Screen or a Program}

To store a value to TbIStart, \(\Delta \mathbf{T} \mathbf{I}\), or TbIInput from the home screen or a program, select the variable name from the VARS TABLE secondary menu. TbIInput is a list of independent-variable values in the current table.

When you press 2nd [TBLSET] in the program editor, you can select IndpntAuto, IndpntAsk, DependAuto, and DependAsk.

\section*{Defining the Dependent Variables}

\section*{Defining Dependent Variables from the \(\mathbf{Y}=\) Editor}

In the \(Y=\) editor, enter the functions that define the dependent variables. Only functions that are selected in the \(\mathrm{Y}=\) editor are displayed in the table. The current graphing mode is used. In parametric mode, you must define both components of each parametric equation (Chapter 4).

\section*{Editing Dependent Variables from the Table Editor}

To edit a selected \(Y=\) function from the table editor, follow these steps.
1. Press [2nd [TABLE] to display the table, and then press \(\square\) or \(\square\) to move the cursor to a dependentvariable column.
2. Press \(\boldsymbol{\Delta}\) until the cursor is on the function name at the top of the column. The function is displayed on the bottom line.

3. Press ENTER. The cursor moves to the bottom line. Edit the function.


4. Press ENTER or \(⿴\). The new values are calculated. The table and the \(Y=\) function are updated automatically.


Note: You also can use this feature to view the function that defines a dependent variable without having to leave the table.

\section*{Displaying the Table}

\section*{The Table}

To display the table, press 2nd [TABLE].
Note: The table abbreviates the values, if necessary.


Note: When the table first displays, the message "Press + for \(\Delta \mathbf{T b l}\) " is on the status bar. This message reminds you that you can select an independent variable for a new TbIStart and press \(\square\) to change \(\Delta\) Tbl at any time.

\section*{Independent and Dependent Variables}

The current graphing mode determines which independent and dependent variables are displayed in the table. In the table above, for example, the independent variable \(X\) and the dependent variables Y1 and \(\mathbf{Y 2}\) are displayed because Func graphing mode is set.
\begin{tabular}{lcl}
\hline Graphing Mode & \begin{tabular}{c} 
Independent \\
Variable
\end{tabular} & Dependent Variable \\
\hline Func (function) & X & Y1 through Y9, and Y0 \\
\hline Par (parametric) & T & \(\mathbf{X 1 T / Y 1 T}\) through X6T/Y6T \\
\hline Pol (polar) & \(\theta\) & r1 through r6 \\
\hline Seq (sequence) & \(n\) & \(\mathbf{u}(n), \mathbf{v}(n)\), and \(\mathbf{w}(n)\) \\
\hline
\end{tabular}

\section*{Clearing the Table from the Home Screen or a Program}

From the home screen, select the CIrTable instruction from the CATALOG. To clear the table, press ENTER. This clears the table for Ask modes on 2nd [TBLSET].

From a program, select 9:CIrTable from the PRGM I/O menu or from the CATALOG. The table is cleared upon execution. If IndpntAsk is selected, all independent and dependent variable values on the table are cleared. If DependAsk is selected, all dependent variable values on the table are cleared.

\section*{Scrolling Independent-Variable Values}

If Indpnt: Auto is selected, you can press \(\Delta\) and \(\square\) in the independent-variable column to display more values. As you scroll the column, the corresponding dependent-variable values also are displayed. All dependent-variable values may not be displayed if Depend: Ask is selected.
\begin{tabular}{|c|c|c|}
\hline X & \(\mathrm{Y}_{1}\) & Yz \\
\hline \({ }^{0}\) & \({ }_{-1}\) & \(\stackrel{4}{-9}\) \\
\hline \% & 4 & 0 \\
\hline \(\frac{3}{4}\) & \({ }_{51}\) & \({ }_{46}^{15}\) \\
\hline 5 & \(\frac{115}{204}\) & \({ }_{192}\) \\
\hline \multicolumn{3}{|l|}{\(8=1\)} \\
\hline
\end{tabular}

Note: You can scroll back from the value entered for TbIStart. As you scroll, TbIStart is updated automatically to the value shown on the top line of the table. In the example above, TbIStart=0 and \(\Delta \mathbf{T} \mathbf{b l}=\mathbf{1}\) generates and displays values of \(\mathbf{X = 0}, \ldots, 6\); but you can press \(\Delta\) to scroll back and display the table for \(\mathbf{X =}=1, \ldots, 5\).


\section*{Changing Table Settings from the Table View}

You can change table settings from the table view by first highlighting an x value for the new TblStart, then pressing \(\dagger\), and entering a new \(\Delta\) value.
1. Press \(Y=\) and then press \(\mathbf{1}\) ALPHA [F1] \(12 \triangle, T, \Theta, \pi\) to enter the function \(\mathbf{Y 1 = 1 / 2 x}\).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{NokMal float muto kent radian mp} \\
\hline Plot1 Plot2 & Plot 3 & \\
\hline - \(Y_{1 日} \frac{1}{2} \mathrm{X}\) & & \\
\hline  & & \\
\hline
\end{tabular}
2. Press 2nd [TBLSET] to display the TABLE SETUP screen:
- Press 3 ENTER to set TblStart= 3.
- Press 1 ENTER to set \(\Delta\) Tbl= 1.
- Press ENTER to select Indpnt: Auto (automatically generated independent values).
3. Press - ENTER to select Depend: Auto (automatically generated dependent values).
4. Press 2nd [TABLE] to display the table screen.
5. Press \(\dagger\) for \(\Delta\) Tbl.

6. Press \(\mathbf{1}\) ALPHA [F1] \(\mathbf{1} \mathbf{2}\) to change the table settings and to view changes in \(X\) (in increments of \(1 / 2\) ).

7. Press ENTER.


\section*{Displaying Other Dependent Variables}

All selected \(Y=\) functions will display in a table. To see functions not in view, press \(\square\) or \(\square\). The independent variable always remains in the left column, except during a trace with parametric graphing mode and G-T split-screen mode set.
\begin{tabular}{|c|c|c|}
\hline X & \(\mathrm{V}_{2}\) & V3 \\
\hline - 4 & -4 & -818 \\
\hline - -1 & - & - \\
\hline 0 & \% & \% \\
\hline 1 & 14 & 2 \\
\hline
\end{tabular}

Note: To select an ordering of the \(Y=\) functions ( \(Y\)-vars) to display, pick only the \(Y=\) functions you wish to view. For example, to simultaneously display Y 4 and Y 7 on the table, go to the \(\mathrm{Y}=\) editor and deselect Y5 and Y6.

\section*{Chapter 8:}

\section*{Draw Instructions}

\section*{Getting Started: Drawing a Tangent Line}

Getting Started is a fast-paced introduction. Read the chapter for details.
Suppose you want to find the equation of the tangent line at \(X=\frac{\sqrt{2}}{2}\) for the function \(Y=\sin (X)\).
1. Before you begin, press MODE and set the decimal setting to 4 places. Select Radian and Function (if necessary).

2. Press \(Y=\) to display the \(Y=\) editor. Press \(\operatorname{SIN} X, T, \Theta, \eta\)to store \(\boldsymbol{\operatorname { s i n }}(\mathbf{X})\) in \(\mathbf{Y 1}\).

3. Press ZOOM \(\mathbf{7}\) to select \(\mathbf{7 : Z T r i g}\), which graphs the equation in the Zoom Trig window.

4. Press 2nd [DRAW] \(\mathbf{5}\) to select \(\mathbf{5}\) :Tangent(. The tangent instruction is initiated.
- Press ALPHA [F5] to change the color and line style (use the default thick line style).

5. Press 2nd [v] \(2 \square 2\).

6. Press ENTER. The tangent line is drawn; the \(X\) value and the tangent-line equation are displayed on the graph.

Consider repeating this activity with the mode set to the number of decimal places desired. The first screen shows four decimal places. The second screen shows the decimal setting at Float.


\section*{Using the DRAW Menu}

\section*{DRAW Menu}

To display the DRAW menu, press 2nd [DRAW]. The TI-84 Plus C's interpretation of these instructions depends on whether you accessed the menu from the home screen or the program editor or directly from a graph (interactive).
\begin{tabular}{lll}
\hline DRAW & POINTS STO & BACKGROUND \\
1: & ClrDraw & Clears all drawn elements. \\
2: & Line( & Draws a line segment between 2 points. \\
3: & Horizontal & Draws a horizontal line. \\
4: & Vertical & Draws a vertical line. \\
5: & Tangent ( & Draws a line segment tangent to a function. \\
6: & DrawF & Draws a function. \\
\(7:\) & Shade( & Shades an area between two functions. \\
8: & DrawInv & Draws the inverse of a function. \\
9: & Circle( & Draws a circle. \\
0: & Text & Draws text on a graph screen. \\
A: & Pen & Activates the free-form drawing tool.
\end{tabular}

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).

\section*{Before Drawing on a Graph}

The DRAW instructions draw on top of graphs. Therefore, before you use the DRAW instructions, consider whether you want to perform one or more of the following actions.
Note: DRAW will not change the Background Image Vars.
- Change the mode settings on the mode screen.
- Change the format settings on the format screen. You can press [2nd [FORMAT] or use the shortcut on the mode screen to go to the format graph screen.
- Enter or edit functions in the \(Y=\) editor.
- Select or deselect functions in the \(Y=\) editor.
- Change the window variable values.
- Turn stat plots on or off.
- Clear existing drawings with CIrDraw (this will not impact Background Image Vars).

Note: If you draw on a graph and then perform any of the actions listed above, the graph is replotted without the drawings when you display the graph again. Before you clear drawings, you can store them with StorePic. This stores the drawings and any graphs, plots and axes. Background Images are not part of the Pic Var layer.

\section*{Drawing on a Graph}

You can use any DRAW menu instructions except Drawlnv to draw on Func, Par, Pol, and Seq graphs. DrawInv is valid only in Func graphing. The coordinates for all DRAW instructions are the display's \(x\)-coordinate and \(y\)-coordinate values.
You can use most DRAW menu and DRAW POINTS menu instructions to draw directly on a graph, using the cursor to identify the coordinates. You can choose STYLE to change the color and line style (when applied). The Status bar tells you which DRAW or POINT command is active. You also can execute these instructions from the home screen or from within a program. If a graph is not displayed when you select a DRAW menu instruction, the home screen is displayed.

\section*{Clearing Drawings}

\section*{Clearing Drawings When a Graph Is Displayed}

All points, lines, and shading drawn on a graph with DRAW instructions are temporary.
To clear drawings from the currently displayed graph, select 1:ClrDraw from the DRAW menu. The current graph is replotted and displayed with no drawn elements.

\section*{Clearing Drawings from the Home Screen or a Program}

To clear drawings on a graph from the home screen or a program, begin on a blank line on the home screen or in the program editor. Select 1:CIrDraw from the DRAW menu. The instruction is copied to the cursor location. Press ENTER.

When ClrDraw is executed, it clears all drawings from the current graph and displays the message Done. When you display the graph again, all drawn points, lines, circles, and shaded areas will be gone.

\section*{Clr.Dr:}

Done

\section*{Drawing Line Segments}

\section*{Setting Graph Styles}

This table describes the graph styles available for drawing line segments. Use the styles to visually differentiate line segments. You can also set the line color.
\begin{tabular}{cll}
\hline Icon & Style & Description \\
\hline \multirow{3}{*}{} & Thin & A solid line connects plotted points \\
\hline 等 & Thick & Below \\
\hline
\end{tabular}

Note: All graph styles are not listed; use \(\square\) in the spinner menu to view the line styles offered for each command.

\section*{Shading Above and Below}

When you select \(\overline{\text { W }}\) or 业 for two or more functions, the TI-84 Plus C rotates through four shading patterns.
- Vertical lines shade the first function with a \({ }^{\text {Win }}\) or graph style.
- Horizontal lines shade the second.
- Negatively sloping diagonal lines shade the third.
- Positively sloping diagonal lines shade the fourth.
- The rotation returns to vertical lines for the fifth or function, repeating the order described above.

When shaded areas intersect, the patterns overlap.

\section*{Drawing a Line Segment Directly on a Graph}

To draw a line segment when a graph is displayed, follow these steps.
1. Select 2:Line( from the DRAW menu.

Note: Line( is also available from the CATALOG menu.
2. Press ALPHA [F5] to change the color and line style using spinner menus (the default is thick line).
3. Place the cursor on the point where you want the line segment to begin, and then press ENTER.
4. Move the cursor to the point where you want the line segment to end. The line is displayed as you move the cursor. Press ENTER.


To continue drawing line segments, repeat steps 2, 3 and 4 . To cancel Line(, press CLEAR.
Note: You can change the STYLE as long as the menu is active.

\section*{Drawing a Line Segment from the Home Screen or a Program}

Line( also draws a line segment between the coordinates ( \(X 1, Y 1\) ) and ( \(X 2, Y 2\) ). The values may be entered as expressions.

Line(X1,Y1,X2,Y2[,erase\#,[color\#,linestyle\#]])


To erase a line segment, enter Line( \(X 1, Y 1, X 2, Y 2,0\) )


Note: DRAW commands can erase parts of graphs and the axes. DRAW commands will not erase a Background Image.

\section*{Drawing Horizontal and Vertical Lines}

\section*{Drawing a Line Directly on a Graph}

To draw a horizontal or vertical line when a graph is displayed, follow these steps.
1. Select 3:Horizontal or 4:Vertical from the DRAW menu. A line is displayed that moves as you move the cursor.
2. Press ALPHA [F5] to change the color and line style using spinner menus.
3. Place the cursor on the y-coordinate (for horizontal lines) or x-coordinate (for vertical lines) through which you want the drawn line to pass.
4. Press ENTER to draw the line on the graph.


To continue drawing lines, repeat steps 2 and 3.
Note: You can change the STYLE as long as the menu is active.

To cancel Horizontal or Vertical, press CLEAR.

\section*{Drawing a Line from the Home Screen or a Program}

Horizontal (horizontal line) draws a horizontal line at \(\mathbf{Y}=y . y\), which can be an expression but not a list.
Horizontal \(y\) [,color\#, line style\#]
Vertical (vertical line) draws a vertical line at \(\mathbf{X}=x . x\), which can be an expression but not a list.
Vertical \(x\) [,color\#, line style\#]
To instruct the TI-84 Plus C to draw more than one horizontal or vertical line, separate each instruction with a colon (: ).
MathPrint \({ }^{\text {TM }}\)
HoRMAL FLOAT AUTO REAL RADIAN MP
Horizontal 7, GREEN: Vertical

Classic


\section*{Drawing Tangent Lines}

\section*{Drawing a Tangent Line Directly on a Graph}

To draw a tangent line when a graph is displayed, follow these steps.
1. Select 5:Tangent( from the DRAW menu.
2. Press ALPHA [F5] to change the color and line style using spinner menus.
3. Press \(\square\) and \(\Delta\) to move the cursor to the function for which you want to draw the tangent line. The current graph's \(Y=\) function is displayed in the top-left corner, if ExprOn is selected.

4. Press \(\square\) and \(\square\) or enter a number to select the point on the function at which you want to draw the tangent line.
5. Press ENTER. In Func mode, the \(X\) value at which the tangent line was drawn is displayed on the bottom of the screen, along with the equation of the tangent line. In all other modes, the dy/dx value is displayed.

6. Change the fixed decimal setting on the mode screen if you want to see fewer digits displayed for \(X\) and the equation for \(Y\).


\section*{Drawing a Tangent Line from the Home Screen or a Program}

Tangent( (tangent line) draws a line tangent to expression in terms of X , such as Y 1 or \(\mathrm{X}^{2}\), at point \(\mathbf{X}=\) value. X can be an expression. expression is interpreted as being in Func mode.

Tangent(expression, value [,color\#, line style\#] )


\section*{Drawing Functions and Inverses}

\section*{Drawing a Function}

DrawF (draw function) draws expression as a function in terms of \(X\) on the current graph. When you select 6:DrawF from the DRAW menu, the TI-84 Plus C returns to the home screen or the program editor. DrawF is not interactive.

DrawF expression [,color\#])



Note: You cannot use a list in expression to draw a family of curves.

\section*{Drawing an Inverse of a Function}

Drawlnv (draw inverse) draws the inverse of expression by plotting \(X\) values on the \(y\)-axis and \(Y\) values on the x-axis. When you select 8:DrawInv from the DRAW menu, the TI-84 Plus C returns to the home screen or the program editor. Drawlnv is not interactive. Drawlnv works in Func mode only.
Drawlnv expression [, color\#])


Note: You cannot use a list of expressions with DrawInv.

\section*{Shading Areas on a Graph}

\section*{Shading a Graph}

To shade an area on a graph, select 7:Shade( from the DRAW menu. The instruction is pasted to the home screen or to the program editor.

Shade(lowerfunc, upperfunc[,Xleft,Xright,pattern,patres, color \#])


Shade( draws lowerfunc and upperfunc in terms of \(X\) on the current graph and shades the area that is specifically above lowerfunc and below upperfunc. Only the areas where lowerfunc < upperfunc are shaded.

Xleft and Xright, if included, specify left and right boundaries for the shading. Xleft and Xright must be numbers between Xmin and Xmax, which are the defaults.
pattern specifies one of four shading patterns.
\begin{tabular}{ll} 
pattern \(=\mathbf{1}\) & vertical (default) \\
pattern \(=\mathbf{2}\) & horizontal \\
pattern \(=\mathbf{3}\) & negative-slope \(45^{\circ}\) \\
pattern \(=\mathbf{4}\) & positive-slope \(45^{\circ}\)
\end{tabular}
patres specifies one of eight shading resolutions.
\begin{tabular}{ll} 
patres \(=\mathbf{1}\) & shades every pixel (default) \\
patres \(=\mathbf{2}\) & shades every second pixel \\
patres \(=\mathbf{3}\) & shades every third pixel \\
patres \(=\mathbf{4}\) & shades every fourth pixel \\
patres \(=\mathbf{5}\) & shades every fifth pixel \\
patres \(=\mathbf{6}\) & shades every sixth pixel \\
patres \(=\mathbf{7}\) & shades every seventh pixel \\
patres \(=\mathbf{8}\) & shades every eighth pixel
\end{tabular}

Colors specifies available colors for DRAW commands.

Choose from the following options using the numbers for functions and commands as shown below:
\begin{tabular}{ll} 
Color Number & Color Name \\
10 & BLUE \\
11 & RED \\
12 & BLACK \\
13 & MAGENTA \\
14 & GREEN \\
15 & ORANGE \\
16 & BROWN \\
17 & NAVY \\
18 & LTBLUE \\
19 & YELLOW \\
20 & WHITE \\
21 & LTGRAY \\
22 & MEDGRAY \\
23 & GRAY \\
24 & DARKGRAY
\end{tabular}

You can also choose a color name in the VARS menu (color sub-menu).


\section*{Drawing Circles}

\section*{Drawing a Circle Directly on a Graph}

To draw a circle directly on a displayed graph using the cursor, follow these steps.
1. Select 9:Circle( from the DRAW menu.
2. Press ALPHA [F5] to change the color and line style using spinner menus.
3. Place the cursor at the center of the circle you want to draw. Press ENTER.
4. Move the cursor to a point on the circumference. Press ENTER to draw the circle on the graph.


Note: This circle is displayed as circular, regardless of the window variable values, because you drew it directly on the display. In the example above, the Axes is off.

To continue drawing circles, repeat steps 2, 3 and 4 . To cancel Circle(, press CLEAR.

\section*{Drawing a Circle from the Home Screen or a Program}

Circle( draws a circle with center \((X, Y)\) and radius. These values can be expressions.
Circle(X, Y,radius[, color\#, linestyle\#]) )


Note: When you use Circle( on the home screen or from a program, the current window values may distort the drawn circle. Use ZSquare (Chapter 3) before drawing the circle to adjust the window variables and make the circle circular. In the example above, the Axes is on.

\section*{Placing Text on a Graph}

\section*{Placing Text Directly on a Graph}

To place text on a graph when the graph is displayed, follow these steps.
1. Select 0:Text( from the DRAW menu.
2. Press ALPHA [F5] to change the color.
3. Place the cursor where you want the text to begin.
4. Enter the characters. Press \(\operatorname{ALPHA}\) or 2nd [A-LOCK] to enter letters and \(\theta\). You may enter TI-84 Plus C functions, variables, and instructions. The font is proportional, so the exact number of characters you can place on the graph varies. As you type, the characters are placed on top of the graph.

To cancel Text(, press CLEAR).

\section*{Placing Text on a Graph from the Home Screen or a Program}

Text( places on the current graph the characters comprising value, which can include TI-84 Plus C functions and instructions. The top-left corner of the first character is at pixel (row,column), where row is an integer between 0 and 164 and column is an integer between 0 and 264. Both row and column can be expressions.

\begin{tabular}{lll} 
Graph Area & Pixel Rows & Pixel Columns \\
FULL & \(0-164\) & \(0-264\) \\
HORIZ & \(0-80\) & \(0-264\) \\
G-T & \(0-144\) & \(0-184\)
\end{tabular}

Text(row,column, text1,text2,..., text n)
value can be text enclosed in quotation marks (" ), or it can be an expression. You can change color while STYLE is in display (in graph view). The TI-84 Plus C will evaluate an expression and display the result with up to 10 characters.



\section*{Using Pen to Draw on a Graph}

\section*{Using Pen to Draw on a Graph}

Pen draws directly on a graph only. You cannot execute Pen from the home screen or a program. Pen is also not included in Catalog Help. You can capture the screen you created using TI-Connect \({ }^{\text {TM }}\) software and save it to your computer for homework or teaching material or store it as a picture file (Pic Var) on your TI-84 Plus C.

To draw on a displayed graph, follow these steps.
1. Select A:Pen from the DRAW menu.
2. Press ALPHA [F5] to change the color.
3. Place the cursor on the point where you want to begin drawing. Press ENTER to turn on the pen.
4. Move the cursor. As you move the cursor, you draw on the graph, shading one pixel at a time.
5. Press ENTER to turn off the pen.

For example, Pen was used to create the arrow pointing to the local minimum of the selected function.


Note: To continue drawing on the graph, move the cursor to a new position where you want to begin drawing again, and then repeat steps 2,3 , and 4.
Note: You can change the STYLE as long as the menu is active.

To cancel Pen, press CLEAR.

\section*{Drawing Points on a Graph}

\section*{DRAW POINTS Menu}

To display the DRAW POINTS menu, press \(2 n d\) [DRAW] \(\square\). The interpretation of these instructions depends on whether you accessed this menu from the home screen or the program editor or directly from a graph.
\begin{tabular}{lll}
\hline DRAW & \multicolumn{1}{c}{ POINTS } & STO \\
1: & Pt-On ( & Turns on a point. \\
\(2:\) & Pt-Off ( & Turns off a point. \\
\(3:\) & Pt-Change ( & Toggles a point on or off. \\
\(4:\) & Pxl-On ( & Turns on a pixel. \\
\(5:\) & Pxl-Off( & Turns off a pixel. \\
\(6:\) & Pxl-Change ( & Toggles a pixel on or off. \\
\(7:\) & pxl-Test( & \begin{tabular}{l} 
Returns 1 if pixel on, 0 if \\
pixel off.
\end{tabular} \\
\hline
\end{tabular}

Note: These points and pixels are on the Pic layer. The Background Image will be the "off" color.

\section*{Drawing Points Directly on a Graph with Pt-On(}

To draw a point on a graph, follow these steps.
1. Select 1:Pt-On( from the DRAW POINTS menu.
2. Press ALPHA \([F 5]\) to change the color and mark ( \(\square\) or + , dot-thick or dot-thin).
3. Move the cursor to the position where you want to draw the point.
4. Press ENTER to draw the point.


To continue drawing points, repeat steps 2,3 and 4. To cancel Pt-On(, press CLEAR.

\section*{Erasing Points with Pt-Off(}

To erase (turn off) a drawn point on a graph, follow these steps.
1. Select 2:Pt-Off( (point off) from the DRAW POINTS menu.
2. Press ALPHA [F5] to change the color and mark (as required).
3. Move the cursor to the point you want to erase.
4. Press ENTER to erase the point.

To continue erasing points, repeat steps 2 and 3. To cancel Pt-Off(, press CLEAR.

\section*{Changing Points with Pt-Change(}

To change (toggle on or off) a point on a graph, follow these steps.
1. Select 3:Pt-Change( (point change) from the DRAW POINTS menu.
2. Move the cursor to the point you want to change.

Note: You can change the color (as needed) using the STYLE menu.
3. Press ENTER to change the point's on/off status.

To continue changing points, repeat steps 2 and 3. To cancel Pt-Change(, press CLEAR.

\section*{Drawing Points from the Home Screen or a Program}

Pt-On( (point on) turns on the point at ( \(\mathbf{X}=x, \mathbf{Y}=y\) ). Pt-Off( turns the point off. Pt-Change( toggles the point on or off. mark is optional; it determines the point's appearance; specify \(\mathbf{1 , 2}\), or \(\mathbf{3}\), where:
\[
\mathbf{1}=\cdot \text { (Dot-Thick; default) } \quad \mathbf{2}=\square \text { (box) } \quad \mathbf{3}=+ \text { (cross) } \quad \mathbf{4}=. \text { (Dot-Thin) }
\]

Pt-On(x,y[,mark, color\#])
Pt-Off( \(x, y[\) mark])
Note: Press ALPHA [F5] to change the color and mark (as required).
Pt-Change( \(x, y[\),mark, color\#])



Note: If you specified mark to turn on a point with Pt-On(, you must specify mark when you turn off the point with Pt-Off(. Pt-Change( does not have the mark option.

\section*{Drawing Pixels}

\section*{TI-84 Plus C Pixels}

A pixel is a square dot on the TI-84 Plus C display. The PxI- (pixel) instructions let you turn on, turn off, or reverse a pixel ( \(1 \times 1\) pixel) on the graph using the cursor. When you select a pixel instruction from the DRAW POINTS menu, the TI-84 Plus C returns to the home screen or the program editor. The pixel instructions are not interactive.

\section*{TI-84 Plus Pixels in Full, Horiz and G-T Modes}


\section*{PxI-On, PxI-Off, PxI-Change(,PxI-Test(}

PxI-On(row,column [,color])
PxI-Off(row,column [,color])
PxI-Change(row,column [,color])
pxI-Test(row,column)
\begin{tabular}{lll} 
Graph Area & Pixel Rows & Pixel Columns \\
FULL & \(0-164\) & \(0-264\) \\
HORIZ & \(0-80\) & \(0-264\) \\
G-T & \(0-144\) & \(0-184\)
\end{tabular}

\section*{Storing Graph Pictures (Pic)}

\section*{DRAW STO Menu}

To display the DRAW STO menu, press [2nd [DRAW] 0 U. You can use the DRAW STO menu items to store and recall Pic Vars. When you select an instruction from the DRAW STO menu, the TI-84 Plus C returns to the home screen or the program editor.
\begin{tabular}{lll}
\hline DRAW POINTS & STO & BACKGROUND \\
1: StorePic & Stores the current picture. \\
\(2:\) & RecallPic & Recalls a saved picture. \\
\(3:\) & StoreGDB & Stores the current graph database. \\
\(4:\) & RecallGDB & Recalls a saved graph database. \\
\hline
\end{tabular}

\section*{Storing a Graph Picture (Pic Var)}

Pic Vars are variables stored in archive memory. You can store up to 10 graph pictures, each is a pic of the current graph area in variables Pic1 through Pic9, or Pic0. Later, you can superimpose the stored picture onto a graph from the home screen or a program.

Note: Storing a Pic var does not inlcude the Background Image behind your graphing area.
A picture includes drawn elements, plotted functions, axes, grid and tick marks. The picture does not include axes labels, lower and upper bound indicators, prompts, or cursor coordinates. Any parts of the display hidden by these items are stored with the picture. The picture layer does not include the Background Image Var or Background COLOR.

To store a graph picture, follow these steps.
1. Select 1:StorePic from the DRAW STO menu. StorePic is pasted to the current cursor location.
2. Enter the number (from 1 to 9 , or 0 ) of the picture variable to which you want to store the picture. For example, if you enter 3, the TI-84 Plus C will store the picture to Pic3.

3. Press ENTER to display the current graph and store the picture.

You can select a Pic Var from the Picture and Background menu (VARS 4). You can preview your stored Pics and select the Pic Var to store to. Pics will overwrite without a warning. An * (Asterisk) symbol by any stored Pic Var indicates that the Pic is stored in archive. The TI-84 Plus C Pics that are stored always run from and remain in archive memory. They layer over the current Background Image or Background COLOR. Pics are stored and run from archive memory.
- Pics are the size of the graph area where they have been drawn FULL, HORIZ or G-T.
- A Pic Var does not scale and displays from the upper left corner of the graph area in FULL, HORIZ, or G-T.
- In the TI Connect \({ }^{\text {TM }}\) software, Pics are saved as *.8ci files.

\section*{Recalling Graph Pictures (Pic)}

\section*{Recalling a Picture from the Home Screen or Program}

To recall a graph picture from the home screen or a program, follow these steps.
1. Select 2:RecallPic from the DRAW STO menu. RecallPic is pasted to the current cursor location.
2. Enter the number (from 1 to 9 , or 0 ) of the picture variable from which you want to recall a picture. For example, if you enter 3, the \(\mathrm{TI}-84\) Plus C will recall the picture stored to Pic3.


Note: You also can select a variable from the PICTURE secondary menu (VARS 4). The variable is pasted next to RecallPic.
3. Press ENTER to display the current graph with the picture superimposed on it.

Note: Pictures are drawings. You cannot trace a curve that is part of a picture.

\section*{Recalling a Pic from the Graph Screen}

To recall a picture from the graph screen:
1. Press GRAPH.
2. Select 2:RecallPic from the DRAW STO menu.
3. Press \(\square\) in the spinner menu to preview Pic Vars and select a picture.

4. Press ENTER .

\section*{Deleting a Graph Picture}

To delete graph pictures from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).

\section*{Storing Graph Databases (GDB)}

\section*{What Is a Graph Database?}

A graph database (GDB) contains the set of elements that defines a particular graph. You can recreate the graph from these elements. You can store up to 10 GDBs in variables GDB1 through GDB9, or GDB0 and recall them to recreate graphs.
A GDB stores five elements of a graph.
- Graphing mode
- Window variables
- Format settings
- All functions in the \(Y=\) editor and the selection status of each
- Graph style for each \(Y=\) function

GDBs do not contain drawn items or stat plot definitions.

\section*{Storing a Graph Database}

To store a graph database, follow these steps.
1. Select 3:StoreGDB from the DRAW STO menu. StoreGDB is pasted to the current cursor location.
2. Enter the number (from 1 to 9 , or 0 ) of the GDB variable to which you want to store the graph database. For example, if you enter 7, the TI-84 Plus \(C\) will store the GDB to GDB7.


Note: You also can select a variable from the GDB secondary menu (VARS 3). The variable is pasted next to StoreGDB.
3. Press ENTER to store the current database to the specified GDB variable.

\section*{Recalling Graph Databases (GDB)}

\section*{Recalling a Graph Database}

CAUTION: When you recall a GDB, it replaces all existing \(Y=\) functions. Consider storing the current \(Y=\) functions to another database before recalling a stored GDB.

To recall a graph database, follow these steps.
1. Select 4:RecalIGDB from the DRAW STO menu. RecalIGDB is pasted to the current cursor location.
2. Enter the number (from 1 to 9 , or 0 ) of the GDB variable from which you want to recall a GDB. For example, if you enter 7, the TI-84 Plus C will recall the GDB stored to GDB7.


Note: You also can select a variable from the GDB secondary menu (VARS 3). The variable is pasted next to RecalIGDB.
3. Press ENTER to replace the current GDB with the recalled GDB. The new graph is not plotted. The TI-84 Plus C changes the graphing mode automatically, if necessary.

\section*{Deleting a Graph Database}

To delete a GDB from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).

\section*{Background Menu and Image Vars}

An Image Var is used as a Background Image in the graph area. Images are pre-loaded and you can also create images in the TI Connect \({ }^{\text {TM }}\) software. Image Vars (Image1 - Image9, and Image0) are variables stored in archive memory.
To set a Background Image from the [DRAW] menu, follow these steps.
1. Press [2nd [DRAW]. Select 1:BackgroundOn from the DRAW BACKGROUND menu.
2. Enter a number (from 1 to 9 , or 0 ) of the image you want as a Background.
3. Press ENTER.

To set a Background Image from the VARS menu, follow these steps:
1. Press GRAPH.
2. Press 2nd [DRAW] 1:BackgroundOn.
3. Use the spinner menu to select a Background Image Var. The preview is in the graph area.
4. Press GRAPH to select.

\section*{Chapter 9: \\ Split Screen}

\section*{Getting Started: Exploring the Unit Circle}

Getting Started is a fast-paced introduction. Read the chapter for details.
Use Graph-Table split-screen mode to explore the unit circle and its relationship to the numeric values for the commonly used trigonometric angles of \(0^{\circ} 30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}\), and so on.
1. Press MODE to display the mode screen. Press \(\square \square\) ENTER to select Degree mode. Press \(\square \square\) ENTER to select Parametric graphing mode.
Press \(\square_{\square} \square \square\) ENTER to select Graph-Table split-screen mode.

2. Press [2nd [FORMAT] to display the format screen. Press \(\square\) \(\square \square \square \square \square\) ENTER to select ExprOff.
3. Press \(Y=\) to display the \(Y=\) editor for Parametric graphing mode. Press \(\operatorname{COS} X, T, \Theta, n\) ENTER to store \(\boldsymbol{\operatorname { c o s } ( T )}\) to X1T. Press SIN X,T, \(\Theta, n\) DENTER to store \(\boldsymbol{\operatorname { s i n }}(\mathrm{T})\) to Y 1 T .


4. Press WINDOW to display the window editor. Enter these values for the window variables.
```

Tmin=0 \quad Xmin=-3 \quad Ymin=-2.5
Tmax=360 Xmax=3 Ymax=2.5
Tstep=15 Xscl=1 Yscl=1

```
5. Press TRACE. On the left, the unit circle is graphed parametrically in Degree mode and the trace cursor is activated. When \(\mathbf{T}=\mathbf{0}\) (from the graph trace coordinates), you can see from the table on the right that the value of X1T \((\cos (\mathrm{T})\) ) is \(\mathbf{1}\) and Y1T \((\boldsymbol{\operatorname { s i n }}(\mathrm{T}))\) is 0 . Press \(\square\) to move the cursor to the next \(15^{\circ}\) angle increment. As you trace around the circle in steps of \(15^{\circ}\), an approximation of the standard value for each angle is highlighted in the table.

6. Press 2nd [TBLSET] and change Indpnt to Ask.
7. Press [2nd [TABLE] to make the table portion of the split screen active.


\section*{Using Split Screen}

\section*{Setting a Split-Screen Mode}

To set a split-screen mode, press MODE, and then move the cursor to Horizontal (Horiz) or Graph-Table (G-T) and press ENTER.
- Select Horizontal to display the graph screen and another screen split horizontally.
- Select Graph-Table to display the graph screen and table screen split vertically.

Note: Classic mode is used in this example.

\(\downarrow\)


The split screen is activated when you press any key that applies to either half of the split screen.
If stat plots are turned on, the plots are shown along with the \(x-y\) plots in graphs. Press 2nd [TABLE] to make the table portion of the split screen active and to display the list data. Press \(\square\) or \(\Delta\) to highlight a value you want to edit, and then enter a new value directly in the table to overwrite the previous value. Press \(\square\) repeatedly to display each column of data (both table and list data).


Split-screen display with both \(x-y\) plots and stat plots

Some screens are never displayed as split screens. For example, if you press MODE in Horizontal or Graph-Table mode, the mode screen is displayed as a full screen. If you then press a key that displays either half of a split screen, such as TRACE, the split screen returns.

When you press a key or key combination in either Horizontal or Graph-Table mode, the cursor is placed in the half of the display to which that key applies. For example, if you press TRACE, the cursor is placed in the half where the graph is displayed. If you press [2nd [TABLE], the cursor is placed in the half where the table is displayed.
The TI-84 Plus C will remain in split-screen mode until you change back to Full screen mode.

\section*{Horizontal Split Screen}

\section*{Horizontal Mode}

In Horizontal split-screen mode, a horizontal line splits the screen into top and bottom halves.


The top half displays the graph.
The bottom half displays any of these screens.
- Home screen (Classic or MathPrint \({ }^{\text {TM }}\) mode dependent, maximum four lines)
- \(Y=\) editor (Classic or MathPrint \({ }^{\text {TM }}\) mode dependent, maximum four lines)
- Stat list editor (three rows of data, displays in Classic only).
- Window editor (three settings)
- Table editor (three rows of values, displays in Classic only)

\section*{Moving from Half to Half in Horizontal Mode}

To use the top half of the split screen:
- Press GRAPH or TRACE.
- Select a ZOOM or CALC operation or STAT CALC D: Manual-Fit Y= mX+b or E: Quick Plot \& Fit-EQ.

To use the bottom half of the split screen:
- Press any key or key combination that displays the home screen.
- Press \(Y(Y=\) editor \()\).
- Press STAT ENTER (stat list editor).
- Press WINDOW (window editor).
- Press 2nd [TABLE] (table editor).

\section*{Full Screens in Horizontal Mode}

All other screens are displayed as full screens in Horizontal split-screen mode.
To return to the Horizontal split screen from a full screen when in Horizontal mode, press any key or key combination that displays the graph, home screen, \(\mathrm{Y}=\) editor, stat list editor, window editor, or table editor.

\section*{Graph-Table Split Screen}

\section*{Graph-Table Mode}

In Graph-Table split-screen mode, a vertical line splits the screen into left and right halves.


The left half displays all active graphs and plots.
The right half displays either table data corresponding to the graph at the left or list data corresponding to the plot at the left.

\section*{Moving from Graph View to Table View in Graph-Table Mode}

To use the graph view (left side) of the split screen:
- Press GRAPH or TRACE.
- Select a ZOOM or CALC operation or STAT CALC D: Manual-Fit Y= mX+b or E: Quick Plot \& Fit-EQ.

To use the table view (right side) of the split screen, press 2nd [TABLE]. If the values on the right are list data, these values can be edited similarly to using the Stat List Editor.

\section*{Using TRACE in Graph-Table Mode}

As you press \(\square\) or to move the trace cursor along a graph in the split screen's left half in Graph-Table mode, the table on the right half automatically scrolls to match the current cursor values. If more than one graph or plot is active, you can press \(\Delta\) or to select a different graph or plot.


Note: When you trace in Parametric graphing mode, both components of an equation ( \(\mathbf{X} n \mathbf{T}\) and \(\mathbf{Y} n \mathbf{T}\) ) are displayed in the two columns of the table. As you trace, the current value of the independent variable \(\mathbf{T}\) is displayed on the graph.

\section*{Full Screens in Graph-Table Mode}

All screens other than the graph and the table are displayed as full screens in G-T split-screen mode.
To return to the Graph-Table split screen from a full screen when in Graph-Table mode, press any key or key combination that displays the graph or the table.

\section*{TI-84 Plus C Pixels in Horizontal and Graph-Table Modes}

\section*{TI-84 Plus C Pixels in Horizontal and Graph-Table Modes}


Note: Each set of numbers in parentheses above represents the row and column of a corner pixel, which is turned on.
\begin{tabular}{lll} 
Graph Area & Pixel Rows & Pixel Columns \\
FULL & \(0-164\) & \(0-264\) \\
HORIZ & \(0-80\) & \(0-264\) \\
G-T & \(0-144\) & \(0-184\)
\end{tabular}

DRAW POINTS Menu Pixel Instructions
See Chapter 8 "Draw Instructions" for more information.
DRAW Menu Text( Instruction
See Chapter 8 "Draw Instructions" for more information.
PRGM I/O Menu Output( Instruction
For the Output( instruction:
- In Horizontal mode, row must be \(\leq 4\); column must be \(\leq 26\).
- In Graph-Table mode, row must be \(\leq 10\); column must be \(\leq 26\).

Output(row,column,"text")
Note: The Output( instruction can only be used within a program.

\section*{Setting a Split-Screen Mode from the Home Screen or a Program}

To set Horizontal or Graph-Table from a program, follow these steps.
1. Press MODE while the cursor is on a blank line in the program editor.
2. Select Horizontal or Graph-Table.

The instruction is pasted to the cursor location. The mode is set when the instruction is encountered during program execution. It remains in effect after execution.

Note: You also can paste Horizontal or Graph-Table to the home screen or program editor from the CATALOG (Chapter 15).

\section*{Chapter 10: Matrices}

\section*{Getting Started: Using the MTRX Shortcut Menu}

Getting Started is a fast-paced introduction. Read the chapter for details.
You can use the MTRX shortcut menu ([ALPHA [F3]) to enter a quick matrix calculation on the home screen or in the \(Y=\) editor.

Note: To input a fraction in a matrix, delete the pre-populated zero first.
Example: Add the following matrices: \(\left(\begin{array}{cc}2 & -3 \\ 5 & 8\end{array}\right)+\left(\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right)\) and store the result to matrix \(C\).
1. Press ALPHA [F3] to display the quick matrix editor. The default size of the matrix is two rows by two columns.

2. Press ENTER.

3. Press \(\mathbf{2} \square \mathbf{~} \square \mathbf{5} \mathbf{8} \square\) to create the first matrix.

4. Press \(\square\) ALPHA \([F 3]\) ENTER \(4 \square \mathbf{3} \square \mathbf{2} \square \mathbf{1} \square\) ENTER to create the second matrix and perform the calculation.

5. Press STO』 [nd [MATRX] and select 3:[C].
\begin{tabular}{|c|c|}
\hline Mormal float futo keal kadian mp & [ \\
\hline NAMES MATH EDIT 1: [A] & \\
\hline 2: [B] & \\
\hline 3:[C] & \\
\hline 4:[D] & \\
\hline 5:[E] & \\
\hline 6:[F] & \\
\hline 7:[G] & \\
\hline 8: [H] & \\
\hline 9 \(\downarrow\) [I] & \\
\hline
\end{tabular}
6. Press ENTER to store the matrix to [C].


In the matrix editor ([2nd [MATRX]), you can see that matrix [C] has a dimension of \(2 \times 2\).


You can press \(\square\) to display the EDIT screen and then select [C] to edit it.


\section*{Getting Started: Systems of Linear Equations}

Getting Started is a fast-paced introduction. Read the chapter for details.
Find the solution of \(X+2 Y+3 Z=3\) and \(2 X+3 Y+4 Z=3\). On the Tl-84 Plus, you can solve a system of linear equations by entering the coefficients as elements in a matrix, and then using rref( to obtain the reduced row-echelon form.
1. Press \(2 n d\) MATRX. Press \(\square \square\) to display the MATRX EDIT menu. Press 1 to select 1: [A].
2. Press \(\mathbf{2}\) ENTER 4 ENTER to define a \(2 \times 4\) matrix. The rectangular cursor indicates the current element. Ellipses (...) indicate additional columns beyond the screen.
\begin{tabular}{|c|c|}
\hline Nokmal float huto real radian mp & 1 \\
\hline \[
\left.\left\lvert\, \begin{array}{|lcl}
\hline \operatorname{MATRIX[A]} & 2 \times 4 & \\
{\left[\begin{array}{l}
\theta \\
\theta
\end{array}\right.} & \theta & \theta \\
0 & \theta & \\
\hline
\end{array}\right.\right]
\] & \\
\hline [A] \((1,1)=0\) & \\
\hline
\end{tabular}
3. Press 1 ENTER to enter the first element. The rectangular cursor moves to the second column of the first row.

4. Press \(\mathbf{2}\) ENTER \(\mathbf{3}\) ENTER \(\mathbf{3}\) ENTER to complete the first row for \(X+2 Y+3 Z=3\).
5. Press \(\mathbf{2}\) ENTER \(\mathbf{3}\) ENTER 4 ENTER \(\mathbf{3}\) ENTER to enter the second row for \(2 X+3 Y+4 Z=3\).

6. Press 2nd [Quit] to return to the home screen. If necessary, press [LEAR to clear the home screen. Press 2nd MATRX \(\square\) to display the MATRX MATH menu. Press \(\Delta\) to wrap to the end of the menu. Select B:rref( to copy rref( to the home screen.
7. Press 2nd MATRX \(\mathbf{1}\) to select 1: [A] from the MATRX NAMES menu. Press \(\square\) ENTER. The reduced row-echelon form of the matrix is displayed and stored in Ans.
\[
\begin{array}{lll}
1 X-1 Z=-3 & \text { therefore } & X=-3+Z \\
1 Y+2 Z=3 & \text { therefore } & Y=3-2 Z
\end{array}
\]


\section*{Defining a Matrix}

\section*{What Is a Matrix?}

A matrix is a two-dimensional array. You can display, define, or edit a matrix in the matrix editor. You can also define a matrix using the MTRX shortcut menu ( \(\overline{\text { ALPHA }}[F 3]\) ). The TI-84 Plus C has 10 matrix variables, [A] through [J]. You can define a matrix directly in an expression. A matrix, depending on available memory, may have up to 99 rows or columns. You can store only real numbers in TI-84 Plus matrices. Fractions are stored as real numbers and can be used in matrices.

\section*{Selecting a Matrix}

Before you can define or display a matrix in the editor, you first must select the matrix name. To do so, follow these steps.
1. Press 2nd MATRX 0 to display the MATRX EDIT menu. The dimensions of any previously defined matrices are displayed.
\begin{tabular}{|c|c|}
\hline MORMAL & [] \\
\hline NAMES & \\
\hline 1:[A] & \\
\hline 2: [B] & \\
\hline 3: [C] & \\
\hline 4: [D] & \\
\hline 5:[E] & \\
\hline 6:[F] & \\
\hline 7: [G] & \\
\hline 8: [H] & \\
\hline 9 \(\downarrow\) [I] & \\
\hline
\end{tabular}
2. Select the matrix you want to define. The MATRX EDIT screen is displayed.


\section*{Accepting or Changing Matrix Dimensions}

The dimensions of the matrix (row \(\times\) column) are displayed on the top line. The dimensions of a new matrix are \(1 \times 1\). You must accept or change the dimensions each time you edit a matrix. When you select a matrix to define, the cursor highlights the row dimension.
- To accept the row dimension, press ENTER.
- To change the row dimension, enter the number of rows (up to 99), and then press ENTER.

The cursor moves to the column dimension, which you must accept or change the same way you accepted or changed the row dimension. When you press ENTER, the rectangular cursor moves to the first matrix element.

\section*{Viewing and Editing Matrix Elements}

\section*{Displaying Matrix Elements}

After you have set the dimensions of the matrix, you can view the matrix and enter values for the matrix elements. In a new matrix, all values are zero.

Select the matrix from the MATRX EDIT menu and enter or accept the dimensions. The center portion of the matrix editor displays up to ten rows and five columns of a matrix, showing the values of the elements in abbreviated form if necessary. The full value of the current element, which is indicated by the rectangular cursor, is displayed on the bottom line.

In MathPrint \({ }^{\text {TM }}\) mode:
- An arrow at the left or right indicates additional columns.
- An arrow at the top or bottom indicates additional rows.

In Classic mode:
- Ellipses in the left or right column indicate additional columns.
- \(\quad \uparrow\) or \(\downarrow\) in the right column indicate additional rows.

In either mode, press \(\square, \square, \square\), and \(\triangle\) to scroll the matrix. You can scroll the matrix after you press [ENTER to calculate the matrix.

\section*{MathPrint \({ }^{\text {TM }}\)}
\(\left[\begin{array}{ccccc}-9 & 4 & -9 & -1 & -4 \\ 9 & 4 & -4 & -5 & 8 \\ 3 & -4 & -8 & 9 & -6 \\ 2 & 2 & -8 & -9 & -9 \\ -1 & 9 & 1 & 1 & 3 \\ -5 & 2 & 7 & -7 & -1\end{array}\right]\)

\section*{Classic}


\section*{Note:}
- Matrix calculations are not saved when you change from MathPrint \({ }^{\top T M}\) mode to Classic mode or viceversa.
- If you cannot scroll the matrix, press \(\triangle\) ENTER \(\operatorname{ENTER}\) to repeat the calculation.

\section*{Deleting a Matrix}

To delete matrices from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).

\section*{Viewing a Matrix}

The matrix editor has two contexts, viewing and editing. In viewing context, you can use the cursor keys to move quickly from one matrix element to the next. The full value of the highlighted element is displayed on the edit line.

Select the matrix from the MATRX EDIT menu, and then enter or accept the dimensions.


\section*{Using Viewing-Context Keys}
\begin{tabular}{|c|c|}
\hline Key & Function \\
\hline \(\square\) or \({ }^{\square}\) & Moves the cursor within the current row \\
\hline \(\square\) or \(\triangle\) & Moves the cursor within the current column; on the top row, moves the cursor to the column dimension; on the column dimension, \(\Delta\) moves the cursor to the row dimension \\
\hline ENTER & Switches to editing context; activates the edit cursor on the bottom line \\
\hline CLEAR & Switches to editing context; clears the value on the bottom line \\
\hline Any entry character & Switches to editing context; clears the value on the bottom line; copies the character to the bottom line \\
\hline 2nd [iNS] & Nothing \\
\hline DEL & Nothing \\
\hline
\end{tabular}

\section*{Editing a Matrix Element}

In editing context, an edit cursor is active on the bottom line. To edit a matrix element value, follow these steps.
1. Select the matrix from the MATRX EDIT menu, and then enter or accept the dimensions.
2. Press \(\square, \square, \square\), and \(\square\) to move the cursor to the matrix element you want to change.
3. Switch to editing context by pressing ENTER, CLEAR, or an entry key.
4. Change the value of the matrix element by using shortcut menus ALPHA [F1]-[F4] and the editing-context keys described below. You may enter an expression, which is evaluated when you leave editing context.

Note: You can press [LEAR [ENTER to restore the value at the cursor if you make a mistake.
5. Press ENTER, \(\triangle\), or \(\square\) to move to another element.


\section*{Using Editing-Context Keys}
\begin{tabular}{ll}
\hline Key & Function \\
\hline\(\square\) or \(\square\) & \begin{tabular}{l} 
Moves the edit cursor within the value \\
Stores the value displayed on the edit line to the matrix \\
element; switches to viewing context and moves the cursor \\
within the column
\end{tabular} \\
\hline\(\square\) or \begin{tabular}{ll} 
& \begin{tabular}{l} 
Stores the value displayed on the edit line to the matrix \\
element; switches to viewing context and moves the cursor to \\
the next row element
\end{tabular} \\
\hline CLEAR & \begin{tabular}{l} 
Clears the value on the bottom line
\end{tabular} \\
\hline Any entry character & \begin{tabular}{l} 
Copies the character to the location of the edit cursor on the \\
bottom line
\end{tabular} \\
\hline 2nd [INS] & Activates the insert cursor \\
\hline DEL & Deletes the character under the edit cursor on the bottom line \\
\hline
\end{tabular}
\end{tabular}

\section*{Using Matrices with Expressions}

To use a matrix in an expression, you can do any of the following.
- Copy the name from the MATRX NAMES menu.
- Recall the contents of the matrix into the expression with 2nd [RCL] (Chapter 1).
- Enter the matrix directly (see below).

\section*{Entering a Matrix in an Expression}

You can enter, edit, and store a matrix in the matrix editor. You also can enter a matrix directly in an expression.

In MathPrint \({ }^{\text {TM }}\) mode, use the MTRX shortcut menu to enter this kind of matrix:
1. Press \(\overline{\text { ALPHA }}[F 3] \square \square\) ENTER \(\square\) ENTER to define the matrix dimension.
2. Press \(1 \square 2 \square 2 \square 4 \square 5 \square 6 \square\) to define the matrix.
3. Press ENTER to perform the calculation.


To enter a matrix in a Classic mode, follow these steps.
- Press 2nd [ [ ] to indicate the beginning of the matrix.
- Press 2nd [ [ ] to indicate the beginning of a row.
- Enter a value, which can be an expression, for each element in the row. Separate the values with commas.
- Press [2nd [ ] ] to indicate the end of a row.
- Repeat steps 2 through 4 to enter all of the rows.
- Press 2nd [ ] ] to indicate the end of the matrix.

The resulting matrix is displayed in the form:
[[element1,1,..,element1,n],...,[elementm, \(1, \ldots\), elementm, \(n\) ]]
Any expressions are evaluated when the entry is executed.


\section*{Note:}
- The commas that you must enter to separate elements are not displayed on output.
- Closing brackets are required when you enter a matrix directly on the home screen or in an expression.
- When you define a matrix using the matrix editor, it is automatically stored. However, when you enter a matrix directly on the home screen or in an expression, it is not automatically stored, but you can store it.

\section*{Displaying and Copying Matrices}

\section*{Displaying a Matrix}

To display the contents of a matrix on the home screen, select the matrix from the MATRX NAMES menu, and then press ENTER.

Note: You cannot type a matrix name directly on the home screen (for example, [A]).


\section*{Copying One Matrix to Another}

To copy a matrix, follow these steps.
1. Press [2nd [MATRIX] to display the MATRX NAMES menu.
2. Select the name of the matrix you want to copy.
3. Press STO.
4. Press [2nd [MATRIX] again and select the name of the new matrix to which you want to copy the existing matrix.
5. Press ENTER to copy the matrix to the new matrix name.


Note: You cannot copy a matrix output from the history.

\section*{Accessing a Matrix Element}

On the home screen or from within a program, you can store a value to, or recall a value from, a matrix element. The element must be within the currently defined matrix dimensions. Select matrix from the MATRX NAMES menu.
[matrix](row,column)


\section*{Using Math Functions with Matrices}

\section*{Using Math Functions with Matrices}

You can use many of the math functions on the TI-84 Plus C keypad, the MATH menu, the MATH NUM menu, and the MATH TEST menu with matrices. However, the dimensions must be appropriate. Each of the functions below creates a new matrix; the original matrix remains the same.

\section*{Addition, Subtraction, Multiplication}

To add or subtract matrices, the dimensions must be the same. The answer is a matrix in which the elements are the sum or difference of the individual corresponding elements.

\section*{matrixA \(\boldsymbol{+}\) matrix \(B\)}
matrixA-matrix \(B\)
To multiply two matrices together, the column dimension of matrixA must match the row dimension of matrix \(B\).
matrix \(A *\) matrix \(B\)


Multiplying a matrix by a value or a value by a matrix returns a matrix in which each element of matrix is multiplied by value.
matrix*value
value*matrix


\section*{Negation}

Negating a matrix returns a matrix in which the sign of every element is changed.
-matrix


Note: For negation use \((-)\). You get an error message if you use \(-\square\) and \(\square\) incorrectly.
abs(
abs( (absolute value, MATH NUM menu or ALPHA F2) returns a matrix containing the absolute value of each element of matrix.
abs(matrix)


\section*{round(}
round( (MATH NUM menu) returns a matrix. It rounds every element in matrix to \#decimals ( \(\leq 9\) ). If \#decimals is omitted, the elements are rounded to 10 digits.
round(matrix[,\#decimals])


\section*{Inverse}

Use the \({ }^{-1}\) function ( \(x\) ( \(x^{-1}\) or \(\triangle-1\) to invert a matrix. matrice must be square. The determinant cannot equal zero.
matrix \({ }^{-1}\)


\section*{Powers}

To raise a matrix to a power, matrix must be square. You can use \({ }^{2}\left(\boxed{x^{2}}\right),{ }^{3}\) (MATH menu), or \(\wedge\) power ( \(\triangle\) ) for integer power between 0 and 255 .
matrix \({ }^{2}\)
matrix \({ }^{3}\)
matrix^power


\section*{Relational Operations}

To compare two matrices using the relational operations \(=\) and \(\neq\) (TEST menu), they must have the same dimensions. \(=\) and \(\neq\) compare matrix \(A\) and matrix \(B\) on an element-by-element basis. The other relational operations are not valid with matrices.
matrixA=matrix \(B\) returns 1 if every comparison is true; it returns 0 if any comparison is false.
matrix \(A \neq\) matrix \(B\) returns \(\mathbf{1}\) if at least one comparison is false; it returns \(\mathbf{0}\) if no comparison is false.



\section*{iPart(, fPart(, int(}
iPart( (integer part), fPart( (fractional part), and int( (greatest integer) are on the MATH NUM menu.
iPart( returns a matrix containing the integer part of each element of matrix.
fPart( returns a matrix containing the fractional part of each element of matrix.
int( returns a matrix containing the greatest integer of each element of matrix.
iPart(matrix)
fPart(matrix)
int (matrix)


\section*{Using the MATRX MATH Operations}

\section*{MATRX MATH Menu}

To display the MATRX MATH menu, press 2nd MATRX \(\square\).
\begin{tabular}{|c|c|}
\hline NAMES MATH & EDIT \\
\hline 1: det ( & Calculates the determinant. \\
\hline 2: T & Transposes the matrix. \\
\hline 3: dim( & Returns the matrix dimensions. \\
\hline 4: Fill( & Fills all elements with a constant. \\
\hline 5: identity( & Returns the identity matrix. \\
\hline 6: randM ( & Returns a random matrix. \\
\hline 7: augment( & Appends two matrices. \\
\hline 8: Matrlist( & Stores a matrix to a list. \\
\hline 9: Listmatr ( & Stores a list to a matrix. \\
\hline 0 : cumsum ( & Returns the cumulative sums of a matrix. \\
\hline A: ref( & Returns the row-echelon form of a matrix. \\
\hline B: rref ( & Returns the reduced row-echelon form. \\
\hline C: rowSwap( & Swaps two rows of a matrix. \\
\hline D: row + ( & Adds two rows; stores in the second row. \\
\hline E: *row ( & Multiplies the row by a number. \\
\hline F: *row+( & Multiplies the row, adds to the second row. \\
\hline
\end{tabular}

Note: Use Catalog Help for more syntax help when needed. To use Catalog Help, select a menu item and then press \(\dagger\).
\(\operatorname{det}(\)
\(\boldsymbol{\operatorname { d e t }}\) ( (determinant) returns the determinant (a real number) of a square matrix.
\(\boldsymbol{d e t}\) (matrix)



\section*{Transpose}
\({ }^{\top}\) (transpose) returns a matrix in which each element (row, column) is swapped with the corresponding element (column, row) of matrix.
matrix \({ }^{\top}\)


\section*{Accessing Matrix Dimensions with dim(}
\(\operatorname{dim}(\) (dimension) returns a list containing the dimensions (\{rows columns\}) of matrix.
dim(matrix)
Note: \(\operatorname{dim}(\) matrix \() \rightarrow \mathbf{L} n: \mathbf{L} n(\mathbf{1})\) returns the number of rows. \(\operatorname{dim}(\) matrix \() \rightarrow \mathbf{L} n: \mathbf{L} n(\mathbf{2})\) returns the number of columns.


\section*{Creating a Matrix with \(\operatorname{dim}(\)}

Use \(\operatorname{dim}\) ( with STO* to create a new matrixname of dimensions rows \(\times\) columns with 0 as each element.
\(\{\) rows,columns \(\} \rightarrow\) dim(matrixname)


\section*{Redimensioning a Matrix with dim(}

Use dim( with STO to redimension an existing matrixname to dimensions rows \(\times\) columns. The elements in the old matrixname that are within the new dimensions are not changed. Additional created elements are zeros. Matrix elements that are outside the new dimensions are deleted.
\(\{\) rows,columns \(\} \rightarrow \mathbf{d i m}\) (matrixname)
Fill(
Fill( stores value to every element in matrixname.
Fill(value,matrixname)


\section*{identity(}
identity( returns the identity matrix of dimension rows \(\times\) dimension columns.
identity(dimension)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{NORMAL FLOAT aUto Real Radian mp} \\
\hline identity(4) & \\
\hline & \(\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\) \\
\hline
\end{tabular}

\section*{randM(}
randM( (create random matrix) returns a rows \(\times\) columns random matrix of integers \(\geq-9\) and \(\leq 9\). The seed value stored to the rand function controls the values (Chapter 2).

\section*{randM(rows,columns)}


\section*{augment(}
augment( appends matrixA to matrixB as new columns. matrixA and matrixB both must have the same number of rows.
augment (matrixA,matrix \(B\) )


\section*{Matrılist(}

Matrilist( (matrix stored to list) fills each listname with elements from each column in matrix. Matrylist( ignores extra listname arguments. Likewise, Matrllist( ignores extra matrix columns.

Matr>list(matrix,listnameA,...,listname n)
\begin{tabular}{|c|c|}
\hline MOSMAL FLOAT & MP [] \\
\hline \(\{1,4\} \rightarrow L_{1}\) & \\
\hline \{2, 5\(\} \rightarrow\llcorner\) & \\
\hline & \{2 5] \\
\hline \(\{3.6\} \rightarrow{ }^{\text {a }}\) & \(\{3 \quad 6\}\) \\
\hline
\end{tabular}



Matrylist( also fills a listname with elements from a specified column\# in matrix. To fill a list with a specific column from matrix, you must enter column\# after matrix.

Matrylist(matrix, column\#, listname)
\begin{tabular}{|c|}
\hline [ Kormal floht muto real radian mp \\
\hline [A]
\[
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right]
\] \\
\hline \begin{tabular}{l}
Matrlist ([A],3.Li) \\
Done
\end{tabular} \\
\hline  \\
\hline
\end{tabular}

\section*{List)matr(}

List)matr( (lists stored to matrix) fills matrixname column by column with the elements from each list. If dimensions of all lists are not equal, Listrmatr( fills each extra matrixname row with 0 . Complex lists are not valid.

List»matr(listA,...,list n,matrixname)


\section*{cumSum(}
cumSum( returns cumulative sums of the elements in matrix, starting with the first element. Each element is the cumulative sum of the column from top to bottom.
cumSum(matrix)


\section*{Row Operations}

MATRX MATH menu items \(\mathbf{A}\) through \(\mathbf{F}\) are row operations. You can use a row operation in an expression. Row operations do not change matrix in memory. You can enter all row numbers and values as expressions. You can select the matrix from the MATRX NAMES menu.

\section*{ref(, rref(}
ref( (row-echelon form) returns the row-echelon form of a real matrix. The number of columns must be greater than or equal to the number of rows.
ref(matrix)
rref( (reduced row-echelon form) returns the reduced row-echelon form of a real matrix. The number of columns must be greater than or equal to the number of rows.
```

rref(matrix)

```


\section*{rowSwap(}
rowSwap( returns a matrix. It swaps row \(A\) and rowB of matrix.
rowSwap( matrix,rowA,rowB)


\section*{row+(}
row+( (row addition) returns a matrix. It adds rowA and rowB of matrix and stores the results in rowB.
row+(matrix,rowA,rowB)


\section*{*row(}
*row( (row multiplication) returns a matrix. It multiplies row of matrix by value and stores the results in row.
*row(value, matrix,row)
*row+(
*row+( (row multiplication and addition) returns a matrix. It multiplies rowA of matrix by value, adds it to rowB, and stores the results in rowB.
*row+(value,matrix,rowA,rowB)


\section*{Chapter 11：}

\section*{Lists}

\section*{Getting Started：Generating a Sequence}

Getting Started is a fast－paced introduction．Read the chapter for details．
Calculate the first eight terms of the sequence \(1 / A^{2}\) ．Store the results to a user－created list．Then display the results in fraction form．Begin this example on a blank line on the home screen．

1．Press थnd［LIST］to display the LIST OPS menu．
\begin{tabular}{|c|c|}
\hline ORHAL Float guto kral radian mp & 0 \\
\hline NAMES OPS MATH & \\
\hline 1：SortAC & \\
\hline 2：SortD & \\
\hline 3：dim & \\
\hline 4：Fill & \\
\hline 5：sead & \\
\hline 6：cumSum（ & \\
\hline 7：\(\Delta\) List（ & \\
\hline 8：Select（ & \\
\hline 9 \(\downarrow\) augment（ & \\
\hline
\end{tabular}

2．Press \(\mathbf{5}\) to select \(\mathbf{5}\) ：seq（，which opens a wizard to assist in the entry of the syntax．


3．Press 1 ALPHA［F1］ENTER ALPHA［A］\(x^{2}\) ALPHA［A］ \(1 \square 8\) 1 to enter the sequence．


Press \(⿴ 囗 十 \nabla\) ，to select Paste，then press ENTER and ENTER to display the output．

4. Press STO , and then press 2nd [A-LOCK] to turn on alpha-lock. Press [S] [E] [Q], and then press ALPHA to turn off alpha-lock. Press 1 to complete the list name.

Note: Since the seq( command creates a list, you can name give the list a name up to five characters long.

7. Press MATH to display the MATH menu. Press \(\mathbf{2}\) to select 2:>Dec, which pastes 1 Dec to the current cursor location.
8. Press ENTER to show the sequence in decimal form. Press \(\square\) repeatedly (or press and hold \(\square\) ) to scroll the list and view all the list elements.

Note: You must scroll immediately after pressing ENTER.
\(\operatorname{seq}\left(\frac{1}{A^{2}}, A, 1,8,1\right)\)
    \(\left\{1 \frac{1}{4} \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}, \frac{1}{49}, \frac{1}{64}\right\}\)
Āns \(\rightarrow\) SEOAO
    \(\left\{1 \frac{1}{4} \frac{1}{9} \frac{1}{16} \frac{1}{25}, \frac{1}{36} \ldots \frac{1}{39} \ldots\right\}\)
ISEQUM Dec
โ1. \(25.1111111111,0625 \ldots\)

\section*{Naming Lists}

\section*{Using TI-84 Plus C List Names L1 through L6}

The TI-84 Plus C has six list names in memory: L1, L2, L3, L4, L5, and L6. The list names \(\mathbf{L 1}\) through \(\mathbf{L 6}\) are the second functions of 1 through 6. To paste one of these names to a valid screen, press 2nd, and then press the appropriate key. L1 through L6 are stored in stat list editor columns \(\mathbf{1}\) through \(\mathbf{6}\) when you reset memory.

\section*{Creating a List Name on the Home Screen}

To create a list name on the home screen, follow these steps.
1. Press 2nd [i], enter one or more list elements, and then press 2nd [\}]. Separate list elements with commas. List elements can be real numbers, complex numbers, or expressions.

MokMal float huto Real radian mp
\{1,2,3,4\}■
2. Press STO.
3. Press ALPHA [letter from \(A\) to \(Z\) or \(\theta\) ] to enter the first letter of the name.
4. Enter zero to four letters, \(\theta\), or numbers to complete the name.

\(\{1,2,3,4\} \rightarrow\) TESTI
5. Press ENTER. The list is displayed on the next line. The list name and its elements are stored in memory. The list name becomes an item on the LIST NAMES menu.



Note: If you want to view a user-created list in the stat list editor, you must retrieve the list in the stat list editor using the command SetUpEditor (Chapter 12).

You also can create a list name in these four places.
- At the Name= prompt in the stat list editor
- At an Xlist:, Ylist:, or Data List: prompt in the stat plot editor
- At a List:, List1:, List2:, Freq:, Freq1:, Freq2:, XList:, or YList: prompt in the inferential stat editors or wizards.
- On the home screen using SetUpEditor (STAT 5).

You can create as many list names as your TI-84 Plus C memory has space to store.

\section*{Storing and Displaying Lists}

\section*{Storing Elements to a List}

You can store list elements in either of two ways.
- Use brackets and STO on the home screen.

- Use the stat list editor (Chapter 12).

The maximum dimension of a list is 999 elements.
Note: When you store a complex number to a list, the entire list is converted to a list of complex numbers. To convert the list to a list of real numbers, display the home screen, and then enter real(listname) \(\rightarrow\) listname.

\section*{Displaying a List on the Home Screen}

To display the elements of a list on the home screen, enter the name of the list (preceded by a list name symbol [2nd [LIST] OPS B:L, if necessary), and then press ENTER. An arrow or ellipsis (Classic mode) indicates that the list continues beyond the viewing window. Immediately after ENTER, press \(\square\) repeatedly (or press and hold \(\square\) ) to scroll the list and view all the list elements.

Note: You cannot scroll a list if you enter a new line (the scrolling key \(\square\) is no longer active).


\section*{Copying One List to Another}

To copy a list, store it to another list.


\section*{Accessing a List Element}

You can store a value to or recall a value from a specific list element. You can store to any element within the current list dimension or one element beyond.
\begin{tabular}{|c|c|}
\hline Homatil float rut & ADIAN MP \\
\hline \(\{1,2,3\} \rightarrow\) L 3 & \\
\hline \(4 \rightarrow\llcorner 3(4):\llcorner 3\) & \\
\hline & [12 \\
\hline L3(2) & \\
\hline
\end{tabular}

\section*{Deleting a List from Memory}

To delete lists from memory, including \(\mathbf{L 1}\) through L6, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18). Use the SetUpEditor command to restore L1 through L6 names and to set up list data.

Note: Removing a list from the stat list editor does not delete list names and data from memory, only from view.

\section*{Using Lists in Graphing}

To graph a family of curves, you can use lists (Chapter 3) or the Transformation Graphing App.

\section*{Entering List Names}

\section*{Using the LIST NAMES Menu}

To display the LIST NAMES menu, press [nd [LIST]. Each item is a user-created list name except for L1 through L6. LIST NAMES menu items are sorted automatically in alphanumerical order. Only the first 10 items are labeled, using 1 through 9, then 0 . To jump to the first list name that begins with a particular alpha character or \(\theta\), press ALPHA [letter from A to Z or \(\theta\) ].


Note: From the top of a menu, press \(\triangle\) to move to the bottom. From the bottom, press \(\square\) to move to the top.
When you select a list name from the LIST NAMES menu, the list name is pasted to the current cursor location.
- The list name symbol l precedes a list name when the name is pasted where non-list name data also is valid, such as the home screen.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Mormal float guto keral radian mp} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{LTEST}} \\
\hline & \\
\hline
\end{tabular}
- The \(L\) symbol does not precede a list name when the name is pasted where a list name is the only valid input, such as the stat list editor's Name= prompt or the stat plot editor's XList: and YList: prompts.

\section*{Entering a User-Created List Name Directly}

To enter an existing list name directly, follow these steps.
1. Press [2nd [LIST] \(\square\) to display the LIST OPS menu.
2. Select B:L, which pastes \(\mathbf{L}\) to the current cursor location. L is not always necessary.


Note: You also can paste L to the current cursor location from the CATALOG.
3. Enter the characters that comprise the list name.


\section*{Attaching Formulas to List Names}

\section*{Attaching a Formula to a List Name}

You can attach a formula to a list name so that each list element is a result of the formula. When executed, the attached formula must resolve to a list.

When anything in the attached formula changes, the list to which the formula is attached is updated automatically.
- When you edit an element of a list that is referenced in the formula, the corresponding element in the list to which the formula is attached is updated.
- When you edit the formula itself, all elements in the list to which the formula is attached are updated.

For example, the first screen below shows that elements are stored to L3, and the formula \(\mathbf{L 3 + 1 0}\) is attached to the list name LADD10. The quotation marks designate the formula to be attached to LADD10. Each element of LADD10 is the sum of an element in L3 and 10.



The next screen shows another list, L4. The elements of \(\mathbf{L 4}\) are the sum of the same formula that is attached to L3. However, quotation marks are not entered, so the formula is not attached to \(\mathbf{L 4}\).

On the next line, \(\mathbf{- 6} \boldsymbol{\rightarrow} \mathbf{L 3} \mathbf{( 1 ) : L 3}\) changes the first element in L3 to \(-\mathbf{6}\), and then redisplays \(\mathbf{L 3}\).
Note: Use (-) for negation (as shown in the example), not subtraction - .

- The last screen shows that editing L3 updated LADD10, but did not change L4. This is because the formula \(\mathbf{L 3 + 1 0}\) is attached to LADD10, but it is not attached to L4.


Note: To view a formula that is attached to a list name, use the stat list editor (Chapter 12).

\section*{Attaching a Formula to a List on the Home Screen or in a Program}

To attach a formula to a list name from a blank line on the home screen or from a program, follow these steps.
1. Press ALPHA ["], enter the formula (which must resolve to a list), and press ALPHA ['"] again.

Note: When you include more than one list name in a formula, each list must have the same dimension.
2. Press STO*.
3. Enter the name of the list to which you want to attach the formula.
- Press 2nd, and then enter a TI-84 Plus C list name \(\mathbf{L 1}\) through \(\mathbf{L 6}\).
- Press [2nd [LIST] and select a user-created list name from the LIST NAMES menu.
- Enter a user-created list name directly using \(\mathbf{t}\).
4. Press ENTER.


Note: The stat list editor displays a formula-lock symbol next to each list name that has an attached formula. Chapter 12 describes how to use the stat list editor to attach formulas to lists, edit attached formulas, and detach formulas from lists.

\section*{Detaching a Formula from a List}

You can detach (clear) an attached formula from a list in several ways.
For example:
- Enter " " \(\rightarrow\) listname on the home screen.
- Edit any element of a list to which a formula is attached.
- Use the stat list editor (Chapter 12).
- Use CIrList or CIrAllList to detach a formula from a list (Chapter 18).

\section*{Using Lists in Expressions}

You can use lists in an expression in any of three ways. When you press ENTER, any expression is evaluated for each list element, and a list is displayed.
- Use L1-L6 or any user-created list name in an expression.

- Enter the list elements directly.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Codmal float muto real radian mp} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{20/\{2.5.10\} \(\begin{aligned} & 10\end{aligned}\)}} \\
\hline & \\
\hline
\end{tabular}
- Use 2nd [RCL] to recall the contents of the list into an expression at the cursor location (Chapter 1).


Note: You must paste user-created list names to the Rcl prompt by selecting them from the LIST NAMES menu. You cannot enter them directly using L .

\section*{Using Lists with Math Functions}

You can use a list to input several values for some math functions. The function is evaluated for each list element, and a list is displayed.
- When you use a list with a function, the function must be valid for every element in the list. In graphing, an invalid element, such as -1 in \(\sqrt{(\{1,0,-1\})}\), is ignored.

\begin{tabular}{|l|}
\hline FORMAL FLOAT AUTO REAL RADIAN MP \\
ERROR: NONRERL ANSWERS \\
1:Quit \\
2: Goto \\
In REAL MODE, all \\
calculations must result \\
in a real number.
\end{tabular}

This returns an error.


This graphs \(\mathbf{X} * \sqrt{(1)}\) and \(\mathbf{X} * \sqrt{(0)}\), but skips \(\mathbf{X} * \sqrt{(-1)}\).
- When you use two lists with a two-argument function, the dimension of each list must be the same. The function is evaluated for corresponding elements.

- When you use a list and a value with a two-argument function, the value is used with each element in the list.


\section*{LIST OPS Menu}

\section*{LIST OPS Menu}

To display the LIST OPS menu, press [2nd [LIST] \(\square\).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{NAMES OPS MATH} \\
\hline 1: & SortA( & Sorts lists in ascending order. \\
\hline 2 : & SortD( & Sorts lists in descending order. \\
\hline \(3:\) & dim( & Sets the list dimension. \\
\hline 4: & Fill( & Fills all elements with a constant. \\
\hline * 5 : & seq ( & Creates a sequence. \\
\hline 6 : & cumSum ( & Returns a list of cumulative sums. \\
\hline \(7:\) & \(\Delta\) List ( & Returns difference of successive elements. \\
\hline 8 : & Select ( & Selects specific data points. \\
\hline 9 : & augment ( & Concatenates two lists. \\
\hline 0 : & Listmatr ( & Stores a list to a matrix. \\
\hline A: & Matrlist( & Stores a matrix to a list. \\
\hline B : & L & Designates the list-name data type. \\
\hline \multicolumn{3}{|l|}{* seq( is the only function in the LIST OPS menu that has a wizard.} \\
\hline
\end{tabular}

Note: Use Catalog Help for more syntax help when needed. Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).

\section*{SortA(, SortD(}

SortA( (sort ascending) sorts list elements from low to high values. SortD( (sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus).
With one list, SortA( and SortD( sort the elements of listname and update the list in memory.

SortA(listname)


SortD(listname)


With two or more lists, SortA( and SortD( sort keylistname, and then sort each dependlist by placing its elements in the same order as the corresponding elements in keylistname. All lists must have the same dimension.

SortA(keylistname,dependlist 1 [,dependlist \(2, \ldots\), dependlist \(n]\) )
SortD(keylistname,dependlist 1 [,dependlist \(2, \ldots\), dependlist \(n]\) )


\section*{Note:}
- In the example, 5 is the first element in L4, and 1 is the first element in L5. After SortA(L4,L5), 5 becomes the second element of L4, and likewise, 1 becomes the second element of \(\mathbf{L 5}\).
- SortA( and SortD( are the same as SortA( and SortD( on the STAT EDIT menu (Chapter 12).
- You cannot sort a locked list.

\section*{Using dim( to Find List Dimensions}
\(\operatorname{dim}\) ( (dimension) returns the length (number of elements) of list.
\(\operatorname{dim}\) (list)


\section*{Using dim( to Create a List}

You can use dim( with STO to create a new listname with dimension length from 1 to 999. The elements are zeros.
length \(\rightarrow \mathbf{d i m}\) (listname)


\section*{Using dim( to Redimension a List}

You can use dim with STO to redimension an existing listname to dimension length from 1 to 999.
- The elements in the old listname that are within the new dimension are not changed.
- Extra list elements are filled by 0.
- Elements in the old list that are outside the new dimension are deleted.



Fill(
Fill( replaces each element in listname with value.
Fill(value,listname)


Note: dim( and Fill( are the same as dim( and Fill( on the MATRIX MATH menu (Chapter 10).

\section*{seq(}
seq( (sequence) returns a list in which each element is the result of the evaluation of expression with regard to variable for the values ranging from begin to end at steps of increment. variable need not be defined in memory. increment can be negative; the default value for increment is 1 . seq( is not valid within expression. Complex lists are not valid.

A wizard opens to assist the entry of the syntax in default mode settings.
Note: seq( is the only function in LIST OPS that has a wizard.
seq(expression,variable,begin,end[,increment])
\begin{tabular}{|l|}
\hline NORMAL FLOAT GUTO REAL RADIAN MP \\
Expr: \(\quad\) Eeq \\
Variable: \\
start:1 \\
end: 11 \\
step:3 \\
Paste \\
\\
\\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline Mokial float futo real kadian mp \\
\hline  \\
\hline
\end{tabular}

\section*{cumSum(}
cumSum( (cumulative sum) returns the cumulative sums of the elements in list, starting with the first element. list elements can be real or complex numbers.
cumSum(list)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{} \\
\hline \\
\hline
\end{tabular}

\section*{\(\Delta\) List(}
\(\Delta\) List( returns a list containing the differences between consecutive elements in list. \(\Delta\) List subtracts the first element in list from the second element, subtracts the second element from the third, and so on. The list of differences is always one element shorter than the original list. list elements can be a real or complex numbers.
\(\Delta\) List (list)
\begin{tabular}{|c|}
\hline Mormal float auto real radian mp \\
\hline \[
\begin{aligned}
\{20,30,45,70\} & \rightarrow \text { LDIST } \\
& \{20 \text {. } 30.45 \quad 70\}
\end{aligned}
\] \\
\hline -List (LDIST)
\[
\{10 \quad 15 \quad 25\}
\] \\
\hline
\end{tabular}

\section*{Select(}

Select( selects one or more specific data points from a scatter plot or xyLine plot (only), and then stores the selected data points to two new lists, xlistname and ylistname. For example, you can use Select( to select and then analyze a portion of plotted CBL2 \({ }^{\text {TM }}\) or CBR2 \({ }^{\text {TM }}\) data.

\section*{Select(xlistname,ylistname)}

Note: Before you use Select(, you must have selected (turned on) a scatter plot or xyLine plot. Also, the plot must be displayed in the current viewing window.

\section*{Before Using Select(}

Before using Select(, follow these steps.
1. Create two list names and enter the data.
2. Turn on a stat plot, select \(\ldots \cdot\) (scatter plot) or \(1 \sim\) (xyLine), and enter the two list names for Xlist: and Ylist: (Chapter 12).
3. Use ZoomStat to plot the data (Chapter 3).

MathPrint \({ }^{\text {TM }}\)



Classic



\section*{Using Select( to Select Data Points from a Plot}

To select data points from a scatter plot or xyLine plot, follow these steps.
1. Press \(2 n d[L I S T] \square 8\) to select \(\mathbf{8 : S e l e c t}\) ( from the LIST OPS menu. Select( is pasted to the home screen.
2. Enter xlistname, press \(\square\), enter ylistname, and then press \(\square\) to designate list names into which you want the selected data to be stored.

GElect(LisLz)
3. Press ENTER. The graph screen is displayed with Left Bound? in the bottom-left corner.

4. Press \(\triangle\) or (if more than one stat plot is selected) to move the cursor onto the stat plot from which you want to select data points.
5. Press \(\square\) and to move the cursor to the stat plot data point that you want as the left bound.

6. Press ENTER. A indicator on the graph screen shows the left bound. Right Bound? is displayed in the bottom-left corner.

7. Press \(\square\) or to move the cursor to the stat plot point that you want for the right bound, and then press ENTER.



The \(x\)-values and \(y\)-values of the selected points are stored in xlistname and ylistname. A new stat plot of xlistname and ylistname replaces the stat plot from which you selected data points. The list names are updated in the stat plot editor.


Note: The two new lists (xlistname and ylistname) will include the points you select as left bound and right bound. Also, left-bound \(x\)-value \(\leq\) right-bound \(x\)-value must be true.

\section*{augment(}
augment( concatenates the elements of listA and listB. The list elements can be real or complex numbers.
augment(listA,listB)
\begin{tabular}{|c|}
\hline Moshal float quto keril radian mp \\
\hline \{1,17,21\} \(\rightarrow\) L 3 \\
\hline \begin{tabular}{l}
au9ment ( \(\left.\mathrm{L},(25,30,35\}^{2}\right)\) \\
\(\{1 \quad 17 \quad 21 \quad 625 \quad 900\) 1225\}
\end{tabular} \\
\hline
\end{tabular}

\section*{List)matr(}

List/matr( (lists stored to matrix) fills matrixname column by column with the elements from each list. If the dimensions of all lists are not equal, then List)matr( fills each extra matrixname row with 0 . Complex lists are not valid.

Listəmatr(list1,list2, ... ,list n,matrixname)



\section*{Matrılist(}

Matrilist( (matrix stored to lists) fills each listname with elements from each column in matrix. If the number of listname arguments exceeds the number of columns in matrix, then Matrlist( ignores extra listname arguments. Likewise, if the number of columns in matrix exceeds the number of listname arguments, then Matr>list( ignores extra matrix columns.

Matrlist(matrix,listname1,listname2, . . . ,listname n)


Matrlist( also fills a listname with elements from a specified column\# in matrix. To fill a list with a specific column from matrix, you must enter a column\# after matrix.


L preceding one to five characters identifies those characters as a user-created listname. listname may comprise letters, \(\theta\), and numbers, but it must begin with a letter from \(A\) to \(Z\) or \(\theta\).

\section*{Llistname}

Generally, L must precede a user-created list name when you enter a user-created list name where other input is valid, for example, on the home screen. Without the \(L\), the TI-84 Plus C may misinterpret a usercreated list name as implied multiplication of two or more characters.

L need not precede a user-created list name where a list name is the only valid input, for example, at the Name= prompt in the stat list editor or the Xlist: and Ylist: prompts in the stat plot editor. If you enter L where it is not necessary, the TI-84 Plus C will ignore the entry.

\section*{LIST MATH Menu}

\section*{LIST MATH Menu}

To display the LIST MATH menu, press 2nd [LIST] 0 .
\begin{tabular}{lll}
\hline NAMES OPS MATH & \\
\(1:\) & \(\min (\) & Returns minimum element of a list. \\
\(2:\) & \(\max (\) & Returns maximum element of a list. \\
\(3:\) & mean ( & Returns mean of a list. \\
\(4:\) & median ( & Returns median of a list. \\
\(5:\) & sum( & Returns sum of elements in a list. \\
\(6:\) & prod( & Returns product of elements in list. \\
\(7:\) & stdDev( & Returns standard deviation of a list. \\
\(8:\) & variance ( & Returns the variance of a list.
\end{tabular}

Note: Use Catalog Help for more syntax help when needed. Select a menu item and then press \(\dagger\) to go to a syntax help editor (if the menu item is supported).

\section*{min(, max(}
\(\boldsymbol{\operatorname { m i n }}(\) (minimum) and \(\boldsymbol{\operatorname { m a x }}(\) (maximum) return the smallest or largest element of listA. If two lists are compared, it returns a list of the smaller or larger of each pair of elements in listA and listB. For a complex list, the element with smallest or largest magnitude (modulus) is returned.
\(\min (l i s t A[, l i s t B])\)
\(\boldsymbol{\operatorname { m a x }}(\) list \(A[, l i s t B])\)


Note: \(\boldsymbol{m i n}(\) and \(\boldsymbol{\operatorname { m a x }}\) ( are the same as \(\boldsymbol{\operatorname { m i n }}\) ( and \(\boldsymbol{\operatorname { m a x }}(\) on the MATH NUM menu.

\section*{mean(, median(}
mean( returns the mean value of list. median( returns the median value of list. The default value for freqlist is 1 . Each freqlist element counts the number of consecutive occurrences of the corresponding element in list. Complex lists are not valid.
mean(list[_freqlist])
median(list[_freqlist])


\section*{sum(, prod(}
sum( (summation) returns the sum of the elements in list. start and end are optional; they specify a range of elements. list elements can be real or complex numbers.
prod( returns the product of all elements of list. start and end elements are optional; they specify a range of list elements. list elements can be real or complex numbers.
\begin{tabular}{|c|c|}
\hline sum(list[_start,end \(]\) ) & prod(list[,start,end]) \\
\hline Cokhal float muto real radian mip \} & Eormal float auto real radian mp \\
\hline \[
\{1 \cdot 2 \cdot 5 \cdot 8 \cdot 10\} \rightarrow \operatorname{L}^{1} 1
\] & L1 \\
\hline sum(L1) 26 & \(\operatorname{prod}\left(L_{1}\right)\) \\
\hline sum(L1.3.5) & prod(1.3.5) \\
\hline 23 & \[
400
\] \\
\hline
\end{tabular}

\section*{Sums and Products of Numeric Sequences}

\section*{You can combine sum( or prod( with seq( to obtain:}
```

upper
\sum expression (x)

```
upper

\(x=\) lower \(\quad x=\) lower
To evaluate \(\Sigma 2^{(N-1)}\) from \(N=1\) to 4 and then \(\pi 2^{(N-1)}\) from \(N=1\) to 4:


\section*{stdDev(, variance(}
stdDev( returns the standard deviation of the elements in list. The default value for freqlist is 1 . Each freqlist element counts the number of consecutive occurrences of the corresponding element in list. Complex lists are not valid.
\(\mathbf{s t d D e v}(\) list \([\).freqlist \(]\) )
\begin{tabular}{|c|}
\hline MORTALL FLOAT RUTO REAL RADIAN MP \\
\hline \[
\begin{aligned}
& \text { stdDev }(\{1,2,5,-6,3.2\}) \\
& 3.763863264
\end{aligned}
\] \\
\hline
\end{tabular}
variance( returns the variance of the elements in list. The default value for freqlist is 1 . Each freqlist element counts the number of consecutive occurrences of the corresponding element in list. Complex lists are not valid.
variance(list[_freqlist])


\section*{Chapter 12: Statistics}

\section*{Getting Started: Pendulum Lengths and Periods}

Getting Started is a fast-paced introduction. Read the chapter for details.
A group of students is attempting to determine the mathematical relationship between the length of a pendulum and its period (one complete swing of a pendulum). The group makes a simple pendulum from string and washers and then suspends it from the ceiling. They record the pendulum's period for each of 12 string lengths.*
\begin{tabular}{cccc}
\hline Length (cm) & Time (sec) & Length (cm) & Time (sec) \\
\hline 6.5 & 0.51 & 24.4 & 1.01 \\
\hline 11.0 & 0.68 & 26.6 & 1.08 \\
\hline 13.2 & 0.73 & 30.5 & 1.13 \\
\hline 15.0 & 0.79 & 34.3 & 1.26 \\
\hline 18.0 & 0.88 & 37.6 & 1.28 \\
\hline 23.1 & 0.99 & 41.5 & 1.32 \\
\hline
\end{tabular}
*This example is quoted and adapted from Contemporary Precalculus Through Applications, by the North Carolina School of Science and Mathematics, by permission of Janson Publications, Inc., Dedham, MA. 1-800-322-MATH. © 1992. All rights reserved.
1. Press MODE \(\square \square\) ENTER to set Func graphing mode.
2. Press STAT \(\mathbf{5}\) to select \(\mathbf{5 : S e t U p E d i t o r . ~ S e t U p E d i t o r ~ i s ~}\) pasted to the home screen.
Press ENTER. This removes lists from view in the stat list editor columns 1 through 20, and then stores lists L1 through \(\mathbf{L 6}\) in columns 1 through 6.

Note: Removing lists from the stat list editor does not delete them from memory.
3. Press STAT \(\mathbf{1}\) to select 1:Edit from the STAT EDIT menu. The stat list editor is displayed. If elements are stored in \(\mathbf{L 1}\) and L2, press \(\Delta\) to move the cursor onto L1, and then press CLEAR ENTER \(\square \triangle\) CLEAR ENTER to clear both lists. Press 0 to move the rectangular cursor back to the first row in \(\mathbf{L 1}\).

4. Press \(\mathbf{6} \mathbf{5}\) ENTER to store the first pendulum string length \((6.5 \mathrm{~cm})\) in L1. The rectangular cursor moves to the next row. Repeat this step to enter each of the 12 string length values in the table.

5. Press \(\square\) to move the rectangular cursor to the first row in \(\mathbf{L 2}\).

Press51 [ENTER to store the first time measurement \((.51 \mathrm{sec})\) in \(\mathbf{L 2}\). The rectangular cursor moves to the next row. Repeat this step to enter each of the 12 time values in the table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Normal float futo Real radian mp} \\
\hline L1 & L2 & L3 & L4 & Ls & 2 \\
\hline 13.2 & . 73 & & & & \\
\hline 15 & . 79 & & & & \\
\hline \({ }_{28}^{18}\) & . 88 & & & & \\
\hline 23.1
24.4 & 1.99 & & & & \\
\hline 26.6 & 1.88 & & & & \\
\hline \begin{tabular}{l}
30.5 \\
34.3 \\
\hline
\end{tabular} & \({ }_{1.26}^{1.13}\) & & & & \\
\hline 34.3
37.6 & 1.28 & & & & \\
\hline 41.5 & 1.32 & & & & \\
\hline
\end{tabular}
\(\mathrm{L} 2(12)=1.32\)
6. Press \(Y\) to display the \(Y=\) editor.

If necessary, press CLEAR to clear the function Y1. As necessary, press \(\triangle\), ENTER, and \(\square\) to turn off Plot1, Plot2, and Plot3 from the top line of the \(Y=\) editor (Chapter 3). As necessary, press \(\square, 0\), and ENTER to deselect functions.
7. Press 2nd [STAT PLOT] \(\mathbf{1}\) to select 1:Plot1 from the STAT PLOTS menu. The stat plot editor is displayed for Plot 1.
8. Press ENTER to select On, which turns on Plot 1. Press \(\square\) ENTER to select \(\cdots\) (scatter plot). Press \(\square_{\text {2nd }}[11]\) to specify Xlist:L1 for Plot 1. Press \(\square\) 2nd [L2] to specify Ylist:L2 for Plot 1. Press \(\square\) ENTER to select + as the Mark for each data point on the scatter plot. Press \(\square\) to select a color from the spinner dialog box (the default color is BLUE).
9. Press \(Z O O M\) 9 to select 9 :ZoomStat from the ZOOM menu. The window variables are adjusted automatically, and Plot 1 is displayed. This is a scatter plot of the time-versus-length data.
Note: Since the scatter plot of time-versus-length data appears to be approximately linear, fit a line to the data.

10. Press STAT \(\mathbf{4}\) to select \(\mathbf{4}\) :LinReg(ax+b) (linear regression model) from the STAT CALC menu.
11. Fill in each argument in the stat wizard displayed. Press 2nd [L1] (for xlist:), and [2nd [L2] (for Ylist:), Press \(\square\) (to store ReqEQ: ) and then press ALPHA [F4] [ENTER to paste Y1. Press (to select Calculate).
12. Press ENTER to execute LinReg(ax+b). The linear regression for the data in \(\mathbf{L 1}\) and \(\mathbf{L 2}\) is calculated. Values for \(\mathbf{a}\) and \(\mathbf{b}\) are displayed in a temporary result screen. The linear regression equation is stored in Y1. Residuals are calculated and stored automatically in the list name RESID, which becomes an item on the LIST NAMES menu.

\section*{Note:}
- You can control the number of decimal places displayed by changing the decimal mode setting in MODE.
- The statistics reported are not stored in the history on the home screen.
- Press VARS \(5 \square\) to access the statistical variables just calculated.
- Press CLEAR to return to the home screen.
13. The stat wizard pastes the populated command in the home screen history for repeated use, if needed (press CLEAR \(\triangle \Delta\) to view the home screen history as show in the screen).

14. Press GRAPH. The regression line and the scatter plot are displayed.


The regression line appears to fit the central portion of the scatter plot well. However, a residual plot may provide more information about this fit.
15. Press STAT \(\mathbf{1}\) to select 1:Edit. The stat list editor is displayed.

Press \(\square\) and \(\triangle\) to move the cursor onto L3.
Press [2nd [iNS]. An unnamed column is displayed in column 3; L3, L4, L5, and L6 shift right one column. The Name= prompt is displayed in the entry line.
16. Press [2nd [LIST] to display the LIST NAMES menu.

If necessary, press to move the cursor onto the list name RESID.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Kriht & FLUAI & U keht & Khdit & & \(\square\) \\
\hline L1 & L2 & --.-- & L3 & 4 & 3 \\
\hline 6.5 & . 51 & ------- & & & \\
\hline 11 & . 68 & & & & \\
\hline \({ }_{15}^{13.2}\) & . 73 & & & & \\
\hline 15 & . 89 & & & & \\
\hline \({ }_{23.1}\) & . 98 & & & & \\
\hline 24.4 & 1.01 & & & & \\
\hline 26.6
36.5 & \({ }_{1.13}^{1.88}\) & & & & \\
\hline 3.6 .5
34.3
37.5 & 1.26 & & & & \\
\hline 37.6 & 1.28 & & & & \\
\hline \multicolumn{6}{|l|}{Name= \(\square\)} \\
\hline
\end{tabular}

17. Press ENTER to select RESID and paste it to the stat list editor's Name= prompt.

18. Press ENTER. RESID is stored in column 3 of the stat list editor.

Press repeatedly to examine the residuals.


Notice that the first three residuals are negative. They correspond to the shortest pendulum string lengths in L1. The next five residuals are positive, and three of the last four are negative. The latter correspond to the longer string lengths in L1. Plotting the residuals will show this pattern more clearly.
19. Press 2nd [STAT PLOT] \(\mathbf{2}\) to select 2: Plot2 from the STAT PLOTS menu. The stat plot editor is displayed for Plot 2.
20. Press ENTER to select On, which turns on Plot 2.

Press \(\square\) ENTER to select \(\stackrel{\bullet}{*}\) (scatter plot). Press \(\square\) 2nd [L1] to specify Xlist:L1 for Plot 2. Press [2nd [A-LOCK]to lock the alpha key. Press \(\square\) [R][E][S][I][D] to specify Ylist:RESID for Plot 2. Press \(\square\) ENTER to select \(\square\) as the mark for each data point on the scatter plot. Press to select a color (the default color for Plot 2 is RED).
21. Press \(Y=\) to display the \(Y=\) editor.

Press \(\square\) to move the cursor onto the \(=\) sign, and then press ENTER to deselect Y1. Press \(\triangle\) ENTER to turn off Plot 1.


22. Press ZOOM \(\mathbf{9}\) to select \(\mathbf{9}\) :ZoomStat from the ZOOM menu. The window variables are adjusted automatically, and Plot 2 is displayed. This is a scatter plot of the residuals.


Notice the pattern of the residuals: a group of negative residuals, then a group of positive residuals, and then another group of negative residuals.

The residual pattern indicates a curvature associated with this data set for which the linear model did not account. The residual plot emphasizes a downward curvature, so a model that curves down with the data would be more accurate. Perhaps a function such as square root would fit. Try a power regression to fit a function of the form \(y=a * x^{b}\).
23. Press \(Y=\) to display the \(Y=\) editor.

Press CLEAR to clear the linear regression equation from Y1. Press \(\triangle\) ENTER to turn on Plot 1. Press \(\square\) ENTER to turn off Plot 2.
24. Press ZOOM \(\mathbf{9}\) to select \(\mathbf{9}\) :ZoomStat from the ZOOM menu. The window variables are adjusted automatically, and the original scatter plot of time-versus-length data (Plot 1) is displayed.


25. Press STAT ALPHA [A] to select A:PwrReg from the STAT CALC menu.

Press [2nd [L1] 2nd [L2] \(⿴ 囗\) ALPHA [F4] ENTER \(\square\) to highlight Calculate.
Note: You can also use the VARS Y-VARS FUNCTION menu, VARS 1 to select Y1.
26. Press ENTER to calculate the power regression. PwrReg is pasted to the home screen. Values for a and \(\mathbf{b}\) are displayed on the home screen. The power regression equation is stored in Y1. Residuals are calculated and stored automatically in the list name RESID.
27. Press GRAPH. The regression line and the scatter plot are displayed.


The new function \(y=.192 x^{.522}\) appears to fit the data well. To get more information, examine a residual plot.
28. Press \(Y=\) to display the \(Y=\) editor.

Press 0 ENTER to deselect \(\mathbf{Y 1}\).
Press \(\triangle\) ENTER to turn off Plot 1. Press \(\square\) ENTER to turn on Plot 2.

Note: Step 19 defined Plot 2 to plot residuals (RESID) versus string length (L1).

29. Press \(Z 00 \mathrm{M}\) 9 to select 9:ZoomStat from the ZOOM menu. The window variables are adjusted automatically, and Plot 2 is displayed. This is a scatter plot of the residuals.


The new residual plot shows that the residuals are random in sign, with the residuals increasing in magnitude as the string length increases.
To see the magnitudes of the residuals, continue with these steps.
30. Press TRACE.

Press \(\square\) and \(\square\) to trace the data. Observe the values for \(Y\) at each point.
With this model, the largest positive residual is about 0.041 and the smallest negative residual is about -0.027 . All other residuals are less than 0.02 in magnitude.


Now that you have a good model for the relationship between length and period, you can use the model to predict the period for a given string length. To predict the periods for a pendulum with string lengths of 20 cm and 50 cm , continue with these steps.
31. Press VARS 1 to display the VARS Y-VARS

FUNCTION secondary menu, and then press 1 to select 1:Y1. Y1 is pasted to the home screen.
Note: You can also use the YVARS ([ALPHA [F4]) shortcut menu to select Y1.
32. Press \(\mathbf{2 0}\) to enter a string length of 20 cm .

Press ENTER to calculate the predicted time of about 0.92 seconds.

Based on the residual analysis, we would expect the prediction of about 0.92 seconds to be within about 0.02 seconds of the actual value.

33. Press [2nd [ENTRY] to recall the Last Entry.

Press U \(^{1}\) 5 to change the string length to 50 cm .
34. Press ENTER to calculate the predicted time of about


Since a string length of 50 cm exceeds the lengths in the data set, and since residuals appear to be increasing as string length increases, we would expect more error with this estimate.

Note: You also can make predictions using the table with the TABLE SETUP settings Indpnt:Ask and Depend:Auto (Chapter 7).

\section*{Setting Up Statistical Analyses}

\section*{Using Lists to Store Data}

Data for statistical analyses is stored in lists, which you can create and edit using the stat list editor. The TI-84 Plus \(\mathbf{C}\) has six list variables in memory, \(\mathbf{L 1}\) through \(\mathbf{L 6}\), to which you can store data for statistical calculations. Also, you can store data to list names that you create (Chapter 11).

\section*{Setting Up a Statistical Analysis}

To set up a statistical analysis, follow these steps. Read the chapter for details.
1. Enter the statistical data into one or more lists.
2. Plot the data.
3. Calculate the statistical variables or fit a model to the data.
4. Graph the regression equation for the plotted data.
5. Graph the residuals list for the given regression model.

\section*{Displaying the Stat List Editor}

The stat list editor is a table where you can store, edit, and view up to 20 lists that are in memory. Also, you can create list names from the stat list editor.

To display the stat list editor, press [STAT, and then select 1:Edit from the STAT EDIT menu.


The top line displays list names. \(\mathbf{L 1}\) through \(\mathbf{L 6}\) are stored in columns 1 through 6 after a memory reset. The number of the current column is displayed in the top-right corner.

The bottom line is the entry line. All data entry occurs on this line. The characteristics of this line change according to the current context.

The center area displays up to ten elements of up to five lists. In MathPrint \({ }^{T M}\) mode, the number of elements displayed will vary depending on the MathPrint \({ }^{\text {TM }}\) templates used.

\section*{Using the Stat List Editor}

\section*{Entering a List Name in the Stat List Editor}

To enter a list name in the stat list editor, follow these steps.
1. Display the Name= prompt in the entry line in either of two ways.
- Move the cursor onto the list name in the column where you want to insert a list, and then press 2nd [ins]. An unnamed column is displayed and the remaining lists shift right one column.
- Press \(\Delta\) until the cursor is on the top line, and then press \(\square\) until you reach the unnamed column.
Note: If list names are stored to all 20 columns, you must remove a list name to make room for an unnamed column.
The Name= prompt is displayed .

2. Enter a valid list name in any of four ways.
- Select a name from the LIST NAMES menu (Chapter 11).
- Enter L1, L2, L3, L4, L5, or L6 from the keyboard.
- Enter an existing user-created list name directly from the keyboard.
- Enter a new user-created list name.

3. Press ENTER or to store the list name and its elements, if any, in the current column of the stat list editor.


To begin entering, scrolling, or editing list elements, press \(\square\). The rectangular cursor is displayed.
Note: If the list name you entered in step 2 already was stored in another stat list editor column, then the list and its elements, if any, move to the current column from the previous column. Remaining list names shift accordingly.

\section*{Creating a Name in the Stat List Editor}

To create a name in the stat list editor, follow these steps.
1. Display the Name= prompt. Press 2nd ALPHAto lock alpha if needed.
2. Press [letter from \(A\) to \(Z\) or \(\theta\) ] to enter the first letter of the name. The first character cannot be a number.
3. Press [2nd [A-LOCK] to lock the alpha key in the on position and enter several alpha characters as needed. To unlock, press the ALPHA key.
4. Enter zero to four letters, \(\theta\), or numbers to complete the new user-created list name. List names can be one to five characters long.
5. Press ENTER or to store the list name in the current column of the stat list editor. The list name becomes an item on the LIST NAMES menu (Chapter 11).

\section*{Removing a List from the Stat List Editor}

To remove a list from the stat list editor, move the cursor onto the list name and then press DEL. The list is not deleted from memory; it is only removed from the stat list editor.

\section*{Notes:}
- To delete a list name from memory, use the MEMORY MANAGEMENT/DELETE secondary menu (Chapter 18).
- If you archive a list, it will be removed from the view of the stat list editor.

\section*{Removing All Lists and Restoring L1 through L6}

You can remove all user-created lists from the stat list editor and restore list names \(\mathbf{L 1}\) through \(\mathbf{L 6}\) to columns 1 through 6 in either of two ways.
- Use SetUpEditor with no arguments.
- Reset all memory (Chapter 18).

\section*{Clearing All Elements from a List}

You can clear all elements from a list in any of five ways.
- Use CIrList to clear specified lists. For example, CIrList L1, L3 etc.
- On the home screen, press 2nd [CATALOG] and select CIrList from the Catalog menu.
- In the stat list editor, press \(\Delta\) to move the cursor onto a list name, and then press CLEAR ENTER.
- In the stat list editor, move the cursor onto each element, and then press DEL one by one.
- On the home screen or in the program editor, enter \(\mathbf{0} \rightarrow \mathbf{d i m}\) (listname) to set the dimension of listname to 0 (Chapter 11).
- Use CIrAllLists in the Catalog menu to clear all lists in memory (Chapter 18).

\section*{Editing a List Element}

To edit a list element, follow these steps.
1. Move the cursor onto the element you want to edit.
2. Press ENTER to move the cursor to the entry line.

Note: If you want to replace the current value, you can enter a new value without first pressing ENTER. When you enter the first character, the current value is cleared automatically.
3. Edit the element in the entry line.
- Press one or more keys to enter the new value. When you enter the first character, the current value is cleared automatically.

You can use the shortcut menus to enter values. When you use \(\mathbf{n} / \mathbf{d}\) to enter a fraction, it is displayed as a stacked fraction in the list (MathPrint \({ }^{\text {TM }}\) mode). In Classic mode, the fraction has a thick bar or thin bar separating the numerator and denominator.

Thick-bar fraction on the list editor entry line: \(\operatorname{seqice}=2 / 3\)

Thin-bar fraction on the home screen (regular division): \(2 / 3\)
Note: Order of operations applies to fractions. For example, \(L \Sigma(1)=1+2 / \zeta\) evaluates to \(\frac{5}{3}\) because the order of operations dictates that division is performed before addition. To evaluate \(\frac{1+2}{3}\), enter \(\operatorname{LE(2)}=(1+2), 5\) with parentheses around the numerator.
- Press \(\square\) to move the cursor to the character before which you want to insert, press 2nd [iNS], and then enter one or more characters.
- Press \(\square\) to move the cursor to a character you want to delete, and then press DEL to delete the character.

To cancel any editing and restore the original element at the rectangular cursor, press CLEAR ENTER.

MathPrint \({ }^{\text {TM }}\)


Stacked
Fraction

Classic


Thick-bar Fraction

Note: You can enter expressions and variables for elements.
4. Press ENTER, \(\Delta\), or \(\square\) to update the list. If you entered an expression, it is evaluated. If you entered only a variable, the stored value is displayed as a list element.


When you edit a list element in the stat list editor, the list is updated in memory immediately.

\section*{Attaching Formulas to List Names}

\section*{Attaching a Formula to a List Name in Stat List Editor}

You can attach a formula to a list name in the stat list editor, and then display and edit the calculated list elements. When executed, the attached formula must resolve to a list. Chapter 11 describes in detail the concept of attaching formulas to list names.

To attach a formula to a list name that is stored in the stat list editor, follow these steps.
1. Press STAT ENTER to display the stat list editor.
2. Press \(\triangle\) to move the cursor to the top line.
3. Press \(\square\) or \(\square\), if necessary, to move the cursor onto the list name to which you want to attach the formula.

Note: If a formula in quotation marks is displayed on the entry line, then a formula is already attached to the list name. To edit the formula, press ENTER, and then edit the formula.
4. Press ALPHA ["], enter the formula, and press ALPHA ["'].

Note: If you do not use quotation marks, the TI-84 Plus C calculates and displays the same initial list of answers, but does not attach the formula for future calculations.
\begin{tabular}{|c|c|c|c|c|c|}
\hline RHaL & LuAt mu & UTO Real & Ridita & & [] \\
\hline ABC & L2 & L3 & 4 & Ls & 2 \\
\hline 5 & --- & -- & ------- & & \\
\hline \({ }_{15}^{19}\) & & & & & \\
\hline \(\stackrel{29}{25}\) & & & & & \\
\hline \multicolumn{6}{|l|}{L2=" 2 ABC +10 "} \\
\hline
\end{tabular}

Note: Any user-created list name referenced in a formula must be preceded by an L symbol (Chapter 11).
5. Press ENTER. The TI-84 Plus C calculates each list element and stores it to the list name to which the formula is attached. A lock symbol is displayed in the stat list editor, next to the list name to which the formula is attached.
lock symbol

\(L(1)=15\)

\section*{Using the Stat List Editor When Formula-Generated Lists Are Displayed}

When you edit an element of a list referenced in an attached formula, the TI-84 Plus C updates the corresponding element in the list to which the formula is attached (Chapter 11).


When a list with a formula attached is displayed in the stat list editor and you edit or enter elements of another displayed list, then the TI-84 Plus C takes slightly longer to accept each edit or entry than when no lists with formulas attached are in view.

Note: To speed editing time, scroll horizontally until no lists with formulas are displayed, or rearrange the stat list editor so that no lists with formulas are displayed.

\section*{Handling Errors Resulting from Attached Formulas}

On the home screen, you can attach to a list a formula that references another list with dimension 0 (Chapter 11). However, you cannot display the formula-generated list in the stat list editor or on the home screen until you enter at least one element to the list that the formula references.

All elements of a list referenced by an attached formula must be valid for the attached formula. For example, if Real number mode is set and the attached formula is log(L1), then each element of \(\mathbf{L 1}\) must be greater than 0 , since the logarithm of a negative number returns a complex result.
When you use the shortcut menus, all values must be valid for use in the templates. For example, if you use the \(\mathbf{n} / \mathbf{d}\) template, both the numerator and denominator must be integers.

\section*{Notes:}
- If an error menu is returned when you attempt to display a formula-generated list in the stat list editor, you can select 2:Goto, write down the formula that is attached to the list, and then press CLEAR ENTER to detach (clear) the formula. You then can use the stat list editor to find the source of the error. After making the appropriate changes, you can reattach the formula to a list.
- If you do not want to clear the formula, you can select 1:Quit, display the referenced list on the home screen, and find and edit the source of the error. To edit an element of a list on the home screen, store the new value to listname(element\#) (Chapter 11).

\section*{Detaching Formulas from List Names}

\section*{Detaching a Formula from a List Name}

You can detach (clear) a formula from a list name in several ways.
For example:
- In the stat list editor, move the cursor onto the name of the list to which a formula is attached. Press ENTER CLEAR ENTER. All list elements remain, but the formula is detached and the lock symbol disappears.
- In the stat list editor, move the cursor onto an element of the list to which a formula is attached. Press ENTER, edit the element, and then press ENTER. The element changes, the formula is detached, and the lock symbol disappears. All other list elements remain.
- Use CIrList. All elements of one or more specified lists are cleared, each formula is detached, and each lock symbol disappears. All list names remain.
- Use ClrAllLists (Chapter 18). All elements of all lists in memory are cleared, all formulas are detached from all list names, and all lock symbols disappear. All list names remain.

\section*{Editing an Element of a Formula-Generated List}

As described above, one way to detach a formula from a list name is to edit an element of the list to which the formula is attached. The TI-84 Plus C protects against inadvertently detaching the formula from the list name by editing an element of the formula-generated list.

Because of the protection feature, you must press ENTER before you can edit an element of a formulagenerated list.

The protection feature does not allow you to delete an element of a list to which a formula is attached. To delete an element of a list to which a formula is attached, you must first detach the formula in any of the ways described above.

\section*{Switching Stat List Editor Contexts}

\section*{Stat List Editor Contexts}

The stat list editor has four contexts.
- View-elements context
- View-names context
- Edit-elements context
- Enter-name context

The stat list editor is first displayed in view-elements context. To switch through the four contexts, select 1:Edit from the STAT EDIT menu and follow these steps.
1. Press \(\triangle\) to move the cursor onto a list name and switch to viewnames context. Press \(\square\) and \(\square\) to view list names stored in other stat list editor columns.

2. Press ENTER to switch to edit-elements context. You may edit any element in a list. All elements of the current list are displayed in braces ( \{ \} ) in the entry line. Press \(\square\) and \(\square\) to view more list elements.

3. Press ENTER again to switch to view-elements context. Press \(\square\), \(\square, \square\), and \(\Delta\) to view other list elements. The current element's full value is displayed in the entry line.

4. Press ENTER again to switch back to edit-elements context. You may edit the current element in the entry line.

5. Press \(\triangle\) until the cursor is on a list name, then press [2nd [iNS] to switch to enter-name context.

6. Press CLEAR to switch to view-names context.

7. Press to switch back to view-elements context.


\section*{Stat List Editor Contexts}

\section*{View-Elements Context}

In view-elements context, the entry line displays the list name, the current element's place in that list, and the full value of the current element, up to 20 characters at a time. An ellipsis (...) indicates that the element continues beyond 20 characters.


To page down ten elements, press ALPHA \(\sigma\). To page up ten elements, press ALPHA \(\triangle\). To delete a list element, press [DEL. Remaining elements shift up one row. To insert a new element, press 2nd [iNS]. \(\mathbf{0}\) is the default value for a new element.

\section*{Edit-Elements Context}

In edit-elements context, the data displayed in the entry line depends on the previous context.
- When you switch to edit-elements context from view-elements context, the full value of the current element is displayed. You can edit the value of this element, and then press \(\square\) and \(\Delta\) to edit other list elements.

- When you switch to edit-elements context from view-names context, the full values of all elements in the list are displayed. An ellipsis indicates that list elements continue beyond the screen. You can press \(\square\) and \(\square\) to edit any element in the list.


Note: In edit-elements context, you can attach a formula to a list name only if you switched to it from view-names context.

\section*{View-Names Context}

In view-names context, the entry line displays the list name and the list elements.


To remove a list from the stat list editor view, press DEL. Remaining lists shift to the left one column. The list is not deleted from memory.

To insert a name in the current column, press [nd [iNS]. Remaining columns shift to the right one column.

\section*{Enter-Name Context}

In enter-name context, the Name= prompt is displayed in the entry line.
At the Name= prompt, you can create a new list name, paste a list name from \(\mathbf{L 1}\) to \(\mathbf{L 6}\) from the keyboard, or paste an existing list name from the LIST NAMES menu (Chapter 11). The \(\mathbf{L}\) symbol is not required at the Name= prompt.


To leave enter-name context without entering a list name, press CLEAR. The stat list editor switches to view-names context.

\section*{STAT EDIT Menu}

\section*{STAT EDIT Menu}

To display the STAT EDIT menu, press STAT.
```

EDIT CALC TESTS
1: Edit... Displays the stat list editor.
2: SortA(Sorts a list in ascending order.
3: SortD(Sorts a list in descending order.
4: ClrList Deletes all elements of a list.
5: SetUpEditor Stores specified lists in the stat list editor.

```

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).

\section*{SortA(, SortD(}

SortA( (sort ascending) sorts list elements from low to high values. SortD( (sort descending) sorts list elements from high to low values. Complex lists are sorted based on magnitude (modulus). SortA( and SortD( each can sort in either of two ways.
- With one listname, SortA( and SortD( sort the elements in listname and update the list in memory.
- With two or more lists, SortA( and SortD( sort keylistname, and then sort each dependlist by placing its elements in the same order as the corresponding elements in keylistname. This lets you sort twovariable data on X and keep the data pairs together. All lists must have the same dimension.

The sorted lists are updated in memory.
SortA(listname)
SortD(listname)
SortA(keylistname,dependlist 1 [,dependlist \(2, \ldots\), dependlist n])
SortD(keylistname,dependlist \(1[\) dependlist \(2, \ldots\), dependlist n])


Note: SortA( and SortD( are the same as SortA( and SortD( on the LIST OPS menu.

\section*{ClrList}

CIrList clears (deletes) from memory the elements of one or more listnames. CIrList also detaches any formula attached to a listname.

CIrList listname1,listname2,...,listname \(n\)
Note: To clear from memory all elements of all list names, use ClrAllLists found in the Catalog menu. (Chapter 15).

\section*{SetUpEditor}

With SetUpEditor you can set up the stat list editor to display one or more listnames in the order that you specify. You can specify zero to 20 listnames.

Additionally, if you want to use listnames which happen to be archived, the SetUp Editor will automatically unarchive the listnames and place them in the stat list editor at the same time.

SetUpEditor [listname1,listname2,...,listname n]
SetUpEditor displays the specified lists beginning in column 1. Previous lists displayed are removed from the editor view.

\section*{MathPrint \({ }^{\text {TM }}\)}
\begin{tabular}{|l|}
\hline NURMAL FLUAT FUTU REFL RADIFIN MP \\
SetUpEditor RESID \\
\(\ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~\) \\
\\
\\
\\
\\
\hline
\end{tabular}

\section*{Classic}

\begin{tabular}{|c|c|c|c|}
\hline FESID & Lz & LE & ¢ 1 \\
\hline Fumin & 1 & 11 & \\
\hline . 069 & \(\underline{ }\) & 12 & \\
\hline -8104 & 3 & 15 & \\
\hline 0 & 5 & 15 & \\
\hline - 0 . 018 & E & 16 & \\
\hline - 0106 & & - & \\
\hline \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}


If you enter a listname that is not stored in memory already, then listname is created and stored in memory; it becomes an item on the LIST NAMES menu.

\section*{Restoring L1 through L6 to the Stat List Editor}

SetUpEditor with no listnames removes all list names from the stat list editor view and restores list names \(\mathbf{L 1}\) through \(\mathbf{L 6}\) in the stat list editor columns 1 through 6.


\section*{Regression Model Features}

\section*{Regression Model Features}

STAT CALC menu items \(\mathbf{3}\) through \(\mathbf{C}\) are regression models. The automatic residual list and automatic regression equation features apply to all regression models. StatDiagnostics display mode applies to some regression models.

\section*{Automatic Residual List}

When you execute a regression model, the automatic residual list feature computes and stores the residuals to the list name RESID. RESID becomes an item on the LIST NAMES menu (Chapter 11).


The TI-84 Plus C uses the formula below to compute RESID list elements. The next section describes the variable RegEQ.

RESID \(=\) Ylistname \(-\mathbf{R e g E Q}(\) Xlistname \()\)

\section*{Automatic Regression Equation}

Each regression model has an optional argument, regequ, for which you can specify a \(Y=\) variable such as Y1. Upon execution, the regression equation is stored automatically to the specified \(Y=\) variable and the \(Y=\) function is selected.

\section*{MathPrint \({ }^{\text {TM }}\)}

\begin{tabular}{|l|}
\hline NORMAL FLOAT AUTO REAL RADIAN MP \\
\hline EDIT CALC TESTS \\
1: 1-Var Stats \\
2: 2-Var Stats \\
3:Med-Med \\
4:LinReg(ax+b) \\
5: QuadReg \\
6: CubicReg \\
7: QuartRe9 \\
8: LinRe9 (a+bx) \\
9 \(\downarrow\) LnRe9 \\
\hline
\end{tabular}




\section*{Classic}

\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

Regardless of whether you specify a \(Y=\) variable for regequ, the regression equation always is stored to the variable RegEQ, which is item 1 on the VARS Statistics EQ secondary menu.


Note: For the regression equation, you can use the fixed-decimal mode setting to control the number of digits stored after the decimal point (Chapter 1). However, limiting the number of digits to a small number could affect the accuracy of the fit. RegEQ found using QuickPlot \& Fit-EQ are fixed 4 decimal places.

\section*{Diagnostics Display Mode}

When you execute some regression models, the TI-84 Plus C computes and stores diagnostics values for \(\mathbf{r}\) (correlation coefficient) and \(\mathbf{r}^{2}\) (coefficient of determination) or for \(\mathbf{R}^{2}\) (coefficient of determination). You can control whether these values are displayed by turning StatDiagnostics on or off on the mode screen.
\(\mathbf{r}\) and \(\mathbf{r}^{2}\) are computed and stored for these regression models.
\begin{tabular}{lll} 
LinReg \((a x+b)\) & LnReg & PwrReg \\
LinReg \((a+b x)\) & ExpReg &
\end{tabular}
\(\mathbf{R}^{2}\) is computed and stored for these regression models.

\section*{QuadReg}

CubicReg

\section*{QuartReg}

The \(\mathbf{r}\) and \(\mathbf{r}^{2}\) that are computed for LnReg, ExpReg, and PwrReg are based on the linearly transformed data. For example, for \(\operatorname{ExpReg}\left(y=a b^{\wedge} x\right), \mathbf{r}\) and \(\mathbf{r}^{2}\) are computed on \(\ln y=\ln a+x(\ln b)\).

By default, these values are not displayed with the results of a regression model when you execute it. However, you can set the diagnostics display mode by executing the DiagnosticOn or DiagnosticOff instruction. Each instruction is in the CATALOG (Chapter 15).

- To turn diagnostics on or off from the mode screen, select On or Off for StatDiagnostics. The default is Off.
- To set DiagnosticOn or DiagnosticOff from the home screen, press 2nd [CATALOG], and then select the instruction for the mode you want. The instruction is pasted to the home screen. Press ENTER to set the mode.

When DiagnosticOn is set, diagnostics are displayed with the results when you execute a regression model.

\section*{MathPrint \({ }^{\text {TM }}\)}
\begin{tabular}{l} 
NORMAL FLOAT AUTO REAL RADIAN MP \\
DiagnosticOn \\
...................................................... \\
\\
\\
\\
\\
\hline
\end{tabular}


\section*{Classic}
```

Di.\Xi9nostic0%
LinRe9(ax+b) Line
Lz

```

When DiagnosticOff is set, diagnostics are not displayed with the results when you execute a regression model.

\section*{MathPrint \({ }^{\text {TM }}\)}

```

LirReg
`=.ax+b

- =ax+
\#=-2
b=1,353535353

```

\section*{Classic}
\begin{tabular}{|c|}
\hline Di．ヨヨクosticロff LinReg（ \(\mathrm{ax}+\mathrm{b}\) ）Li， Lz \\
\hline
\end{tabular}

\section*{STAT CALC Menu}

\section*{STAT CALC Menu}

To display the STAT CALC menu，press STAT \(\square\) ．
\begin{tabular}{|c|c|c|c|}
\hline & EDIT & CALC TESTS & \\
\hline & 1： & \(1-\mathrm{Var}\) Stats & Calculates 1－variable statistics． \\
\hline & 2 ： & 2－Var Stats & Calculates 2－variable statistics． \\
\hline ＊ & 3 ： & Med－Med & Calculates a median－median line． \\
\hline ＊ & 4： & LinReg（ax＋b） & Fits a linear model to data． \\
\hline ＊ & \(5:\) & QuadReg & Fits a quadratic model to data． \\
\hline ＊ & 6： & CubicReg & Fits a cubic model to data． \\
\hline ＊ & 7： & QuartReg & Fits a quartic model to data． \\
\hline ＊ & 8： & LinReg（a＋bx） & Fits a linear model to data． \\
\hline ＊ & 9： & LnReg & Fits a logarithmic model to data． \\
\hline ＊ & 0 ： & ExpReg & Fits an exponential model to data． \\
\hline ＊ & A： & PwrReg & Fits a power model to data． \\
\hline ＊ & B： & Logistic & Fits a logistic model to data． \\
\hline ＊ & C： & SinReg & Fits a sinusoidal model to data． \\
\hline ＊ & D： & Manual Linear Fit & Fits a linear equation interactively to a scatter plot． \\
\hline & E： & Quick Plot \＆Fit E－Q & Plot points and curve fit interactively on the graph area． \\
\hline & enu i & items have a wizard． & \\
\hline
\end{tabular}

Note：Use Catalog Help for more syntax help when needed．Select a menu item and then press \(\square\) to go to a syntax help editor（if the menu item is supported）．

For each STAT CALC menu item，if neither Xlistname nor Ylistname is specified，then the default list names are \(\mathbf{L 1}\) and L2．If you do not specify freqlist，then the default is 1 occurrence of each list element．

\section*{STAT WIZARDS in STAT CALC}

When STAT WIZARDS is set to ON in MODE，a wizard will open by default．The wizard will prompt for required and optional arguments．In STAT CALC，select Calculate to paste the populated command to home screen and display the results to a temporary view．
Note：After a calculation，statistical variables are available in the VARS menu．
\begin{tabular}{|c|}
\hline NoRMAL FLoft futo real radifin mp \\
\hline Mathprint classic \\
\hline NORMAL SCI ENG \\
\hline FLOAT 0123456789 \\
\hline RADIAN DEGREE \\
\hline FUNCTION PARAMETRIC POLAR SEQ \\
\hline THICK DOT-THICK THIN DOT-THIN \\
\hline SEQUENTITAL SIMUL \\
\hline REAL \({ }^{\text {a+bi }} \mathrm{re}^{\wedge}(\theta \mathrm{i})\) \\
\hline FULL HORIZONTAL GRAPH-TABLE \\
\hline FRACTIONTYPE: hed Unod \\
\hline ANSWERS: GUTO DEC FRAC-APPROX \\
\hline GO TO 2ND FORMAT GRAPH: ED YES \\
\hline STAT DIAGNOSTICS: DFF ON \\
\hline STAT WIZARDS: ON OFF \\
\hline SETCLOCK 08\%28/12 8:32im \\
\hline
\end{tabular}

The following screens demonstrate the STAT WIZARDS flow for a STAT CALC menu command.
1. Press press STAT \(\square\) to select the STAT CALC menu. Select 1 ENTER to select the 1-Var Stats menu.

2. The \(\mathbf{1}\)-Var Stats wizard opens. Enter the values in the wizard. Scroll down to Calculate and press ENTER.
Note: In this example, data has been entered in L1. FreqList is an optional argument.
3. The STAT CALC results are displayed.


\section*{Frequency of Occurrence for Data Points}

For most STAT CALC menu items, you can specify a list of data occurrences, or frequencies (freqlist).
Each element in freqlist indicates how many times the corresponding data point or data pair occurs in the data set you are analyzing.

For example, if \(\mathbf{L 1}=\{\mathbf{1 5}, \mathbf{1 2 , 9}, \mathbf{1 4 \}}\) and \(\mathbf{L F R E Q}=\{\mathbf{1 , 4 , 1 , 3}\}\), then the TI-84 Plus C interprets the instruction 1-Var Stats L1, LFREQ to mean that 15 occurs once, 12 occurs four times, 9 occurs once, and 14 occurs three times.

Each element in freqlist must be \(\geq 0\), and at least one element must be \(>0\).
Noninteger freqlist elements are valid. This is useful when entering frequencies expressed as percentages or parts that add up to 1 . However, if freqlist contains noninteger frequencies, \(\mathbf{S x}\) and \(\mathbf{S y}\) are undefined; values are not displayed for \(\mathbf{S x}\) and \(\mathbf{S y}\) in the statistical results.

For some STAT CALC menu items such as regression models, use the shortcut menu ALPHA F4 to enter a Y Var for Store RegEQ.

\section*{1-Var Stats}

1-Var Stats (one-variable statistics) analyzes data with one measured variable. Each element in freqlist is the frequency of occurrence for each corresponding data point in Xlistname. freqlist elements must be real numbers \(>0\).

1-Var Stats [Xlistname, freqlist]


\section*{2-Var Stats}

2-Var Stats (two-variable statistics) analyzes paired data. Xlistname is the independent variable.
Ylistname is the dependent variable. Each element in freqlist is the frequency of occurrence for each data pair (Xlistname, Ylistname).

2-Var Stats [Xlistname, Ylistname, freqlist]
```

 E-varstatm
 Klist:L1
Ylist:Lz
Freslist:
Calculgte

```

\section*{Med-Med (ax+b)}

Med-Med (median-median) fits the model equation \(y=a x+b\) to the data using the median-median line (resistant line) technique, calculating the summary points \(\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2, \mathrm{x} 3\), and y 3 . Med-Med displays values for \(\mathbf{a}\) (slope) and \(\mathbf{b}\) (y-intercept).

Med-Med [Xlistname, Ylistname,freqlist,regequ]
\begin{tabular}{|c|}
\hline  \\
\hline \\
\hline
\end{tabular}
```

Xlist:LEN-H
FreaList:
Store RegEQ:
Calculate

```

\section*{LinReg (ax+b)}

LinReg(ax+b) (linear regression) fits the model equation \(y=a x+b\) to the data using a least-squares fit. It displays values for \(\mathbf{a}\) (slope) and \(\mathbf{b}\) (y-intercept); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{2}\) and r.

LinReg(ax+b) [Xlistname,Ylistname,freqlist,regequ]


\section*{QuadReg (ax \(\left.{ }^{2}+b x+c\right)\)}

QuadReg (quadratic regression) fits the second-degree polynomial \(y=a x^{2}+b x+c\) to the data. It displays values for \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{c}\); when DiagnosticOn is set, it also displays a value for \(\mathbf{R}^{2}\). For three data points, the equation is a polynomial fit; for four or more, it is a polynomial regression. At least three data points are required.

QuadReg [Xlistname,Ylistname,freqlist,regequ]


\section*{CubicReg-(ax \(\left.{ }^{3}+b x^{2}+c x+d\right)\)}

CubicReg (cubic regression) fits the third-degree polynomial \(y=a x^{3}+b x^{2}+c x+d\) to the data. It displays values for \(\mathbf{a}, \mathbf{b}, \mathbf{c}\), and \(\mathbf{d}\); when DiagnosticOn is set, it also displays a value for \(\mathbf{R}^{2}\). For four points, the equation is a polynomial fit; for five or more, it is a polynomial regression. At least four points are required.

CubicReg [Xlistname,Ylistname,freqlist,regequ]


\section*{QuartReg-( \(\left.a x^{4}+b x^{3}+c x^{2}+d x+e\right)\)}

QuartReg (quartic regression) fits the fourth-degree polynomial \(y=a x^{4}+b x^{3}+c x^{2}+d x+e\) to the data. It displays values for \(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\), and \(\mathbf{e}\); when DiagnosticOn is set, it also displays a value for \(\mathbf{R}^{2}\). For five points, the equation is a polynomial fit; for six or more, it is a polynomial regression. At least five points are required.

QuartReg [Xlistname, Ylistname,freqlist,regequ]


\section*{LinReg-(a+bx)}

LinReg(a+bx) (linear regression) fits the model equation \(y=a+b x\) to the data using a least-squares fit. It displays values for \(\mathbf{a}\) (y-intercept) and \(\mathbf{b}\) (slope); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{2}\) and \(\mathbf{r}\).

LinReg(a+bx) [Xlistname, Ylistname,freqlist,regequ]
```

 Linfism[g+Ex]
 Xlist:L1
Ylist:L2
FreaList.
Store ReaEQ:
Calculate

```

\section*{LnReg-(a+b \(\ln (x))\)}

LnReg (logarithmic regression) fits the model equation \(y=a+b \ln (x)\) to the data using a least-squares fit and transformed values \(\ln (x)\) and \(y\). It displays values for \(\mathbf{a}\) and \(\mathbf{b}\); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{2}\) and \(\mathbf{r}\).

LnReg [Xlistname, Ylistname,freqlist,regequ]
```

MLIF\&N

```

\section*{ExpReg-(ab \({ }^{x}\) )}

ExpReg (exponential regression) fits the model equation \(y=a b^{x}\) to the data using a least-squares fit and transformed values \(x\) and \(\ln (y)\). It displays values for \(\mathbf{a}\) and \(\mathbf{b}\); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{2}\) and \(\mathbf{r}\).

ExpReg [Xlistname, Ylistname,freqlist,regequ]
```

ExF|fis
Xlist:L1
Ylist:Lz
Store ReaEQ:
Ealculate

```

\section*{PwrReg-(ax \({ }^{b}\) )}

PwrReg (power regression) fits the model equation \(y=a x^{b}\) to the data using a least-squares fit and transformed values \(\ln (x)\) and \(\ln (y)\). It displays values for \(\mathbf{a}\) and \(\mathbf{b}\); when DiagnosticOn is set, it also displays values for \(\mathbf{r}^{2}\) and \(\mathbf{r}\).

PwrReg [Xlistname, Ylistname,_freqlist,regequ]


\section*{Logistic—c/(1+a*e \(\left.{ }^{-b x}\right)\)}

Logistic fits the model equation \(y=c /\left(1+a * e^{-b x}\right)\) to the data using an iterative least-squares fit. It displays values for \(\mathbf{a}, \mathbf{b}\), and \(\mathbf{c}\).

Logistic [Xlistname, Ylistname,freqlist,regequ]


\section*{SinReg—a \(\sin (b x+c)+d\)}

SinReg (sinusoidal regression) fits the model equation \(y=a \sin (b x+c)+d\) to the data using an iterative least-squares fit. It displays values for \(\mathbf{a}, \mathbf{b}, \mathbf{c}\), and \(\mathbf{d}\). At least four data points are required. At least two data points per cycle are required in order to avoid aliased frequency estimates.
SinReg [iterations,Xlistname,Ylistname,period,regequ]

iterations is the maximum number of times the algorithm will iterate to find a solution. The value for iterations can be an integer \(\geq 1\) and \(\leq 16\); if not specified, the default is 3 . The algorithm may find a solution before iterations is reached. Typically, larger values for iterations result in longer execution times and better accuracy for SinReg, and vice versa.

A period guess is optional. If you do not specify period, the difference between time values in Xlistname must be equal and the time values must be ordered in ascending sequential order. If you specify period, the algorithm may find a solution more quickly, or it may find a solution when it would not have found one if you had omitted a value for period. If you specify period, the differences between time values in Xlistname can be unequal.

\section*{SinReg Example: Daylight Hours in Alaska for One Year}

Compute the regression model for the number of hours of daylight in Alaska during one year.


MathPrint \({ }^{\text {M }}\)


Classic
SinRey LisLz,Yi■


With noisy data, you will achieve better convergence results when you specify an accurate estimate for period. You can obtain a period guess in either of two ways.
- Plot the data and trace to determine the x-distance between the beginning and end of one complete period, or cycle. The illustration above and to the right graphically depicts a complete period, or cycle.
- Plot the data and trace to determine the x -distance between the beginning and end of N complete periods, or cycles. Then divide the total distance by N .

After your first attempt to use SinReg and the default value for iterations to fit the data, you may find the fit to be approximately correct, but not optimal. For an optimal fit, execute
SinReg 16,Xlistname, Ylistname, \(\mathbf{2} \pi / b\) where \(b\) is the value obtained from the previous SinReg execution.

\section*{Manual Linear Fit}

Manual Linear Fit allows you to visually fit a linear function to a scatter plot. Manual Linear Fit is an option in the STAT [CALC] menu.

After entering List data and viewing the StatPlot, select the Manual-Fit function.
1. Press STAT to display the Stat menu. Press \(\square\) to select CALC. Press \(\Delta\) to scroll up and select D:Manual-Fit.

2. \(\operatorname{Press}[\) ALPHA \([F 4] \square\) ENTER to store the equation to \(\mathbf{Y 3}\). Press \(\square\) to highlight Calculate and then press ENTER.

This displays a free-floating cursor at the center of the display screen.

3. Press ALPHA [F5] to open the STYLE menu. Choose your color and line style, press to highlight OK, and then press ENTER.
4. Press the cursor navigation keys ( \(\Delta \square \square\) ) to move the cursor to the desired location. Press ENTER to select the first point.
5. Press the cursor navigation keys ( \(\Delta \square \square \square\) ) to move the cursor to the second location. Press ENTER. This displays a line containing the two points selected.


The linear function is displayed. The Manual-Fit Line equation displays in the form of \(\mathrm{Y}=\mathrm{mX}+\mathrm{b}\). The current value of the first parameter ( m ) is highlighted in the symbolic expression. Press [ALPHA [F5] (DONE) to graph or press ENTER to edit the parameter values.

\section*{Modify parameter values}

Press the cursor navigation keys ( \(\Delta \square\) ) to move from the first parameter ( \(m\) ) or (b) the second parameter. You can press ENTER and type a new parameter value. Press ENTER to display the new parameter value. When you edit the value of the selected parameter, the edit can include insert, delete, type over, or a mathematical expression.



The screen dynamically displays the revised parameter value. Press ENTER to complete the modification of the selected parameter, save the value, and refresh the displayed graph. The system displays the revised parameter value in the symbolic expression \(Y=m X+B\), and refreshes the graph with the updated Manual-Fit Line.

Select [2nd [QUIT] or press ALPHA [F5] (DONE) to finish the Manual Fit function. The calculator stores the current \(\mathrm{mX}+\mathrm{b}\) expression into \(\mathbf{Y} 3\) and makes that function active for graphing. You can also select Manual-Fit while on the Home screen. You can then enter a different \(\mathbf{Y}\)-Var such as \(\mathbf{Y} 4\) and then press ENTER. This takes you to the Graph screen and then pastes the Manual-Fit equation in the specified \(\mathbf{Y}\) Var.

\section*{QuickPlot}

QuickPlot \& Fit-EQ allows you to drop points on a graph screen and model a curve to those points using regression functions. You can select color and line style, draw points on a graph, and choose an equation to fit the drawn points. You can then store the results of the plot and equation.

QuickPlot \& Fit-EQ is an option in the STAT [CALC] menu.
After entering window and format settings, select the QuickPlot \& Fit-EQ command.
1. Press STAT \(\triangle\) to highlight QuickPlot\&Fit-EQ from the CALC menu.
\begin{tabular}{|l|}
\hline NORMAL FLOAT AUTO REAL RADIAN MP \\
\hline EDIT CALC TESTS \\
7个QuartReg \\
8:LinReg \\
9:LnReg \\
Q:ExpReg \\
A: PwrReg \\
B:Logistic \\
C:SinReg \\
D:Manual-Fit \\
E:QuickPlot\&Fit-EQ \\
\hline
\end{tabular}
2. Press ENTER.

3. Press ALPHA [F5] to open the STYLE menu.
4. Choose your color and line style, press to highlight \(\mathbf{O K}\), and then press ENTER.

5. Use the arrow keys to move the cursor, and press ENTER at the desired spot to draw a point.


After you draw at least two points, the FitEQ menu appears.

Note: Once you start to drop points, the points are saved to lists QPX and QPY even if you do not complete the entire Quick Plot and EQ activity.

6. Press ALPHA [F5] to open the FitEQ menu.
7. Choose your desired equation and press ENTER.


The software graphs the equation, and asks if you want to store the results.

8. Press ALPHA [F5] to store the results.

Note: If you do not want to store the results, use CIrDraw to clear your work.
9. Choose your options from the menu and then press OK.


Note: You can store up to three unique Quick Plot sessions on one image. For example:
\begin{tabular}{llll}
\hline XList & YList & \begin{tabular}{c} 
Setup \\
Plot
\end{tabular} & \begin{tabular}{c} 
Store \\
RegEQ
\end{tabular} \\
\hline L1 & L2 & Plot1 & Y1 \\
\hline L3 & L4 & Plot 2 & Y2 \\
\hline L5 & L6 & Plot 3 & Y3 \\
\hline
\end{tabular}

\section*{Statistical Variables}

The statistical variables are calculated and stored as indicated below. To access these variables for use in expressions, press VARS, and select 5:Statistics. Then select the VARS menu shown in the column below under VARS menu. If you edit a list or change the type of analysis, all statistical variables are cleared.
\begin{tabular}{|c|c|c|c|c|}
\hline Variables & 1-Var Stats & 2-Var
Stats & Other & VARS menu \\
\hline mean of \(x\) values & \(\overline{\mathrm{x}}\) & \(\overline{\mathrm{x}}\) & & XY \\
\hline sum of \(x\) values & \(\Sigma x\) & \(\Sigma x\) & & \(\Sigma\) \\
\hline sum of \(x^{2}\) values & \(\Sigma x^{2}\) & \(\Sigma x^{2}\) & & \(\Sigma\) \\
\hline sample standard deviation of \(x\) & Sx & Sx & & XY \\
\hline population standard deviation of \(x\) & \(\sigma x\) & \(\sigma x\) & & XY \\
\hline number of data points & n & n & & XY \\
\hline mean of y values & & y & & XY \\
\hline sum of \(y\) values & & \(\Sigma y\) & & \(\Sigma\) \\
\hline sum of \(\mathrm{y}^{2}\) values & & \(\Sigma y^{2}\) & & \(\Sigma\) \\
\hline sample standard deviation of y & & Sy & & XY \\
\hline population standard deviation of \(y\) & & \(\sigma y\) & & XY \\
\hline sum of \(x * y\) & & Exy & & \(\Sigma\) \\
\hline minimum of \(x\) values & \(\min X\) & \(\min X\) & & XY \\
\hline maximum of \(x\) values & \(\max X\) & \(\max X\) & & XY \\
\hline minimum of y values & & \(\min Y\) & & XY \\
\hline maximum of y values & & \(\max Y\) & & XY \\
\hline 1st quartile & Q1 & & & PTS \\
\hline median & Med & & & PTS \\
\hline 3 rd quartile & Q3 & & & PTS \\
\hline regression/fit coefficients & & & a, b & EQ \\
\hline polynomial, Logistic, and SinReg coefficients & & & \[
\begin{gathered}
\text { a, b, c, } \\
\text { d, e }
\end{gathered}
\] & EQ \\
\hline correlation coefficient & & & \(r\) & EQ \\
\hline coefficient of determination & & & \(r^{2}, R^{2}\) & EQ \\
\hline regression equation & & & RegEQ & EQ \\
\hline summary points (Med-Med only) & & & \[
\begin{aligned}
& \mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \\
& \mathrm{y} 2, \mathrm{x} 3, \mathrm{y} 3
\end{aligned}
\] & PTS \\
\hline
\end{tabular}

\section*{Q1 and Q3}

The first quartile (Q1) is the median of points between \(\boldsymbol{m i n X}\) and Med (median). The third quartile (Q3) is the median of points between Med and maxX.

\section*{Statistical Analysis in a Program}

\section*{Entering Stat Data}

You can enter statistical data, calculate statistical results, and fit models to data from a program. You can enter statistical data into lists directly within the program (Chapter 11).

PROIEAM: STATS
\(1,2,34\)
: \(-1,-2,-5)+\mathrm{Lz}\)

\section*{Statistical Calculations}

To perform a statistical calculation from a program, follow these steps.
1. On a blank line in the program editor, select the type of calculation from the STAT CALC menu.
2. Enter the names of the lists to use in the calculation. Separate the list names with a comma.
3. Enter a comma and then the name of a \(Y=\) variable, if you want to store the regression equation to a \(Y=\) variable.


\section*{Statistical Plotting}

\section*{Steps for Plotting Statistical Data in Lists}

You can plot statistical data that is stored in lists. The six types of plots available are scatter plot, xyLine, histogram, modified box plot, regular box plot, and normal probability plot. You can define up to three plots.

To plot statistical data in lists, follow these steps.
1. Store the stat data in one or more lists.
2. Select or deselect \(Y=\) functions as appropriate.
3. Define the stat plot and set the color of the plot.
4. Turn on the plots you want to display.
5. Define the viewing window.
6. Display and explore the graph.

\section*{Scatter}

Scatter \((\cdots)\) plots plot the data points from Xlist and Ylist as coordinate pairs, showing each point as a box ( \(\square\) ), cross ( + ), or dot (•). Xlist and Ylist must be the same length. You can use the same list for Xlist and Ylist.


xyLine
xyLine ( \(\sim\) ) is a scatter plot in which the data points are plotted and connected in order of appearance in Xlist and Ylist. You may want to use SortA( or SortD( to sort the lists before you plot them.



\section*{Histogram}

Histogram ( \(\Pi_{m_{6}}\) ) plots one-variable data. The Xscl window variable value determines the width of each bar, beginning at Xmin. ZoomStat adjusts Xmin, Xmax, Ymin, and Ymax to include all values, and also adjusts Xscl. The inequality ( \(\mathbf{X m a x}-\mathbf{X m i n}\) ) / Xscl \(\leq 131\) must be true. A value that occurs on the edge of a bar is counted in the bar to the right.
```

MORMAL FLOAT AUTO REAL RADIAN MP \
Plot1 Plot2 Plot3
On Off

```

```

Xlist:L1
Freq:L3
Color: BLUE


```


\section*{ModBoxplot}

ModBoxplot (느) (modified box plot) plots one-variable data, like the regular box plot, except points that are 1.5 * Interquartile Range beyond the quartiles. (The Interquartile Range is defined as the difference between the third quartile Q3 and the first quartile Q1.) These points are plotted individually beyond the whisker, using the Mark ( \(\square\) or + or \(\bullet\) ) you select. You can trace these points, which are called outliers.

The prompt for outlier points is \(\mathbf{x}=\), except when the outlier is the maximum point ( \(\boldsymbol{m a x X}\) ) or the minimum point \((\boldsymbol{m} \boldsymbol{\operatorname { i n }} \mathbf{X}\) ). When outliers exist, the end of each whisker will display \(\mathbf{x}=\). When no outliers exist, \(\boldsymbol{\operatorname { m i n }} \mathbf{X}\) and \(\boldsymbol{\operatorname { m a x } X}\) are the prompts for the end of each whisker. Q1, Med (median), and Q3 define the box.

Box plots are plotted with respect to Xmin and Xmax, but ignore Ymin and Ymax. When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.
\begin{tabular}{|c|c|}
\hline NORMAL FLOAT AUTO & 0 REfL Radian Mp \\
\hline STAT PLOTS & \\
\hline 1:Plot1...On & \\
\hline H+WL1 1 & + \\
\hline  & \\
\hline 3: Plot3...Off & \(\square\) \\
\hline \[
\begin{aligned}
& \text { 4:Plots0ff } \\
& \text { 5:PlotsOn }
\end{aligned}
\] & \\
\hline
\end{tabular}


\section*{Boxplot}

Boxplot (때)(regular box plot) plots one-variable data. The whiskers on the plot extend from the minimum data point in the set \((\boldsymbol{\operatorname { m i n } X})\) to the first quartile \((\mathbf{Q 1})\) and from the third quartile (Q3) to the maximum point ( \(\boldsymbol{\operatorname { m a x } X}\) ). The box is defined by Q1, Med (median), and Q3.

Box plots are plotted with respect to Xmin and Xmax, but ignore Ymin and Ymax. When two box plots are plotted, the first one plots at the top of the screen and the second plots in the middle. When three are plotted, the first one plots at the top, the second in the middle, and the third at the bottom.



\section*{NormProbPlot}

NormProbPlot ( \(\angle\) ) (normal probability plot) plots each observation X in Data List versus the corresponding quantile \(z\) of the standard normal distribution. If the plotted points lie close to a straight line, then the plot indicates that the data are normal.

Enter a valid list name in the Data List field. Select X or Y for the Data Axis setting.
- If you select \(X\), the \(\mathrm{TI}-84\) Plus \(C\) plots the data on the \(x\)-axis and the \(z\)-values on the \(y\)-axis.
- If you select \(Y\), the TI-84 Plus \(C\) plots the data on the \(y\)-axis and the \(z\)-values on the \(x\)-axis.
\begin{tabular}{l} 
NORMAL FLOAT AUTO REAL RADIAN MP \(\quad\) ( \(\quad\) randNorm \\
u:35 \\
\(\sigma: 2\) \\
trials: 90 \\
Paste \\
\\
\\
\\
\\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
PRESS \& TO SELECT AN OPTION \\
Plot1 Plot2 Plot3 \\
On Off \\
 \\
Data List:L4 \\
Data Axis: X Y \\
Mark: \(\quad\) + - \\
Color: BLUE 4
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline nokrtal fluat muto real radian mip & ] \\
\hline Plot1:L4 & \\
\hline  & \\
\hline \(X=36.537786 \quad Y=.67448975\) & \\
\hline
\end{tabular}

\section*{Defining the Plots}

To define a plot, follow these steps.
1. Press 2nd [STAT PLOT]. The STAT PLOTS menu is displayed with the current plot definitions.

2. Select the plot you want to use. The stat plot editor is displayed for the plot you selected.

3. Press ENTER to select On if you want to plot the statistical data immediately. The definition is stored whether you select On or Off
4. Select the type of plot. Each type prompts for the options checked in this table.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Plot Type & XList & YList & Mark & Freq & Data List & \begin{tabular}{l}
Data \\
Axis
\end{tabular} & Color \\
\hline L-: Scatter & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline - \(\sim\) xyLine & \(\checkmark\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) \\
\hline Din Histogram & \(\square\) & \(\square\) & \(\square\) & \(\checkmark\) & \(\square\) & \(\square\) & \(\checkmark\) \\
\hline +-. ModBoxplot & \(\checkmark\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\square\) & \(\checkmark\) \\
\hline W- Boxplot & \(\square\) \\
\hline \(\boxed{\square}\) NormProbPlot & \(\square\) \\
\hline
\end{tabular}
5. Enter list names or select options for the plot type.
- Xlist (list name containing independent data)
- Ylist (list name containing dependent data)
- Mark ( \(\square\) or + or dot-thick or dot-thin)
- Freq (frequency list for Xlist elements; default is \(\mathbf{1}\) )
- Data List (list name for NormProbPlot)
- Data Axis (axis on which to plot Data List)
- Color (set the plot color)

\section*{Displaying Other Stat Plot Editors}

Each stat plot has a unique stat plot editor. The name of the current stat plot (Plot1, Plot2, or Plot3) is highlighted in the top line of the stat plot editor. To display the stat plot editor for a different plot, press \(\Delta\) and \(\square\) to move the cursor onto the name in the top line, and then press ENTER. The stat plot editor for the selected plot is displayed, and the selected name remains highlighted.


\section*{Turning On and Turning Off Stat Plots}

PlotsOn and PlotsOff allow you to turn on or turn off stat plots from the home screen or a program. With no plot number, PlotsOn turns on all plots and PlotsOff turns off all plots. With one or more plot numbers (1, 2, and 3), PlotsOn turns on specified plots, and PlotsOff turns off specified plots.

PlotsOff \([1,2,3]\)
PlotsOn [1,2,3]



Note: You also can turn on and turn off stat plots in the top line of the \(\mathrm{Y}=\) editor (Chapter 3).

\section*{Defining the Viewing Window}

Stat plots are displayed on the current graph. To define the viewing window, press WINDOW and enter values for the window variables. ZoomStat redefines the viewing window to display all statistical data points.

\section*{Tracing a Stat Plot}

When you trace a scatter plot or xyLine, tracing begins at the first element in the lists.
When you trace a histogram, the cursor moves from the top center of one column to the top center of the next, starting at the first column.

When you trace a box plot, tracing begins at Med (the median). Press to trace to \(\mathbf{Q 1}\) and minX. Press \(\square\) to trace to Q3 and maxX.

When you press \(\Delta\) or \(\square\) to move to another plot or to another \(Y=\) function, tracing moves to the current or beginning point on that plot (not the nearest pixel).

The ExprOn/ExprOff format setting applies to stat plots (Chapter 3). When ExprOn is selected, the plot number and plotted data lists are displayed in the top-left corner.

\section*{Statistical Plotting in a Program}

\section*{Defining a Stat Plot in a Program}

To display a stat plot from a program, define the plot, and then display the graph.
To define a stat plot from a program, begin on a blank line in the program editor and enter data into one or more lists; then, follow these steps.
1. Press 2nd [STAT PLOT] to display the STAT PLOTS menu.

2. Select the plot to define, which pastes Plot1(, Plot2(, or Plot3( to the cursor location.

PROGRAM: FLOT
: \(1,2,3,4,4+\frac{1}{2}\)
: Fiotec
3. Press [2nd [STAT PLOT] to display the STAT TYPE menu.

4. Select the type of plot, which pastes the name of the plot type to the cursor location.

PROGRFM: FLOT
: \(1,2,3,43+2\)
:Flot 2 Csotern
5. PressEnter the list names, separated by commas.
6. Press \(\square\) [STAT PLOT] to display the STAT PLOT MARK menu. (This step is not necessary if you selected 3:Histogram or 5:Boxplot in step 4.)
\begin{tabular}{l}
\hline PLOTS TYPE MRRK \\
\(1: \square\) \\
\(2:+\) \\
\(3:-\) \\
\(4:\).
\end{tabular}

Select the type of markor + or •) for each data point. The selected mark symbol is pasted to the cursor location.
7. Press \(\square\) ENTER to complete the command line.

FROGRHM: FLOT
: \(1,2,3,4\}\)
: \(6,6,7,8)+\mathrm{L}\)
: FlotzsScat.ter, L
:

\section*{Displaying a Stat Plot from a Program}

To display a plot from a program, use the DispGraph instruction (Chapter 16) or any of the ZOOM instructions (Chapter 3).


\section*{Chapter 13: \\ Inferential Statistics and Distributions}

\section*{Getting Started: Mean Height of a Population}

Getting Started is a fast-paced introduction. Read the chapter for details.
Suppose you want to estimate the mean height of a population of women given the random sample below. Because heights among a biological population tend to be normally distributed, a \(t\) distribution confidence interval can be used when estimating the mean. The 10 height values below are the first 10 of 90 values, randomly generated from a normally distributed population with an assumed mean of 165.1 centimeters and a standard deviation of 6.35 centimeters (randNorm(165.1,6.35,90) with a seed of 789).

\section*{Height (in centimeters) of Each of 10 Women}
\(\begin{array}{llllllllll}169.43 & 168.33 & 159.55 & 169.97 & 159.79 & 181.42 & 171.17 & 162.04 & 167.15 & 159.53\end{array}\)
1. Press [STAT 5: SetupEditor. Enter the letters [H] [G] [H] [T].
2. Press ENTER to create the list to store the women's height data.
Note: Your SetupEditor will be displayed with no list name sets (L1 through L6).

3. Press STAT 1: Edit.
4. Press to move the cursor into the first row of the list. HGHT(1)= is displayed on the bottom line. Press ENTER.

5. Press \(\mathbf{1 6 9} \square \mathbf{4 3}\) to enter the first height value. As you enter it, it is displayed on the bottom line.
6. Press ENTER. The value is displayed in the first row, and the rectangular cursor moves to the next row.


Enter the other nine height values the same way.

7. Press STAT to display the STAT TESTS menu, and then press until 8:TInterval is highlighted.

8. Press ENTER to select 8:TInterval. The inferential stat editor for TInterval is displayed. If Data is not selected for Inpt:, press \(\square\) ENTER to select Data.
9. Press [2nd [LIST] and press \(\square\) until HGHT is highlighted and then press ENTER.
10. Press \(\square 99\) to enter a 99 percent confidence level at the C-Level: prompt.
11. Press \(\square\) to move the cursor onto Calculate, and then press ENTER. The confidence interval is calculated, and the TInterval results are displayed on the home screen.


\section*{Interpreting the results}

The first line, ( \(\mathbf{1 5 9 . 7 4} \mathbf{1 7 3 . 9 4}\) ), shows that the 99 percent confidence interval for the population mean is between about 159.74 centimeters and 173.94 centimeters. This is about a 14.2 centimeters spread.

The .99 confidence level indicates that in a very large number of samples, we expect 99 percent of the intervals calculated to contain the population mean. The actual mean of the population sampled is 165.1 centimeters, which is in the calculated interval.

The second line gives the mean height of the sample \(\bar{x}\) used to compute this interval. The third line gives the sample standard deviation \(\mathbf{S x}\). The bottom line gives the sample size \(\mathbf{n}\).

To obtain a more precise bound on the population mean \(\mu\) of women's heights, increase the sample size to 90 . Use a sample mean \(\bar{x}\) of 163.8 and sample standard deviation \(\mathbf{S x}\) of 7.1 calculated from the larger random sample. This time, use the Stats (summary statistics) input option.
1. Press STAT 8 to display the inferential stat editor for TInterval.

Press \(\square\) ENTER to select Inpt:Stats. The editor changes so that you can enter summary statistics as input.
2. Press \(163 \square \mathbf{8}\) ENTER to store 163.8 to \(\overline{\mathrm{x}}\).

Press \(\mathbf{7} 1\) ENTER to store 7.1 to \(\mathbf{S x}\).
Press 90 ENTER to store 90 to \(\mathbf{n}\).

3. Press to move the cursor onto Calculate, and then press [ENTER to calculate the new 99 percent confidence interval. The results are displayed on the home screen.
```

(161 [Triterwal
(161.83,165.77)
S=16.8.8
n=90

```

If the height distribution among a population of women is normally distributed with a mean \(\mu\) of 165.1 centimeters and a standard deviation \(\sigma\) of 6.35 centimeters, what height is exceeded by only 5 percent of the women (the 95th percentile)?
4. Press CLEAR to clear the home screen.

Press 2nd [DISTR] to display the DISTR (distributions) menu.

5. Press \(\mathbf{3}\) to open the invNorm( wizard. Enter the information as follows:

Press95 -1651 -35 (95 is the area, 165.1 is \(\mu\), and 6.35 is \(\sigma\) ).

6. Press ENTER to paste the function and ENTER again to calculate the result.
inuHorm (.95, 165.
175.544820.5

The result is displayed on the home screen; it shows that five percent of the women are taller than 175.5 centimeters.

Now graph and shade the top 5 percent of the population.
7. Press WINDOW and set the window variables to these values.
\begin{tabular}{lll} 
Xmin=145 & Ymin=-.02 & Xres=1 \\
Xmax=185 & Ymax \(=.08\) & \\
Xscl=5 & Yscl=0 &
\end{tabular}
\begin{tabular}{|c|c|}
\hline NORMAL FLOQT RUTO REAL RADIGN MP & [ \\
\hline \multicolumn{2}{|l|}{WINDOW} \\
\hline Xmin=145 & \\
\hline \(\mathrm{X}_{\text {max }}=185\) & \\
\hline Xscl=5 & \\
\hline Ymin=-.02 & \\
\hline \(Y \max =.08\) & \\
\hline Yscl=01 & \\
\hline Xres=1 & \\
\hline \(\Delta X=.15151515151515\) & \\
\hline TraceStep \(=.3030303030303\) & \\
\hline
\end{tabular}
8. Press [2nd \([D I S T R] \square\) to display the DISTR DRAW menu.
\begin{tabular}{|c|}
\hline NORMAL FLOAT AUTO REAL RADIAN MP \\
\hline WINDOW \\
\hline \(X_{\text {min }}=145\) \\
\hline \(X_{\text {max }}=185\) \\
\hline Xscl=5 \\
\hline Ymin=-.02 \\
\hline \(Y\) max \(=.08\) \\
\hline Yscl=0■ \\
\hline Xres=1 \\
\hline \(\Delta \mathrm{X}=.15151515151515\) \\
\hline TraceStep=.3030303030303 \\
\hline
\end{tabular}
9. Press ENTER to open a wizard for the input of the ShadeNorm( parameters.

10. Enter \(175 . \square 5448205\) for the lower bound and press \(\square\). Enter 1 [2nd [EE] 99 for the upper bound and press \(\square\). Enter the mean \(\mu\) of \(165 \square 1\) for the normal curve and press \(\square\). Enter a standard deviation \(\sigma\) of \(6 \square 35\).

11. Press \(\square\) to select Draw and then press ENTER to plot and shade the normal curve.

Area is the area above the 95th percentile. low is the lower bound. up is the upper bound.


\section*{Inferential Stat Editors}

\section*{Displaying the Inferential Stat Editors}

When you select a hypothesis test or confidence interval instruction from the home screen, the appropriate inferential statistics editor is displayed. The editors vary according to each test or interval's input requirements. Below is the inferential stat editor for \(\mathbf{T}\)-Test.


Note: When you select the ANOVA( instruction, it is pasted to the home screen. ANOVA( does not have an editor screen.

\section*{Using an Inferential Stat Editor}

To use an inferential stat editor, follow these steps.
1. Select a hypothesis test or confidence interval from the STAT TESTS menu. The appropriate editor is displayed.
2. Select Data or Stats input, if the selection is available. The appropriate editor is displayed.
3. Enter real numbers, list names, or expressions for each argument in the editor.
4. Select the alternative hypothesis ( \(\neq,<\), or \(>\) ) against which to test, if the selection is available.
5. Select No or Yes for the Pooled option, if the selection is available.
6. Select the color option using a spinner menu. Press \(\square\) and to scroll through the color options to set a color.
7. Select Calculate or Draw (when Draw is available) to execute the instruction.
- When you select Calculate, the results are displayed on the home screen.
- When you select Draw, the results are displayed in a graph.

This chapter describes the selections in the above steps for each hypothesis test and confidence interval instruction.


Select Color option
from the spinner

\section*{Selecting Data or Stats}

Most inferential stat editors prompt you to select one of two types of input. (1-PropZInt and 2-PropZTest, 1-PropZInt and 2-PropZInt, \(\chi^{2}\)-Test, \(\chi^{2}\) GOF-Test, LinRegTInt, and LinRegTTest do not.)
- Select Data to enter the data lists as input.
- Select Stats to enter summary statistics, such as \(\bar{x}, \mathbf{S x}\), and \(\mathbf{n}\), as input.

To select Data or Stats, move the cursor to either Data or Stats, and then press ENTER.

\section*{Entering the Values for Arguments}

Inferential stat editors require a value for every argument. If you do not know what a particular argument symbol represents, see the Inferential Statistics Input Descriptions tables.
When you enter values in any inferential stat editor, the TI-84 Plus stores them in memory so that you can run many tests or intervals without having to reenter every value.

\section*{Selecting an Alternative Hypothesis ( \(\neq<>\) )}

Most of the inferential stat editors for the hypothesis tests prompt you to select one of three alternative hypotheses.
- The first is a \(\neq\) alternative hypothesis, such as \(\mu \neq \mu 0\) for the \(\mathbf{Z}\)-Test.
- The second is a < alternative hypothesis, such as \(\mu 1<\mu 2\) for the 2-SampTTest.
- The third is a > alternative hypothesis, such as p1>p2 for the 2-PropZTest.

To select an alternative hypothesis, move the cursor to the appropriate alternative, and then press ENTER.

\section*{Selecting the Pooled Option}

Pooled (2-SampTTest and 2-SampTInt only) specifies whether the variances are to be pooled for the calculation.
- Select No if you do not want the variances pooled. Population variances can be unequal.
- Select Yes if you want the variances pooled. Population variances are assumed to be equal.

To select the Pooled option, move the cursor to Yes, and then press ENTER.

\section*{Selecting Color}

Color spinner menu offers a color graph for Draw. Press \(\square\) and \(\square\) to scroll through the color options to set a color.

\section*{Selecting Calculate or Draw for a Hypothesis Test}

After you have entered all arguments in an inferential stat editor for a hypothesis test, you must select whether you want to see the calculated results on the home screen (Calculate) or on the graph screen (Draw).
- Calculate calculates the test results and displays the outputs on the home screen.
- Draw draws a graph of the test results and displays the test statistic and p-value with the graph. The window variables are adjusted automatically to fit the graph.

To select Calculate or Draw, move the cursor to either Calculate or Draw, and then press ENTER. The instruction is immediately executed.

\section*{Selecting Calculate for a Confidence Interval}

After you have entered all arguments in an inferential stat editor for a confidence interval, select Calculate to display the results. The Draw option is not available.
When you press ENTER, Calculate calculates the confidence interval results and displays the outputs on the home screen.

\section*{Bypassing the Inferential Stat Editors}

To paste a hypothesis test or confidence interval instruction to the home screen without displaying the corresponding inferential stat editor, select the instruction you want from the CATALOG menu. Appendix A describes the input syntax for each hypothesis test and confidence interval instruction.

\section*{2-S.amFZTEStく}

Note: You can paste a hypothesis test or confidence interval instruction to a command line in a program. From within the program editor, select the instruction from either the CATALOG (Chapter 15) or the STAT TESTS menu.

\section*{STAT TESTS Menu}

\section*{STAT TESTS Menu}

To display the STAT TESTS menu, press STAT When you select an inferential statistics instruction, the appropriate inferential stat editor is displayed.

Most STAT TESTS instructions store some output variables to memory. For a list of these variables, see the Test and Interval Output Variables table.
```

EDIT CALC TESTS
Z-Test... Test for 1 }\mu\mathrm{ , known }
T-Test... Test for 1 \mu, unknown \sigma
2-SampZTest... Test comparing 2 \mu's, known \sigma's
2-SampTTest... Test comparing 2 \mu's, unknown \sigma's
1-PropZTest... Test for 1 proportion
2-PropZTest... Test comparing 2 proportions
ZInterval... Confidence interval for 1 }\mu\mathrm{ , known }
TInterval... Confidence interval for 1 }\mu\mathrm{ , unknown }
2-SampZInt... Confidence interval for difference of 2 \mu's, known \sigma's

```
```

EDIT CALC TESTS
0: 2-SampTInt... Confidence interval for difference of 2 \mu's, unknown \sigma's
A: 1-PropZInt... Confidence interval for 1 proportion
B: 2-PropZInt... Confidence interval for difference of 2 proportions
C: 咲-Test... Chi-square test for 2-way tables
D: }\mp@subsup{\chi}{}{2}\mathrm{ -GOF Test... Chi-square Goodness of Fit test
E: 2-SampFTest... Test comparing 2 \sigma's
F: LinRegTTest... ttest for regression slope and \rho
G: LinRegTInt... Confidence interval for linear regression slope coefficient b
H: ANOVA(
One-way analysis of variance

```

Note: When a new test or interval is computed, all previous output variables are invalidated

\section*{Inferential Stat Editors for the STAT TESTS Instructions}

In this chapter, the description of each STAT TESTS instruction shows the unique inferential stat editor for that instruction with example arguments.
- Descriptions of instructions that offer the Data/Stats input choice show both types of input screens.
- Descriptions of instructions that do not offer the Data/Stats input choice show only one input screen.

The description then shows the unique output screen for that instruction with the example results.
- Descriptions of instructions that offer the Calculate/Draw output choice show both types of screens: calculated and graphic results.
Note: Color spinner menu offers a color graph for Draw.
- Descriptions of instructions that offer only the Calculate output choice show the calculated results on the home screen.

\section*{Z-Test}

Z-Test (one-sample \(z\) test; item 1) performs a hypothesis test for a single unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is known. It tests the null hypothesis \(\mathrm{H}_{0}: \mu=\mu_{0}\) against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}: \mu \neq \mu_{0}(\mu: \neq \mu \mathbf{0})\)
- \(H_{a}: \mu<\mu_{0}(\mu:<\mu \mathbf{0})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu>\mu_{0}(\mu:>\mu \mathbf{0})\)

In the example:
L1=\{299.4, 297.7, 301, 298.9, 300.2, 297\}


\section*{Stats}
\begin{tabular}{|c|c|}
\hline HokMal Fix4 futo keal radian mp & [] \\
\hline z-Test & \\
\hline Inpt:Data Stats & \\
\hline нө:300 & \\
\hline \%:3 & \\
\hline \(\overline{\mathrm{x}}: 299.03333333\) & \\
\hline n:6 & \\
\hline  & \\
\hline Color: BLUE & \\
\hline Calculate Draw & \\
\hline
\end{tabular}


Note: All STAT TESTS examples assume a fixed-decimal mode setting of 4 (Chapter 1). If you set the decimal mode to Float or a different fixed-decimal setting, your output may differ from the output in the examples.

\section*{T-Test}

T-Test (one-sample \(t\) test; item 2) performs a hypothesis test for a single unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is unknown. It tests the null hypothesis \(\mathrm{H}_{0}: \mu=\mu_{0}\) against one of the alternatives below.
- \(H_{a}: \mu \neq \mu_{0}(\mu: \neq \mu \mathbf{0})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu<\mu_{0}(\mu:<\mu \mathbf{0})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu>\mu_{0}(\mu:>\mu \mathbf{0})\)

In the example:
TEST=\{91.9, 97.8, 111.4, 122.3, 105.4, 95\}

\section*{Data}


\section*{Stats}
\begin{tabular}{|c|c|}
\hline Normal float auto real radian mp & [ \\
\hline T-Test & \\
\hline Inpt: Data Stats & \\
\hline 山̈0:105 & \\
\hline \(\overline{\mathrm{x}}: 103.96666666667\) & \\
\hline Sx:11.466937981286 & \\
\hline n:6 & \\
\hline  & \\
\hline Color: BLUE & \\
\hline Calculate Draw & \\
\hline
\end{tabular}


\section*{2-SampZTest}

2-SampZTest (two-sample \(z\) test; item 3) tests the equality of the means of two populations ( \(\mu_{1}\) and \(\mu_{2}\) ) based on independent samples when both population standard deviations ( \(\sigma_{1}\) and \(\sigma_{2}\) ) are known. The null hypothesis \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\) is tested against one of the alternatives below.
- \(H_{a}: \mu_{1} \neq \mu_{2}(\mu \mathbf{1}: \neq \mu \mathbf{2})\)
- \(H_{a}: \mu_{1}<\mu_{2}(\mu \mathbf{1}:<\mu \mathbf{2})\)
- \(H_{a}: \mu_{1}>\mu_{2}\left(\mu \mathbf{1}:>\mu_{\mathbf{2}}\right)\)

In the example:
LISTA=\{154, 109, 137, 115, 140\}
LISTB=\{108, 115, 126, 92, 146\}

\section*{Data}

Input:

\section*{Stats}

```

 Sxz=20.1941
    ```
                Sxz=20.1941
                ln1=5
                ln1=5
\square
```

\square

```



\section*{2-SampTTest}

2-SampTTest (two-sample \(t\) test; item 4) tests the equality of the means of two populations ( \(\mu_{1}\) and \(\mu_{2}\) ) based on independent samples when neither population standard deviation ( \(\sigma_{1}\) or \(\sigma_{2}\) ) is known. The null hypothesis \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}\) is tested against one of the alternatives below.
- \(H_{a}: \mu_{1} \neq \mu_{2}(\mu \mathbf{1}: \neq \mu \mathbf{2})\)
- \(\mathrm{H}_{\mathrm{a}}: \mu_{1}<\mu_{2}(\mu \mathbf{1}:<\mu \mathbf{2})\)
- \(H_{a}: \mu_{1}>\mu_{2}\left(\mu \mathbf{1}:>\mu_{\mathbf{2}}\right)\)

In the example:
SAMP1=\{12.207, 16.869, 25.05, 22.429, 8.456, 10.589\}
SAMP2=\{11.074, 9.686, 12.064, 9.351, 8.182, 6.642\}
Data
Input:

2-SampTTest
Inpt:Data Stats
List1: SAMP1
List2: SAMP2
Frea1:1
Frea2:1
H1:
Pooled: No Yes
Color: BLUE
Calculate Draw

\section*{Stats}
\begin{tabular}{|c|}
\hline MORMAL FLOAT fUTO REAL RADIAN M DECIMAL SETTING \\
\hline 2-SampTTest \\
\hline Inpt: Data Stats \\
\hline \(\overline{\mathrm{x}} 1: 15.9105\) \\
\hline Sx1:6.71680575 \\
\hline n1:6 \\
\hline 番2:9.4998333333333 \\
\hline S×2:1.950059323884 \\
\hline n2:6 \\
\hline  \\
\hline \(\downarrow\) Pooled: No Yes \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Color: BLUE \\
Calculate Draw \\
\hline
\end{tabular}

\begin{tabular}{l}
\(n 1=6\) \\
\(n 2=6\) \\
\hline
\end{tabular}


\section*{1-PropZTest}

1-PropZTest (one-proportion \(z\) test; item 5) computes a test for an unknown proportion of successes (prop). It takes as input the count of successes in the sample \(x\) and the count of observations in the sample \(n\). 1-PropZTest tests the null hypothesis \(\mathrm{H}_{0}\) : prop \(=\mathrm{p}_{0}\) against one of the alternatives below.
- \(H_{a}: \operatorname{prop} \neq p_{0}\) (prop: \(\neq \mathbf{p} 0\) )
- \(\mathrm{H}_{\mathrm{a}}: \operatorname{prop}^{2} \mathrm{p}_{0}\) (prop:<p0)
- \(\mathrm{H}_{\mathrm{a}}:\) prop \(>\mathrm{p}_{0}\) (prop:>p0)


\section*{2-PropZTest}

2-PropZTest (two-proportion \(z\) test; item 6) computes a test to compare the proportion of successes ( \(\mathrm{p}_{1}\) and \(\mathrm{p}_{2}\) ) from two populations. It takes as input the count of successes in each sample ( \(x_{1}\) and \(x_{2}\) ) and the count of observations in each sample ( \(n_{1}\) and \(n_{2}\) ). 2-PropZTest tests the null hypothesis \(\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}\) (using the pooled sample proportion \(\hat{p}\) ) against one of the alternatives below.
- \(H_{a}: p_{1} \neq p_{2}(p 1: \neq p 2)\)
- \(H_{a}: p_{1}<p_{2}(p 1:<p 2)\)
- \(\mathrm{H}_{\mathrm{a}}: \mathrm{p}_{1}>\mathrm{p}_{2}(\mathrm{p} 1:>\mathrm{p} 2)\)


\section*{ZInterval}

ZInterval (one-sample z confidence interval; item 7) computes a confidence interval for an unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is known. The computed confidence interval depends on the user-specified confidence level.

In the example:
L1=\{299.4, 297.7, 301, 298.9, 300.2, 297\}


\section*{Stats}



\section*{TInterval}

TInterval (one-sample \(t\) confidence interval; item 8) computes a confidence interval for an unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is unknown. The computed confidence interval depends on the user-specified confidence level.

In the example:
L6=\{1.6, 1.7, 1.8, 1.9\}


\section*{2-SampZInt}

2-SampZInt (two-sample \(z\) confidence interval; item 9) computes a confidence interval for the difference between two population means \(\left(\mu_{1}-\mu_{2}\right)\) when both population standard deviations ( \(\sigma_{1}\) and \(\sigma_{2}\) ) are known. The computed confidence interval depends on the user-specified confidence level.

In the example:
LISTC=\{154, 109, 137, 115, 140\}
LISTD=\{108, 115, 126, 92, 146\}


\section*{Stats}


\footnotetext{
C-LEvel: . 99 Celculate
}


\section*{2-SampTInt}

2-SampTInt (two-sample \(t\) confidence interval; item \(\mathbf{0}\) ) computes a confidence interval for the difference between two population means \(\left(\mu_{1}-\mu_{2}\right)\) when both population standard deviations ( \(\sigma_{1}\) and \(\sigma_{2}\) ) are unknown. The computed confidence interval depends on the user-specified confidence level.

In the example:
SAMP1=\{12.207, 16.869, 25.05, 22.429, 8.456, 10.589\}
SAMP2=\{11.074, 9.686, 12.064, 9.351, 8.182, 6.642\}


\section*{1-PropZInt}

1-PropZInt (one-proportion \(z\) confidence interval; item \(\mathbf{A}\) ) computes a confidence interval for an unknown proportion of successes. It takes as input the count of successes in the sample \(x\) and the count of observations in the sample \(n\). The computed confidence interval depends on the user-specified confidence level.


\section*{2-PropZInt}

2-PropZInt (two-proportion \(z\) confidence interval; item B) computes a confidence interval for the difference between the proportion of successes in two populations ( \(p_{1}-p_{2}\) ). It takes as input the count of successes in each sample ( \(x_{1}\) and \(x_{2}\) ) and the count of observations in each sample ( \(n_{1}\) and \(n_{2}\) ). The computed confidence interval depends on the user-specified confidence level.

\(\chi^{2}\)-Test
\(\chi^{2}\)-Test (chi-square test; item \(\mathbf{C}\) ) computes a chi-square test for association on the two-way table of counts in the specified Observed matrix. The null hypothesis \(\mathrm{H}_{0}\) for a two-way table is: no association exists between row variables and column variables. The alternative hypothesis is: the variables are related.

Before computing a \(\chi^{2}\)-Test, enter the observed counts in a matrix. Enter that matrix variable name at the Observed: prompt in the \(\chi^{2}\)-Test editor; default=[A]. At the Expected: prompt, enter the matrix variable name to which you want the computed expected counts to be stored; default=[B].


Input:


Note: Press 2nd MATRX ENTER to display matrix [B].


\section*{\(\chi^{2}\) GOF-Test}
\(\chi^{2}\) GOF-Test (Chi Square Goodness of Fit; item D) performs a test to confirm that sample data is from a population that conforms to a specified distribution. For example, \(\chi^{2}\) GOF can confirm that the sample data came from a normal distribution.

In the example:
list \(1=\{16,25,22,8,10\}\)
list \(\mathbf{2 = \{ 1 6 . 2 , 2 1 . 6 , 1 6 . 2 , 1 4 . 4 , 1 2 . 6 \}}\)


\section*{2-SampFTest}

2-SampFTest (two-sample F-test; item E) computes an F-test to compare two normal population standard deviations ( \(\sigma_{1}\) and \(\sigma_{2}\) ). The population means and standard deviations are all unknown.
2-SampFTest, which uses the ratio of sample variances \(S \times 1^{2} / S \times 2^{2}\), tests the null hypothesis \(H_{0}: \sigma_{1}=\sigma_{2}\) against one of the alternatives below.
- \(\mathrm{H}_{\mathrm{a}}: \sigma_{1 \neq \sigma_{2}}(\sigma \mathbf{1}: \neq \sigma \mathbf{2})\)
- \(\mathrm{H}_{\mathrm{a}}: \sigma_{1}<\sigma_{2}(\sigma \mathbf{1}:<\sigma \mathbf{2})\)
- \(\mathrm{H}_{\mathrm{a}}: \sigma_{1}>\sigma_{2}(\sigma \mathbf{1}:>\sigma \mathbf{2})\)

In the example:
SAMP4=\{7,-4, 18, 17, -3, -5, 1, 10, 11, -2\}
SAMP5 \(=\{-1,12,-1,-3,3,-5,5,2,-11,-1,-3\}\)


\section*{LinRegTTest}

LinRegTtest (linear regression \(t\) test; item F) computes a linear regression on the given data and a \(t\) test on the value of slope \(\beta\) and the correlation coefficient \(\rho\) for the equation \(y=\alpha+\beta \mathbf{x}\). It tests the null hypothesis \(\mathrm{H}_{0}\) : \(\beta=0\) (equivalently, \(\rho=0\) ) against one of the alternatives below.
- \(H_{a}: \beta \neq 0\) and \(\rho \neq 0(\beta \& \rho: \neq 0)\)
- \(H_{a}: \beta<0\) and \(\rho<0(\beta\) \& \(\rho:<0)\)
- \(\quad H_{a}: \beta>0\) and \(\rho>0(\beta \& \rho:>0)\)

The regression equation is automatically stored to RegEQ (VARS Statistics EQ secondary menu). If you enter a \(Y=\) variable name at the RegEQ: prompt, the calculated regression equation is automatically stored to the specified \(Y=\) equation. In the example below, the regression equation is stored to \(\mathbf{Y} \mathbf{1}\), which is then selected (turned on).

In the example:
L3=\{38, 56, 59, 64, 74\}
L4=\{41, 63, 70, 72, 84\}

\[
\begin{array}{r}
+\mathrm{b}=1.1969 \\
\Xi=1.962 \\
\mathrm{r}=.9941
\end{array}
\]

When LinRegTTest is executed, the list of residuals is created and stored to the list name RESID automatically. RESID is placed on the LIST NAMES menu.
Note: For the regression equation, you can use the fix-decimal mode setting to control the number of digits stored after the decimal point (Chapter 1). However, limiting the number of digits to a small number could affect the accuracy of the fit.

\section*{LinRegTInt}

LinRegTInt computes a linear regression T confidence interval for the slope coefficient b. If the confidence interval contains 0 , this is insufficient evidence to indicate that the data exhibits a linear relationship.

In the example:
list \(1=\{4,5,6,7,8\}\)
list \(2=\{1,2,3,3.5,4.5\}\)


Note: Press STAT \(\square\) to select TESTS. Press several times to select G:LinRegTint... Press ENTER. Press \(\square\) several times to select Calculate. Press ENTER.


Xlist, Ylist is the list of independent and dependent variables. The list containing the Freq (frequency) values for the data is stored in List. The default is 1 . All elements must be real numbers. Each element in the Freq list is the frequency of occurrence for each corresponding data point in the input list specified in the List fields. RegEQ (optional) is the designated Yn variable for storing the regression equation. StoreRegEqn (optional) is the designated variable for storing the regression equation. The C level is the Confidence level probability with default = .95.

\section*{ANOVA(}

ANOVA( (one-way analysis of variance; item \(\mathbf{H}\) ) computes a one-way analysis of variance for comparing the means of two to 20 populations. The ANOVA procedure for comparing these means involves analysis of the variation in the sample data. The null hypothesis \(\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{\mathrm{k}}\) is tested against the alternative \(\mathrm{H}_{\mathrm{a}}\) : not all \(\mu_{1} \ldots \mu_{\mathrm{k}}\) are equal.

ANOVA(list1,list2[,..,list20])
In the example:
L1=\{7 466 5\}
L2=\{16 5 5 8 7 \(\}\)
L3=\{4 767 6\}


Note: SS is sum of squares and MS is mean square.

\section*{Inferential Statistics Input Descriptions}

The tables in this section describe the inferential statistics inputs discussed in this chapter. You enter values for these inputs in the inferential stat editors. The tables present the inputs in the same order that they appear in this chapter.
\begin{tabular}{|c|c|}
\hline Input & Description \\
\hline \(\mu_{0}\) & Hypothesized value of the population mean that you are testing. \\
\hline \(\sigma\) & The known population standard deviation; must be a real number \(>0\). \\
\hline List & The name of the list containing the data you are testing. \\
\hline Freq & The name of the list containing the frequency values for the data in List. Default \(=1\). All elements must be integers \(\geq 0\). \\
\hline Color Spinner & Offers color graph. \\
\hline Calculate/Draw & Determines the type of output to generate for tests and intervals. Calculate displays the output on the home screen. In tests, Draw draws a graph of the results. \\
\hline \(\overline{\bar{x}, \mathbf{S x}, \mathbf{n}}\) & Summary statistics (mean, standard deviation, and sample size) for the one-sample tests and intervals. \\
\hline \(\sigma 1\) & The known population standard deviation from the first population for the two-sample tests and intervals. Must be a real number \(>0\). \\
\hline \(\sigma 2\) & The known population standard deviation from the second population for the two-sample tests and intervals. Must be a real number \(>0\). \\
\hline List1, List2 & The names of the lists containing the data you are testing for the two-sample tests and intervals. Defaults are L1 and L2, respectively. \\
\hline Freq1, Freq2 & The names of the lists containing the frequencies for the data in List1 and List2 for the two-sample tests and intervals. Defaults \(=1\). All elements must be integers \(\geq 0\). \\
\hline \(\overline{\mathrm{x}} 1, \mathbf{S x 1} 1, n 1, \overline{\mathrm{x}} \mathbf{2}, \mathbf{S x 2}, n \mathbf{2}\) & Summary statistics (mean, standard deviation, and sample size) for sample one and sample two in the two-sample tests and intervals. \\
\hline Pooled & Specifies whether variances are to be pooled for 2-SampTTest and 2-SampTInt. No instructs the TI-84 Plus not to pool the variances. Yes instructs the TI-84 Plus to pool the variances. \\
\hline \(\boldsymbol{P}_{0}\) & The expected sample proportion for 1-PropZTest. Must be a real number, such that \(0<p_{0}<1\). \\
\hline x & The count of successes in the sample for the 1-PropZTest and 1-PropZInt. Must be an integer \(\geq 0\). \\
\hline n & The count of observations in the sample for the 1-PropZTest and 1-PropZInt. Must be an integer > 0 . \\
\hline \(\mathbf{x 1}\) & The count of successes from sample one for the 2-PropZTest and 2-PropZInt. Must be an integer \(\geq 0\). \\
\hline x2 & The count of successes from sample two for the 2-PropZTest and 2-PropZInt. Must be an integer \(\geq 0\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Input & Description \\
\hline n1 & The count of observations in sample one for the 2-PropZTest and 2-PropZInt. Must be an integer \(>0\). \\
\hline n2 & The count of observations in sample two for the 2-PropZTest and 2-PropZInt. Must be an integer \(>0\). \\
\hline C-Level & The confidence level for the interval instructions. Must be \(\geq 0\) and \(<100\). If it is \(\geq 1\), it is assumed to be given as a percent and is divided by 100. Default=0.95. \\
\hline Observed (Matrix) & The matrix name that represents the columns and rows for the observed values of a two-way table of counts for the \(\chi^{2}\)-Test and \(\chi^{2}\) GOF-Test. Observed must contain all integers \(\geq 0\). Matrix dimensions must be at least \(2 \times 2\). \\
\hline Expected (Matrix) & The matrix name that specifies where the expected values should be stored. Expected is created upon successful completion of the \(\chi^{2}\)-Test and \(\chi^{2}\) GOF-Test. \\
\hline df & df (degree of freedom) represents (number of sample categories) - (number of estimated parameters for the selected distribution +1 ). \\
\hline Xlist, Ylist & The names of the lists containing the data for LinRegTTest and LinRegTInt. Defaults are \(\mathbf{L 1}\) and \(\mathbf{L 2}\), respectively. The dimensions of Xlist and Ylist must be the same. \\
\hline RegEQ & The prompt for the name of the \(\mathrm{Y}=\) variable where the calculated regression equation is to be stored. If a \(\mathrm{Y}=\) variable is specified, that equation is automatically selected (turned on). The default is to store the regression equation to the RegEQ variable only. \\
\hline
\end{tabular}

\section*{Test and Interval Output Variables}

The inferential statistics variables are calculated as indicated below. To access these variables for use in expressions, press VARS \(\mathbf{5}\) (5:Statistics), and then select the VARS menu listed in the last column below.
\begin{tabular}{|c|c|c|c|c|}
\hline Variables & Tests & Intervals & LinRegTTest, ANOVA & VARS Menu \\
\hline \(p\)-value & p & & p & TEST \\
\hline test statistics & \(\mathbf{z}, \mathbf{t}, \chi^{2}, \mathbf{F}\) & & t, F & TEST \\
\hline degrees of freedom & df & df & df & TEST \\
\hline sample mean of \(x\) values for sample 1 and sample 2 & \(\overline{\mathrm{x}} 1, \overline{\mathrm{x}} 2\) & \(\overline{\mathrm{x}} 1, \overline{\mathrm{x}} 2\) & & TEST \\
\hline sample standard deviation of \(x\) for sample 1 and sample 2 & \[
\begin{aligned}
& \hline \text { Sx1, } \\
& \text { Sx2 }
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{Sx1}, \\
& \mathrm{Sx2}
\end{aligned}
\] & & TEST \\
\hline number of data points for sample 1 and sample 2 & n1, n2 & n1, n2 & & TEST \\
\hline pooled standard deviation & SxP & SxP & SxP & TEST \\
\hline estimated sample proportion & \(\hat{p}\) & \(\hat{p}\) & & TEST \\
\hline estimated sample proportion for population 1 & \(\hat{p} 1\) & \(\hat{p} 1\) & & TEST \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\hline Variables & Tests & Intervals & \begin{tabular}{c} 
LinRegTTest, \\
ANOVA
\end{tabular} & \begin{tabular}{c} 
VARS \\
Menu
\end{tabular} \\
\hline \begin{tabular}{l} 
estimated sample proportion for \\
population 2
\end{tabular} & \(\hat{p} \mathbf{2}\) & \(\hat{p} 2\) & & TEST \\
\hline confidence interval pair & \begin{tabular}{c} 
lower, \\
upper
\end{tabular} & & TEST \\
\hline mean of x values & \(\overline{\mathrm{x}}\) & \(\overline{\mathrm{x}}\) & & \(\mathbf{X Y}\) \\
\hline sample standard deviation of x & \(\mathbf{S x}\) & \(\mathbf{S x}\) & & \(\mathbf{X Y}\) \\
\hline number of data points & \(\mathbf{n}\) & \(\mathbf{n}\) & & \(\mathbf{X Y}\) \\
\hline standard error about the line & & & \(\mathbf{s}\) & TEST \\
\hline regression/fit coefficients & & & \(\mathbf{a}, \mathbf{b}\) & EQ \\
\hline correlation coefficient & & \(\mathbf{r}\) & EQ \\
\hline coefficient of determination & & RegEQ & EQ \\
\hline regression equation & & & EQ \\
\hline
\end{tabular}

Note: The variables listed above cannot be archived.

\section*{Distribution Functions}

\section*{DISTR menu}

Note: Selection of any of the DISTR functions will take the user to a wizard screen for that function when the STAT WIZARDS is set to ON in Mode. Color spinner menu to set the graph color is available.
To display the DISTR menu, press 2nd [DISTR].
```

DISTR DRAW
1: normalpdf(nn probability density function
2: normalcdf(nn cumulative distribution function
3: invNorm(Inverse cumulative normal distribution
4: invT(Inverse cumulative Student-t distribution
5: tpdf(Student-t probability density
6: tcdf(Student-t distribution probability
7: \chi}\mp@subsup{\chi}{}{2}pdf(\quad\mathrm{ Chi-square probability density
8: 攼cdf Chi-square distribution probability
9: Fpdf(Fprobability density
0: Fcdf(Fdistribution probability
A: binompdf(Binomial probability
B: binomcdf(Binomial cumulative density
C: poissonpdf(Poisson probability
D: poissoncdf(Poisson cumulative density
E: geometpdf(Geometric probability
F: geometcdf(Geometric cumulative density

```

Note: Use Catalog Help for more syntax help when needed. Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).
-1E99 and 1E99 specify infinity. If you want to view the area left of upperbound, for example, specify
lowerbound \(=-1\) E99 .

\section*{normalpdf(}
normalpdf( computes the probability density function (pdf) for the normal distribution at a specified \(x\) value. The defaults are mean \(\mu=0\) and standard deviation \(\sigma=1\). To plot the normal distribution, paste normalpdf( to the \(Y=\) editor. The probability density function (pdf) is:
\[
f(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{--\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \sigma>0
\]
normalpdf( \(x[, \mu, \sigma]\) )
\begin{tabular}{|l|}
\hline normalpdf \\
\(\times: v a l u e: x\) \\
\(\mu: 35\) \\
\(0: 2\) \\
Paste \\
\\
\hline
\end{tabular}
Note: For this example,
Xmin = 28
\(X \max =42\)
Xscl = 1
\(Y\) min \(=0\)
\(Y\) max \(=.2\)
Yscl =. 1
\begin{tabular}{|c|c|}
\hline NORMal float auto real radian mp & [] \\
\hline Plot1 Plot2 Plot3 & \\
\hline 1)Y1 Enormalpdf (X,35,2) & \\
\hline -\Y2= & \\
\hline -1才 \({ }^{\text {a }}\) = & \\
\hline -\Y4 \(=\) & \\
\hline -\Y5= & \\
\hline -\Y6= & \\
\hline -VY\%= & \\
\hline -1Y8= & \\
\hline -1Y9= & \\
\hline
\end{tabular}


Note: For plotting the normal distribution, you can set window variables Xmin and Xmax so that the mean \(\mu\) falls between them, and then select 0:ZoomFit from the ZOOM menu.

\section*{normalcdf(}
normalcdf( computes the normal distribution probability between lowerbound and upperbound for the specified mean \(\mu\) and standard deviation \(\sigma\). The defaults are \(\mu=0\) and \(\sigma=1\).
normalcdf(lowerbound,upperbound \([, \mu, \sigma]\) )
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ normalcdf } \\
lower: -1 E99 \\
upper: 36 \\
\(\mu: 35\) \\
\(\sigma: 2\) \\
Paste \\
\\
\\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline normalcdf(-1E99, 36, 35, 2) .6914624678 \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{invNorm(}
invNorm( computes the inverse cumulative normal distribution function for a given area under the normal distribution curve specified by mean \(\mu\) and standard deviation \(\sigma\). It calculates the \(x\) value associated with an area to the left of the \(x\) value. \(0 \leq\) area \(\leq 1\) must be true. The defaults are \(\mu=0\) and \(\sigma=1\).
invNorm \((\) area \([, \mu, \sigma])\)
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ invNorm } \\
area: .691462467 \\
\(\mu: 35\) \\
\(\sigma: 2\) \\
Paste \\
\\
\\
\\
\hline
\end{tabular}


\section*{invT(}
invT( computes the inverse cumulative Student-t probability function specified by Degree of Freedom, df for a given Area under the curve.
invT(area, \(d \boldsymbol{f}\) )


\section*{tpdf(}
tpdf( computes the probability density function (pdf) for the Student- \(t\) distribution at a specified \(x\) value. \(d f\) (degrees of freedom) must be \(>0\). To plot the Student- \(t\) distribution, paste tpdf( to the \(\mathrm{Y}=\) editor. The probability density function (pdf) is:
\({ }^{\prime}(x)=\frac{\Gamma[(d f+1) / 2]}{\Gamma(d f / 2)} \quad \frac{\left(1+x^{2} / d f\right)^{-(d f+1) / 2}}{\sqrt{\pi d f}}\)
\(\operatorname{tpdf}(x, d f)\)


Note: For this example,
\(\mathbf{X m i n}=-4.5\)
\(X_{m a x}=4.5\)
Ymin \(=0\)
\(Y\) max \(=.4\)


\section*{tcdf(}
tcdf( computes the Student- \(t\) distribution probability between lowerbound and upperbound for the specified \(d f\) (degrees of freedom), which must be \(>0\).
tcdf(lowerbound,upperbound, \(d f\) )
```

tcodf(-2,3,18)
.9657465644

```
\begin{tabular}{|l|}
\hline lower: \(\frac{\text { TGd }}{-2}\) \\
UpFer: \\
df: 18 \\
Paste \\
\\
\hline
\end{tabular}
\(\chi^{2} \mathbf{p d f}(\)
\(\chi^{2} \mathbf{p d f}\) ( computes the probability density function (pdf) for the \(\chi^{2}\) (chi-square) distribution at a specified \(x\) value. \(d f\) (degrees of freedom) must be an integer \(>0\). To plot the \(\chi^{2}\) distribution, paste \(\chi^{2} \mathbf{p d f}(\) to the \(Y=\) editor. The probability density function (pdf) is:
\(f(x)=\frac{1}{\Gamma(d f / 2)}(1 / 2)^{d f / 2} x^{d f / 2-1} e^{-x / 2}, x \geq 0\)
\(\chi^{2} \mathbf{p d f}(x, d f)\)

Note: For this
example,
\(\mathbf{X m i n}=\mathbf{0}\)
\(\mathbf{X m a x}=\mathbf{3 0}\)
\(\mathbf{Y m i n}=-.02\)
\(\mathbf{Y m a x}=.132\)

\(\chi^{2} \mathbf{c d f}(\)
\(\chi^{2} \mathbf{c d f}\left(\right.\) computes the \(\chi^{2}\) (chi-square) distribution probability between lowerbound and upperbound for the specified \(d f\) (degrees of freedom), which must be an integer \(>0\).
\(\chi^{2} \mathbf{c d f}(\) lowerbound,upperbound, \(d f)\)
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
\(x^{2} \operatorname{cdf}(0,19.023,9)\) \\
.9750019601
\end{tabular}} \\
\hline \\
\hline \\
\hline
\end{tabular}


\section*{Fpdf(}

Fpdf( computes the probability density function (pdf) for the \(\mathbf{F}\) distribution at a specified \(x\) value. numerator \(d f\) (degrees of freedom) and denominator \(d f\) must be integers \(>0\). To plot the \(\mathbf{F}\) distribution, paste Fpdf( to the \(Y=\) editor. The probability density function (pdf) is:
\(f(x)=\frac{\Gamma[(n+d) / 2]}{\Gamma(n / 2) \Gamma(d / 2)}\left(\frac{n}{d}\right)^{n / 2} x^{n / 2-1}(1+n x / d)^{-(n+d) / 2}, x \geq 0\)
where \(\quad n=\) numerator degrees of freedom
\(d=\) denominator degrees of freedom
Fpdf( \(x\), numerator \(d f\),denominator \(d f)\)
\begin{tabular}{|c|c|c|}
\hline Formal float muto real radan mp [] & Note: For this example, & \multirow[t]{7}{*}{\begin{tabular}{l}
FPd \\
x value: \(\times\) \\
dfNumer: 24 \\
dfDenom: 19 \\
Paste
\end{tabular}} \\
\hline Plot1 Plot2 Plot3 & Xmin \(=0\) & \\
\hline  & \(X \max =5\) & \\
\hline  & Ymin \(=0\) & \\
\hline - \(\mathrm{NY}_{4}=\) & \(Y\) max \(=1\) & \\
\hline \[
\begin{aligned}
& \mathrm{NY}_{6}= \\
& \mathrm{NY}=
\end{aligned}
\] & & \\
\hline  & & \\
\hline
\end{tabular}


\section*{Fcdf(}

Fcdf( computes the F distribution probability between lowerbound and upperbound for the specified numerator \(d f\) (degrees of freedom) and denominator \(d f\). numerator \(d f\) and denominator \(d f\) must be integers \(>0\).

Fcdf(lowerbound,upperbound,numerator df,denominator df)

\begin{tabular}{|l|}
\hline lower: \({ }^{\text {EdA }}\) \\
upper: \\
dfNumer: \(: 4523\) \\
dfDenom: 19 \\
Paste \\
\hline
\end{tabular}

\section*{binompdf}
binompdf( computes a probability at \(x\) for the discrete binomial distribution with the specified numtrials and probability of success ( \(p\) ) on each trial. \(x\) can be an integer or a list of integers. \(0 \leq p \leq 1\) must be true. numtrials must be an integer \(>0\). If you do not specify \(x\), a list of probabilities from 0 to numtrials is returned. The probability density function (pdf) is:
\(f(x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1, \ldots, n\)
where \(n=\) numtrials
binompdf( numtrials,\(p[, x]\) )
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ binomPdf } \\
trials:5 \\
P: . 6 \\
\(\times\) value: \(\{3,4,5\}\) \\
Paste \\
\\
\\
\\
\\
\hline
\end{tabular}


\section*{binomcdf(}
binomcdf( computes a cumulative probability at \(x\) for the discrete binomial distribution with the specified numtrials and probability of success ( \(p\) ) on each trial. \(x\) can be a real number or a list of real numbers. \(0 \leq p \leq 1\) must be true. numtrials must be an integer \(>0\). If you do not specify \(x\), a list of cumulative probabilities is returned.

\section*{binomcdf(numtrials, \(p[, x]\) )}
\begin{tabular}{|l|}
\hline \multicolumn{1}{|c|}{ binomcdf } \\
trials:5 \\
P:.6 \\
\(\times\) value: \(\{3,4,5\}\) \\
Paste \\
\\
\\
\\
\\
\hline
\end{tabular}


\section*{poissonpdf(}
poissonpdf( computes a probability at \(x\) for the discrete Poisson distribution with the specified mean \(\mu\), which must be a real number >0. \(x\) can be an integer or a list of integers. The probability density function (pdf) is:
\(f(x)=e^{-\mu} \mu^{x} / x!, x=0,1,2, \ldots\)
poissonpdf( \(\mu, x\) )
\lambda:6
\lambda:6
x value:10
x value:10
Paste
Paste

Foissonfdf(6.10)
. 0413030934

\section*{poissoncdf(}
poissoncdf( computes a cumulative probability at \(x\) for the discrete Poisson distribution with the specified mean \(\mu\), which must be a real number \(>0 . x\) can be a real number or a list of real numbers.
poissoncdf( \(\mu, x\) )


\section*{geometpdf(}
geometpdf( computes a probability at \(x\), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p .0 \leq p \leq 1\) must be true. \(x\) can be an integer or a list of integers. The probability density function (pdf) is:
\[
f(x)=p(1-p)^{x-1}, x=1,2, \ldots
\]
geometpdf( \(p, x\) )


\section*{geometcdf(}
geometcdf( computes a cumulative probability at \(x\), the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success \(p .0 \leq p \leq 1\) must be true. \(x\) can be a real number or a list of real numbers.
geometcdf( \(p, x\) )


MathPrint \({ }^{\text {M }}\)

\section*{Distribution Shading}

\section*{DISTR DRAW Menu}

To display the DISTR DRAW menu, press 2nd [DISTR] D. DISTR DRAW instructions draw various types of density functions, shade the area specified by lowerbound and upperbound, and display the computed area value.

Selecting an item from the DIST DRAW menu opens a wizard for the input of syntax for that item. Press \(\square\) for syntax editor. Some of the arguments are optional. If an argument is not optional, the cursor will not move on to the next argument until a value is entered.
If you access any of these functions through CATALOG, the command or function will paste and you will be required to fill in the arguments.

Color spinner menu to set the graph color is available.
To clear the drawings, select 1:CIrDraw from the DRAW menu (Chapter 8).
Note: Before you execute a DISTR DRAW instruction, you must set the window variables so that the desired distribution fits the screen.
```

DISTR DRAW
1: ShadeNorm(Shades normal distribution.
2: Shade_t(Shades Student-t distribution.
3: Shade \chi}\mp@subsup{}{}{2}(\quad\mathrm{ Shades }\mp@subsup{\chi}{}{2}\mathrm{ distribution.
4: ShadeF(Shades Fdistribution.

```

Note: Use Catalog Help for more syntax help when needed.Select a menu item and then press \(\square\) to go to a syntax help editor (if the menu item is supported).
-1E99 and 1E99 specify infinity. If you want to view the area left of upperbound, for example, specify lowerbound=-1E99.

\section*{ShadeNorm(}

ShadeNorm( draws the normal density function specified by mean \(\mu\) and standard deviation \(\sigma\) and shades the area between lowerbound and upperbound. The defaults are \(\mu=0\) and \(\sigma=1\).

ShadeNorm(lowerbound,upperbound \([, \mu, \sigma]\) )


Note: For this example,
Xmin = 55
\(\mathbf{X m a x}=\mathbf{7 2}\)
Ymin \(=-.05\)
Ymax \(=.2\)

\section*{ShadeNorm}
lower:60
upper: 66
н: 63.6
\(\sigma: 2.5\)
Color: BLUE
Draw

Classic


\section*{Shade_t(}

Shade_t( draws the density function for the Student- \(t\) distribution specified by \(d f\) (degrees of freedom) and shades the area between lowerbound and upperbound.

Shade_t(lowerbound,upperbound, \(d \boldsymbol{f}\) )


Classic


Note: For this example,
Xmin = -3
\(X\) max \(=3\)
\(Y\) min \(=-.15\)
Ymax \(=.5\)
        Shade_t
        Shade_t
lower:-1
lower:-1
upper:1E99
upper:1E99
df:4
df:4
Color: BLUE
Color: BLUE
Draw
Draw

\section*{Shade \(\chi^{2}\) (}

Shade \(\chi^{2}\) (draws the density function for the \(\chi^{2}\) (chi-square) distribution specified by \(d f\) (degrees of freedom) and shades the area between lowerbound and upperbound.

Shade \(\chi^{2}\) (lowerbound,upperbound, \(d \boldsymbol{f}\) )


Note: For this example, Xmin = 0
\(X_{\text {max }}=35\)
Ymin \(=-.025\)
\(Y_{\text {max }}=.1\)


\section*{ShadeF(}

ShadeF( draws the density function for the \(\mathbf{F}\) distribution specified by numerator \(d f\) (degrees of freedom) and denominator \(d f\) and shades the area between lowerbound and upperbound.

ShadeF(lowerbound, upperbound,numerator df,denominator \(d f\) )


Classic


Note: For this example,
Xmin \(=0\)
Xmax \(=5\)
Ymin \(=-.25\)
\(Y\) max \(=.9\)
\begin{tabular}{|l|}
\hline \multicolumn{1}{c|}{ ShadeF } \\
lower: 1 \\
upper: 2 \\
dfNumer: 10 \\
dfDenom:15 \\
Color: BLUE \\
Draw \\
\\
\end{tabular}

\section*{Chapter 14: \\ Applications}

\section*{The Applications Menu}

The TI-84 Plus C comes with several applications already installed and listed on the APPLICATIONS menu, such as:

CellSheet \({ }^{\text {TM }}\)
Inequality Graphing
Vernier EasyData \({ }^{\text {TM }}\)
Polynomial Root Finder and Simultaneous Equation Solver
Except for the Finance application, you can add and remove applications as space permits. The Finance application is built into the TI-84 Plus C code and cannot be deleted.

Check education.ti.com/go/downloads for more TI-84 Plus C application titles. You can also install the TI Connect \({ }^{\text {TM }}\) software from this site.

The 3.5 MB archive space lets you store up to 216 applications at one time on the \(\mathrm{TI}-84 \mathrm{Plus} \mathrm{C}\). Applications can also be stored on a computer for later use or linked unit-to-unit.

Guidebooks for applications are on the Texas Instruments Web site at: education.ti.com/go/downloads.
Note: For most menu items, you can select the desired item, and then press \(\dagger\) to access the Catalog Help App functionality. Where applicable, related syntax help is displayed when you perform these actions.

\section*{Steps for Running the Finance Application}

Follow these basic steps when using the Finance application.
1. Press APPS ENTER to select the Finance application.

2. Select from the list of functions.
\begin{tabular}{|c|c|}
\hline Tormal float auto real radian mp & [ \\
\hline CRLC VRRS & \\
\hline 1:TVM Solver... & \\
\hline 2:tvm_Pmt & \\
\hline 3:tvm_I\% & \\
\hline 4: tvm_PV & \\
\hline 5: tvm_N & \\
\hline 6: tvm_FV & \\
\hline 7: npv( & \\
\hline 8:irr( & \\
\hline 9ぬbal ( & \\
\hline
\end{tabular}

\section*{Getting Started: Financing a Car}

Getting Started is a fast-paced introduction. Read the chapter for details.

You have found a car you would like to buy. You can afford payments of 250 per month for four years. The car costs 9,000. Your bank offers an interest rate of \(5 \%\). What will your payments be? Can you afford it?
1. Press MODE \(\square \square\) ENTER to set the fixed-decimal mode setting to 2.
3. Press ENTER to select 1:TVM Solver from the CALC VARS menu. The TVM Solver is displayed.
2. Press \(\operatorname{APPS}\) ENTER to select 1:Finance from the APPLICATIONS menu.

4. Enter the data:

N (number of payments)= 48
I\% (interest rate)=5
PV (present value)=9000
PMT (amount of each payment) \(=\mathbf{0}\)
FV (future value) \(=\mathbf{0}\)
P/Y (payments per year)=12
\(C / Y\) (compounding periods per year) \(=\mathbf{1 2}\)
5. Select PMT:END, which indicates that payments are due at the end of each period.
6. Move the cursor to PMT and press ALPHA [SOLVE]. Can you afford the payment?

\section*{Getting Started: Computing Compound Interest}

At what annual interest rate, compounded monthly, will 1,250 accumulate to 2,000 in 7 years?

Note: Because there are no payments when you solve compound interest problems, PMT must be set to \(\mathbf{0}\) and \(\mathbf{P / Y}\) must be set to 1.
1. Press APPS ENTER to select 1:Finance from the APPLICATIONS menu.
\begin{tabular}{|c|c|}
\hline krial fluat futo real rioian mp & [] \\
\hline CFLC VARS & \\
\hline 1:TVM Solver... & \\
\hline 2:tvm_Pmt & \\
\hline 3: tvm_I\% & \\
\hline 4: tvm_PV & \\
\hline 5: tvm_N & \\
\hline 6:tvm_FV & \\
\hline 7: npv( & \\
\hline 8:irr( & \\
\hline 9\bal ( & \\
\hline
\end{tabular}
2. Press ENTER to select 1:TVM Solver from the CALC VARS menu. The TVM Solver is displayed.
3. Enter the data:
\(\mathrm{N}=7\)
\(P V=-1250\)
PMT=0
\(\mathrm{FV}=2000\)
\(\mathrm{P} / \mathrm{Y}=1\)
\(C / Y=12\)
4. Move the cursor to I\% and press ALPHA [SOLVE].

You need to look for an interest rate of \(6.73 \%\) to grow 1250 to 2000 in 7 years.
```

$\mathrm{N}=7$
$\mathrm{I}=\mathrm{G}$
$\mathrm{P} \dot{\mathrm{F}}=-1256$
$\mathrm{Pr} \mathrm{H}=\mathrm{T}=\overline{\mathrm{C}}$
$\mathrm{Fv}=20 \mathrm{E} 0$
F
$\mathrm{F}, \mathrm{y}=12$
FHT:EAL BEGIH

```
CALC VARS
1:TVM Solver...
2: tvm_Pmt
3:tvm_I\%
4: tvm_PV
5: tvm_N
6: tvm_FV
7: npv(
8:irr(
9لbal(
4. Select END or BEGIN to specify the payment method.
5. Place the cursor on the TVM variable for which you want to solve.
6. Press ALPHA [SOLVE]. The answer is computed, displayed in the TVM Solver, and stored to the appropriate TVM variable. An indicator square in the left column designates the solution variable.
```

N=SE日, 50
IF=16, E6
PU=1日GE[6. बब

- PMT= -1507%.89
Fv=0, E|
F
C
FHT:ENLC BEGIH

```

\section*{Using the Financial Functions}

\section*{Entering Cash Inflows and Cash Outflows}

When using the financial functions, you must enter cash inflows (cash received) as positive numbers and cash outflows (cash paid) as negative numbers. The TI-84 Plus C follows this convention when computing and displaying answers.

FINANCE CALC Menu
To display the FINANCE CALC menu, press APPS ENTER.
\begin{tabular}{|c|c|}
\hline CALC VARS & \\
\hline 1: TVM Solver... & Displays the TVM Solver. \\
\hline 2: tvm_Pmt & Computes the amount of each payment. \\
\hline 3: tvm_I\% & Computes the interest rate per year. \\
\hline 4: tvm_PV & Computes the present value. \\
\hline 5: tvm_N & Computes the number of payment periods. \\
\hline 6: tvm_FV & Computes the future value. \\
\hline 7: npv( & Computes the net present value. \\
\hline 8: irr( & Computes the internal rate of return. \\
\hline 9: bal( & Computes the amortization sched. balance. \\
\hline 0: \(\operatorname{\Sigma Prn}(\) & Computes the amort. sched. princ. sum. \\
\hline A: \(\mathrm{EInt}(\) & Computes the amort. sched. interest sum. \\
\hline B: Nom( & Computes the nominal interest rate. \\
\hline C: Eff ( & Computes the effective interest rate. \\
\hline D: dbd ( & Calculates the days between two dates. \\
\hline E: Pmt_End & Selects ordinary annuity (end of period). \\
\hline F: Pmt_Bgn & Selects annuity due (beginning of period). \\
\hline
\end{tabular}

Note: To access Catalog Help, select the desired menu item, and then press \(\square\). Catalog Help is not available for the TVM Solver option.

Use these functions to set up and perform financial calculations on the home screen.

\section*{TVM Solver}

TVM Solver displays the TVM Solver.

\section*{Calculating Time Value of Money (TVM)}

\section*{Calculating Time Value of Money}

Use time-value-of-money (TVM) functions (menu items 2 through 6) to analyze financial instruments such as annuities, loans, mortgages, leases, and savings.

Each TVM function takes zero to six arguments, which must be real numbers. The values that you specify as arguments for TVM functions are not stored to the TVM variables.

Note: To store a value to a TVM variable, use the TVM Solver or use STO and any TVM variable on the FINANCE VARS menu.


If you enter less than six arguments, the graphing calculator substitutes a previously stored TVM variable value for each unspecified argument.

If you enter any arguments with a TVM function, you must place the argument or arguments in parentheses.

\section*{tvm_Pmt}
tvm_Pmt computes the amount of each payment.
tvm_Pmt[( \(\mathbf{N}, \mathrm{I} \%, P V, F V, P / Y, C / Y)]\)
\begin{tabular}{|c|}
\hline  \\
\hline
\end{tabular}
\begin{tabular}{|r|r|}
\hline tum_Pmt & -768.91 \\
tum_Pmt_ 660.9 .5\(\rangle\) \\
& -840.85 \\
\hline
\end{tabular}

Note: In the example above, the values are stored to the TVM variables in the TVM Solver. The payment (tvm_Pmt) is computed on the home screen using the values in the TVM Solver. Next, the interest rate is changed to 9.5 to illustrate the effect on the payment amount.
tvm_I\%
tvm_I\% computes the annual interest rate.

tvm_I\% [(N, \(\left.\left.P V_{\mathbf{\prime}} P M T, F V, P / Y, C / Y\right)\right]\)

\section*{tvm_PV}
tvm_PV computes the present value.


\section*{Calculating a Cash Flow}

Use the cash flow functions (menu items \(\mathbf{7}\) and 8) to analyze the value of money over equal time periods. You can enter unequal cash flows, which can be cash inflows or outflows. The syntax descriptions for npv( and irr( use these arguments.
- interest rate is the rate by which to discount the cash flows (the cost of money) over one period.
- \(\quad C F 0\) is the initial cash flow at time 0 ; it must be a real number.
- CFList is a list of cash flow amounts after the initial cash flow CFO.
- CFFreq is a list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of CFList. The default is 1 ; if you enter values, they must be positive integers < 10,000.
For example, express this uneven cash flow in lists.

\(C F 0=2000\)
CFList \(=\{2000,-3000,4000\}\)
CFFreq \(=\{2,1,2\}\)

\section*{npv(, irr(}
npv( (net present value) is the sum of the present values for the cash inflows and outflows. A positive result for npv indicates a profitable investment.
npv(interest rate,CF0,CFList[,CFFreq])
\(\operatorname{irr}(\) (internal rate of return) is the interest rate at which the net present value of the cash flows is equal to zero.
\(\operatorname{irr}(C F 0, C F L i s t[, C F F r e q])\)


\section*{Calculating Amortization}

\section*{Calculating an Amortization Schedule}

Use the amortization functions (menu items \(\mathbf{9}, \mathbf{0}\), and \(\mathbf{A}\) ) to calculate balance, sum of principal, and sum of interest for an amortization schedule.

\section*{bal(}
bal( computes the balance for an amortization schedule using stored values for I\%, PV, and PMT. npmt is the number of the payment at which you want to calculate a balance. It must be a positive integer \(<10,000\). roundvalue specifies the internal precision the calculator uses to calculate the balance; if you do not specify roundvalue, then the graphing calculator uses the current Float/Fix decimal-mode setting.
bal(npmt[roundvalue])


\section*{IPrn(, \(\mathbf{\Sigma l n t}(\)}
\(\Sigma \operatorname{Prn}(\) computes the sum of the principal during a specified period for an amortization schedule using stored values for I\%, PV, and PMT. pmt1 is the starting payment. pmt 2 is the ending payment in the range. pmtl 1 and \(p m t 2\) must be positive integers \(<10,000\). roundvalue specifies the internal precision the calculator uses to calculate the principal; if you do not specify roundvalue, the graphing calculator uses the current Float/Fix decimal-mode setting.
Note: You must enter values for I\%, PV, and PMT before computing the principal.
\(\operatorname{EPrn}\) (pmt1,pmt2[,roundvalue])
\(\operatorname{Int}\) ( computes the sum of the interest during a specified period for an amortization schedule using stored values for \(\mathbf{I} \%, \mathbf{P V}\), and PMT. pmt1 is the starting payment. pmt2 is the ending payment in the range. pmtl and pmt2 must be positive integers \(<10,000\). roundvalue specifies the internal precision the calculator uses to calculate the interest; if you do not specify roundvalue, the TI-84 Plus C uses the current Float/Fix decimal-mode setting.
\(\operatorname{Int}(p m t 1, p m t 2[\) roundvalue])


\section*{Amortization Example: Calculating an Outstanding Loan Balance}

You want to buy a home with a 30 -year mortgage at 8 percent APR. Monthly payments are 800. Calculate the outstanding loan balance after each payment and display the results in a graph and in the table.
1. Press MODE. Press \(\square \square \square\) ENTER to set the fixed-decimal mode setting to 2. Press \(\square \square\) [ENTER to select Par graphing mode.

2. Press APPS ENTER ENTER to display the TVM Solver.
3. Press \(\mathbf{3 6 0}\) to enter number of payments. Press \(\square 8\) to enter the interest rate. Press \(-(-) \mathbf{8 0 0}\) to enter the payment amount. Press 0 to enter the future value of the mortgage. Press 12 to enter the payments per year, which also sets the compounding periods per year to 12. Press \(\nabla \square\) [ENTER to select PMT:END.
4. Move the cursor to the PV prompt and then press ALPHA [SOLVE] to solve for the present value.
```

$\mathrm{N}=\mathrm{BED} \mathrm{D}^{\mathrm{D}}$
$\mathrm{P}=\mathrm{B}$. D
FMT=-806. 60
$F v=10.0$
$\mathrm{F} \mathrm{Y}=12.00$
C $\mathrm{y}=12.0 \mathrm{E}$
PMT:ENL BEGIN

```

5. Press \(Y \neq\) to display the parametric \(Y=\) editor. Turn off all stat plots. Press \(X, T, \Theta, n\) to define X1T as \(\mathbf{T}\). Press \(\square\) APPS ENTER \(9 \times, T, \Theta, n \square\) to define Y1T as
 bal(T).
6. Press WINDOW to display the window variables. Enter the values below.
\begin{tabular}{lll} 
Tmin=0 & Xmin=0 & Ymin=0 \\
Tmax=360 & Xmax=360 & Ymax=125000 \\
Tstep=12 & Xscl=50 & Yscl=10000
\end{tabular}
7. Press TRACE to draw the graph and activate the trace cursor. Press \(\square\) and to explore the graph of the outstanding balance over time. Press a number and then press ENTER to view the balance at a specific time \(T\).

8. Press 2nd [TBLSET] and enter the values below.

TbIStart=0
\(\Delta\) Tbl=12
9. Press [2nd [TABLE] to display the table of outstanding balances (Y1T).
10. Press \(M O D E\) and select Graph-Table split-screen mode, so that the graph and table are displayed simultaneously.
Press TRACE to display X1T (time) and Y1T (balance) in the table.


\section*{Calculating Interest Conversion}

\section*{Calculating an Interest Conversion}

Use the interest conversion functions (menu items \(\mathbf{B}\) and \(\mathbf{C}\) ) to convert interest rates from an annual effective rate to a nominal rate ( \(\stackrel{N}{ }\) () or from a nominal rate to an annual effective rate ( \(\mathbf{D E f f}\) ().

\section*{-Nom(}

Nom( computes the nominal interest rate. effective rate and compounding periods must be real numbers. compounding periods must be \(>0\).
-Nom(effective rate,compounding periods)

DEff(
DEff( computes the effective interest rate. nominal rate and compounding periods must be real numbers. compounding periods must be \(>0\).
\Eff(nominal rate,compounding periods)
\begin{tabular}{|ll}
\hline PFf & \((8,12)\) \\
& 8.30
\end{tabular}

\section*{Finding Days between Dates/Defining Payment Method}

\section*{dbd(}

Use the date function \(\mathbf{d b d}(\) (menu item \(\mathbf{D})\) to calculate the number of days between two dates using the actual-day-count method. datel and date 2 can be numbers or lists of numbers within the range of the dates on the standard calendar.

Note: Dates must be between the years 1950 through 2049.
dbd(date1,date2)
You can enter datel and date 2 in either of two formats.
- MM.DDYY (United States)
- DDMM.YY (Europe)

The decimal placement differentiates the date formats.


\section*{Defining the Payment Method}

Pmt_End and Pmt_Bgn (menu items E and F) specify a transaction as an ordinary annuity or an annuity due. When you execute either command, the TVM Solver is updated.

\section*{Pmt_End}

Pmt_End (payment end) specifies an ordinary annuity, where payments occur at the end of each payment period. Most loans are in this category. Pmt_End is the default.

\section*{Pmt_End}

On the TVM Solver's PMT:END BEGIN line, select END to set PMT to ordinary annuity.

\section*{Pmt_Bgn}

Pmt_Bgn (payment beginning) specifies an annuity due, where payments occur at the beginning of each payment period. Most leases are in this category.

\section*{Pmt_Bgn}

On the TVM Solver's PMT:END BEGIN line, select BEGIN to set PMT to annuity due.

\section*{Using the TVM Variables}

\section*{FINANCE VARS Menu}

To display the FINANCE VARS menu, press APPS ENTER \(\square\). You can use TVM variables in TVM functions and store values to them on the home screen.

CALC VARS
\begin{tabular}{ll}
\(1:\) & N
\end{tabular}\(\quad\) Total number of payment periods

\section*{N, I\%, PV, PMT, FV}

N, I\%, PV, PMT, and FV are the five TVM variables. They represent the elements of common financial transactions, as described in the table above. I\% is an annual interest rate that is converted to a perperiod rate based on the values of \(\mathbf{P / Y}\) and \(\mathbf{C / Y}\).

\section*{P/Y and C/Y}
\(\mathbf{P / Y}\) is the number of payment periods per year in a financial transaction.
\(\mathbf{C / Y}\) is the number of compounding periods per year in the same transaction.
When you store a value to \(\mathbf{P / Y}\), the value for \(\mathbf{C / Y}\) automatically changes to the same value. To store a unique value to \(\mathbf{C / Y}\), you must store the value to \(\mathbf{C / Y}\) after you have stored a value to \(\mathbf{P / Y}\).

\section*{The EasyData \({ }^{\text {TM }}\) Application}

The Vernier EasyData \({ }^{\text {TM }}\) application by Vernier Software \& Technology allows you to view and analyze real-world data when the graphing calculator is connected to data collection devices such as Texas Instruments CBR \(2^{\text {TM }}\), CBL \(2^{\text {TM }}\), Vernier LabPro \({ }^{\circledR}\), Vernier USB sensors, Vernier Go! \({ }^{\text {TM }}\) Motion, or Vernier Motion Detector Unit. The TI-84 Plus C comes with the EasyData \({ }^{\text {TM }}\) App already installed.

Note: The application is designed to work with Vernier auto-ID sensors. To use older Vernier sensors that do not auto-ID, contact Vernier at www.vernier.com.

The EasyData \({ }^{\text {TM }}\) App will automatically launch on your graphing calculator if you plug in a USB sensor such as the CBR \(2^{\text {TM }}\) or Vernier USB Temperature sensor.

Some new features of the EasyData \({ }^{\text {TM }}\) App include:
- Added color to meters and graphs
- Graph Scaling support
- Preset \(y\)-axis scaling for live graphs
- Turn off auto scaling after data collection completes
- Manually scale graphs within the application
- Support for additional sensor calibration types
- Quadratic (allows support for Wide-Range Temperature Probe \& Melt Station)
- Power (allows support for Ethanol Sensor)

\section*{Steps for Running the EasyData \({ }^{\text {TM }}\) App}

Follow these basic steps when using the EasyData \({ }^{\text {™ }}\) App.

\section*{Starting the EasyData \({ }^{T M}\) App}
1. Attach your data collection device to your TI-84 Plus C. Make sure the cables are firmly connected.
2. If the EasyData \({ }^{\text {TM }}\) App has not auto-launched, press APPS and the \(\square\) or to select the EasyData \({ }^{\text {TM }}\) App.
3. Press ENTER. The EasyData \({ }^{\text {TM }}\) information screen is displayed for about three seconds followed by the main screen.


\section*{Quitting the EasyData \({ }^{\text {TM }}\) App}
1. To quit the EasyData \({ }^{\text {TM }}\) App, select Quit (press GRAPH) .

The Ready to quit? screen is displayed, which indicates the lists where the collected data has been stored on the graphing calculator.
2. Press OK (press GRAPH) to quit.

\section*{EasyData \({ }^{\text {TM }}\) Settings}

\section*{Changing EasyData \({ }^{T M}\) settings}

The EasyData \({ }^{\text {TM }}\) App displays the most commonly used settings before data collection begins.
To change a predefined setting:
1. From the main screen in the EasyData \({ }^{\text {TM }}\) App, choose Setup and select 2: Time Graph. The current settings are displayed on the calculator.
Note: If using a motion detector, settings for 3: Distance Match and 4: Ball Bounce in the Setup menu are preset and cannot be changed.
2. Select Next (press ZOOM) to move to the setting you want to change. Press CLEAR to clear a setting.
3. Repeat to cycle through the available options. When the option is correct, select Next to move to the next option.
4. To change a setting, enter 1 or 2 digits, and then select Next (press ZOOM).
5. When all the settings are correct, select OK (press GRAPH) to return to the main menu.
6. Select Start (press ZOOM) to begin collecting data.

\section*{Restoring the EasyData \({ }^{\text {™ }}\) App to the default settings}

The default settings are appropriate for a wide variety of sampling situations. If you are unsure of the best settings, begin with the default settings, and then adjust the settings for your specific activity.

To restore the default settings in the EasyData \({ }^{\text {TM }}\) App while a data collection device is connected to the graphing calculator, choose File and select 1:New.

\section*{Starting and Stopping Data Collection}

\section*{Starting Data Collection}

To start sampling, select Start (press ZOOM). Sampling will automatically stop when the number of samples set in the Time Graph Settings menu is reached. The graphing calculator will then display a graph of the sampled data.

\section*{Stopping Data Collection}

To stop sampling before it automatically stops, select Stop (press and hold ZOOM) at any time during the sampling process. When sampling stops, a graph of the sampled data is displayed.

\section*{Saving Collected Data}

Collected data is automatically transferred to the graphing calculator and stored in lists L1 through L11 when data collection is complete. When you exit the EasyData \({ }^{\text {TM }}\) App, a prompt reminds you of the lists in which time, distance, velocity, and acceleration are stored.


This manual describes basic operation for the EasyData \({ }^{\text {TM }}\) application. For more information about the EasyData \({ }^{\text {TM }}\) App, visit www.vernier.com.

\section*{Chapter 15: \\ CATALOG, Strings, Hyperbolic Functions}

\section*{Browsing the TI-84 Plus C Catalog Help}

\section*{What Is the CATALOG?}

The CATALOG is an alphabetical list of all functions and instructions on the TI-84 Plus C. You also can access each CATALOG item from a menu or the keyboard, except:
- The six string functions
- The six hyperbolic functions
- The solve( instruction without the equation solver editor (Chapter 2)
- The inferential stat functions without the inferential stat editors (Chapter 13)

Note: The only CATALOG programming commands you can execute from the home screen are GetCalc(, Get(, and Send(.

\section*{Selecting an Item from the CATALOG}

To select a CATALOG item, follow these steps.
1. Press 2nd [CATALOG] to display the CATALOG.
\begin{tabular}{|c|c|}
\hline  & 61 \\
\hline
\end{tabular}

The in the first column is the selection cursor.
2. Press \(\square\) or \(\Delta\) to scroll the CATALOG until the selection cursor points to the item you want.
- To jump to the first item beginning with a particular letter, press that letter; alpha-lock is on.
- Items that begin with a number are in alphabetical order according to the first letter after the number. For example, 2-PropZTest( is among the items that begin with the letter \(\mathbf{P}\).
- Functions that appear as symbols, such as \(+^{-1},<\), and \(\sqrt{ }(\), follow the last item that begins with Z. To jump to the first symbol, !, press [ \(\theta\) ].
3. Press ENTER to paste the item to the current screen.
```

ab=C

```

\section*{Note:}
- From the top of the CATALOG menu, press \(\Delta\) to move to the bottom. From the bottom, press to move to the top.
- When your TI-84 Plus C is in MathPrint \({ }^{T M}\) mode, many functions will paste the MathPrint \({ }^{T M}\) template on the home screen. For example, abs( pastes the absolute value template on the home screen instead of abs(.


\section*{Using Catalog Help}

\section*{Displaying Catalog Help}

You can display Catalog Help arguments for functions in two ways:
- Using an alpha/numeric function listing in the catalog (e.g, 2nd [CATALOG]).
- Using the functions listed in certain menus (e.g, MATH).

Catalog Help lists the valid arguments for the function under the edit line. Arguments in brackets are optional.

1. Display the menu that contains the function.
2. Use \(\triangle\) and/or to move the cursor to the function.
3. Press \(\square\) to display arguments for the function. The cursor is on the function edit line.

\section*{Note:}
- The catalog ([2nd [CATALOG]) is displayed in alphabetical order. When you display the catalog, the alpha-lock is turned on. Press the first letter of the function name to skip function names that come before it alphabetically. Use \(\Delta\) and/or \(\square\) to move the cursor to the function.
- Not all catalog functions have associated arguments. If the function does not require an argument, Catalog Help displays the message "No arguments required for this item."

\section*{Catalog Help Commands}
- Select MORE (if available) to display more arguments for the function.

- Use shortcut menus ALPHA [F1] through [F4] for argument values if available.

- Enter your argument values on the function edit line, and then select PASTE to paste the function and the argument values you entered.

Note: You can paste to most cursor locations.
\begin{tabular}{|c|c|}
\hline Mormal float auto real radian mp & П \\
\hline CATALOG HELP & - \\
\hline \(\underline{\operatorname{LinReg}}\left(\mathrm{a}+\mathrm{bx}\right.\) ) \(\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{Y}_{3} \square\) & \\
\hline [Xlistname, Ylistname , freqlist, regequ] & \\
\hline PASTE & \\
\hline
\end{tabular}
- Select ESC to exit the Catalog Help screen.

\section*{Entering and Using Strings}

\section*{What Is a String?}

A string is a sequence of characters that you enclose within quotation marks. On the TI-84 Plus C, a string has two primary applications.
- It defines text to be displayed in a program.
- It accepts input from the keyboard in a program.

Characters are the units that you combine to form a string.
- Each number, letter, and space counts as one character.
- Each instruction or function name, such as \(\boldsymbol{\operatorname { s i n }}\) ( or \(\boldsymbol{\operatorname { c o s }}\) (, counts as one character; the TI-84 Plus C interprets each instruction or function name as one character.

\section*{Entering a String}

To enter a string on a blank line on the home screen or in a program, follow these steps.
1. Press ALPHA ["] to indicate the beginning of the string.
2. Enter the characters that comprise the string.
- Use any combination of numbers, letters, function names, or instruction names to create the string.
- To enter a blank space, press ALPHA [ـ].
- To enter several alpha characters in a row, press 2nd [A-LOCK] to activate alpha-lock.
3. Press ALPHA ['] to indicate the end of the string.
"string"
4. Press ENTER. On the home screen, the string is displayed on the next line without quotations. An ellipsis (...) indicates that the string continues beyond the screen. To scroll to see the entire string, press \(\square\) and \(\square\).


Note: A string must be enclosed in quotation marks. The quotation marks do not count as string characters.

\section*{Storing Strings to String Variables}

\section*{String Variables}

The TI-84 Plus C has 10 variables to which you can store strings. You can use string variables with string functions and instructions.

To display the VARS STRING menu, follow these steps.
1. Press VARS to display the VARS menu. Move the cursor to 7:String.

2. Press ENTER to display the STRING secondary menu.


\section*{Storing a String to a String Variable}

To store a string to a string variable, follow these steps.
1. Press ALPHA ["], enter the string, and press ALPHA ['"].
2. Press STO
3. Press VARS \(\mathbf{7}\) to display the VARS STRING menu.
4. Select the string variable (from Str1 to Str9, or Str0) to which you want to store the string.


The string variable is pasted to the current cursor location, next to the store symbol \((\rightarrow)\).
5. Press ENTER to store the string to the string variable. On the home screen, the stored string is displayed on the next line without quotation marks.


\section*{Displaying the Contents of a String Variable}

To display the contents of a string variable on the home screen, select the string variable from the VARS STRING menu, and then press ENTER. The string is displayed.

\section*{Hiticio}

\section*{String Functions and Instructions in the CATALOG}

\section*{Displaying String Functions and Instructions in the CATALOG}

String functions and instructions are available only from the CATALOG. The table below lists the string functions and instructions in the order in which they appear among the other CATALOG menu items. The ellipses in the table indicate the presence of additional CATALOG items.
```

CATALOG
Equ\String(Converts an equation to a string.
expr(Converts a string to an expression.
...
inString(Returns a character's place number.
length(Returns a string's character length.
StringEqu(Converts a string to an equation.
sub(Returns a string subset as a string.
...

```

\section*{Concatenation}

To concatenate two or more strings, follow these steps.
1. Enter string1, which can be a string or string name.
2. Press \(\dagger\).
3. Enter string2, which can be a string or string name. If necessary, press \(\square\) and enter string3, and so on.
string1+string2+string3...
4. Press ENTER to display the strings as a single string.


\section*{Selecting a String Function from the CATALOG}

To select a string function or instruction and paste it to the current screen, follow the steps for selecting an item from the CATALOG.

\section*{Equ String(}

EqulString( converts an equation to a string. The equation must be store in a VARS Y-VARS variable. Y \(n\) contains the equation. Str \(n\) (from Str1 to Str9, or Str0) is the string variable to which you want the equation to be stored.

Equistring( \(\mathbf{Y} n, \mathbf{S t r} n\) )
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{expr(}
expr( converts the character string contained in string to an expression and executes it. string can be a string or a string variable.
expr(string)
\begin{tabular}{|c|c|}
\hline \(2 \rightarrow\) \% & \\
\hline  & \\
\hline A & 0 \\
\hline & 10 \\
\hline
\end{tabular}


\section*{inString(}
inString( returns the character position in string of the first character of substring. string can be a string or a string variable. start is an optional character position at which to start the search; the default is 1.
inString(string,substring[,start])


Note: If string does not contain substring, or start is greater than the length of string, inString( returns \(\mathbf{0}\).

\section*{length(}
length( returns the number of characters in string. string can be a string or string variable.
Note: An instruction or function name, such as \(\boldsymbol{\operatorname { s i n }}\) ( or \(\boldsymbol{\operatorname { c o s }}\) (, counts as one character.
length(string)
```

"W%YZ"->St.r.1
W*YZ
1^nGth(Str-1)

String)Equ(

String)Equ(converts string into an equation and stores the equation to $\mathbf{Y} n$. string can be a string or string variable. String)Equ(is the inverse of Equ)String(.

String)Equ(string, $\mathbf{Y} n$)

| |
| :---: |
| | |

sub(

sub(returns a string that is a subset of an existing string. string can be a string or a string variable. begin is the position number of the first character of the subset. length is the number of characters in the subset.
sub(string, begin,length)

```
"AECDEFG"+5:r5
=ub(5tr5,4,2)
OE
```


Entering a Function to Graph during Program Execution

In a program, you can enter a function to graph during program execution using these commands.

Note: When you execute this program, enter a function to store to $\mathbf{Y 3}$ at the ENTRY= prompt.

Hyperbolic Functions in the CATALOG

Hyperbolic Functions

The hyperbolic functions are available only from the CATALOG. The table below lists the hyperbolic functions in the order in which they appear among the other CATALOG menu items. The ellipses in the table indicate the presence of additional CATALOG items.

```
CATALOG
cosh( Hyperbolic cosine
cosh-1 (Hyperbolic arccosine
sinh( Hyperbolic sine
sinh }\mp@subsup{}{}{-1}\mathrm{ ( Hyperbolic arcsine
tanh( Hyperbolic tangent
tanh }\mp@subsup{}{}{-1}\mathrm{ ( Hyperbolic arctangent
```

.. .
sinh $(, \cosh (, \tanh ($
$\boldsymbol{\operatorname { s i n h }}(, \boldsymbol{\operatorname { c o s h }}($, and $\boldsymbol{\operatorname { t a n h }}($ are the hyperbolic functions. Each is valid for real numbers, expressions, and lists.

| $\boldsymbol{\operatorname { s i n h }}($ value)
 cosh(value)
 $\boldsymbol{t a n h}($ value) |
| :---: |
| $\begin{aligned} & \sinh (5) \\ & \cosh (610953055 \\ & 1.03141311 .120 \end{aligned}$ |

$\sinh ^{-1}\left(, \cosh ^{-1}\left(, \tanh ^{-1}(\right.\right.$

$\boldsymbol{\operatorname { s i n h }}^{-1}$ (is the hyperbolic arcsine function. $\boldsymbol{\operatorname { c o s h }}^{-1}$ (is the hyperbolic arccosine function. $\boldsymbol{\operatorname { t a n h }}^{-1}$ (is the hyperbolic arctangent function. Each is valid for real numbers, expressions, and lists.

```
\mp@subsup{\boldsymbol{sinh}}{}{-1}}\mp@subsup{}{}{(value)
\mp@subsup{\operatorname{cosh}}{}{-1}}\mathrm{ (value)
\mp@subsup{\boldsymbol{tanh}}{}{-1}(value)
sinh-1(co, 1)
tan
tanh-1(-5)
    .5495661443
```


Chapter 16:
 Programming

Getting Started: Volume of a Cylinder

Getting Started is a fast-paced introduction. Read the chapter for details.
A program is a set of commands that the TI-84 Plus C executes sequentially, as if you had entered them from the keyboard. Create a program that prompts for the radius R and the height H of a cylinder and then computes its volume.

1. Press PRGM \square to display the PRGM NEW menu.

2. Press ENTER to select 1:Create New. The Name= prompt is displayed, and alpha-lock is on. Press C Y L I N D ER, and then press ENTER to name the program CYLINDER.

You are now in the program editor. The colon (:) in the first column of the second line indicates the beginning of a command line.
3. Press $\operatorname{PRGM} \square 2$ to select 2:Prompt from the PRGM I/O menu. Prompt is copied to the command line. Press ALPHA \mathbf{R} ALPHA \mathbf{H} to enter the variable names for radius and height. Press ENTER.
4. Press 2nd [π] ALPHA R AL2 ALPHA H STO ALPHA V ENTER to enter the expression $\pi R^{2} \mathrm{H}$ and store it to the variable \mathbf{V}.
5. Press PRGM \square to select 3:Disp from the PRGM I/O menu. Disp is pasted to the command line. Press 2nd [A-LOCK] ["] V OL U M E [L] I S ['"] ALPHA ALPHA V ENTER to set up the program to display the text volume is on one line and the calculated value of v on the next.
6. Press [2nd [QUIT] to display the home screen.
7. Press PRGM to display the PRGM EXEC menu. The items on this menu are the names of stored programs.

PROGRFH: EYLINDER : Prompt R, H $: \square$

8. Press ENTER to paste prgmCYLINDER to the current cursor location. (If CYLINDER is not item 1 on your PRGM EXEC menu, move the cursor to CYLINDER before you press ENTER.)

9. Press ENTER to execute the program. Enter 1.5 for the radius, and then press ENTER. Enter 3 for the height, and then press ENTER. The text VOLUME IS, the value of V , and Done are displayed.

Repeat steps 7 through 9 and enter different values for \mathbf{R} and \mathbf{H}.

Creating and Deleting Programs

What Is a Program?

A program is a set of one or more command lines. Each line contains one or more instructions. When you execute a program, the TI-84 Plus C performs each instruction on each command line in the same order in which you entered them. The number and size of programs that the TI-84 Plus C can store is limited only by available memory.

Operating Systems Versions and Programming

- Programs created using the TI-84 Plus OS 2.55MP and earlier or the TI-83 Plus 1.19 OS or earlier will run on the TI-84 Plus C; however, they may result in unexpected displays on the TI-84 Plus C given the high resolution screen. You should test your existing programs on the $\mathrm{TI}-84$ Plus C and adjust command arguments as needed. In particular, any commands that display on the graph need to have the arguments adjusted to the desired pixel locations on the graph area. Programs displaying to the Home Screen should run as expected.
- Programs can run in Classic or MathPrint ${ }^{\text {TM }}$ mode.
- Shortcut menus are available wherever the MATH menu can be accessed.
- MathPrint ${ }^{\top \mathrm{TM}}$ templates are not available for programs. All input and output is in Classic format.
- You can use fractions in programs, but you should test the program to make sure that you get the desired results.
- The spacing of the display may be slightly different in MathPrint ${ }^{T M}$ mode than in Classic mode. If you prefer the spacing in Classic mode, set the mode using a command in your program. Screen shots for the examples in this chapter were taken in Classic mode.
- Syntax help is built in on the TI-84 Plus C. When in program edit mode, press

Note: Press \dagger (plus) to run the catalog help application and to use syntax help for programming.

Creating a New Program

To create a new program, follow these steps.

1. Press PRGM to display the PRGM NEW menu.

EXEC EDIT WED
 18Create New

2. Press ENTER to select 1:Create New. The Name= prompt is displayed, and alpha-lock is on.
3. Press a letter from A to Z or θ to enter the first character of the new program name.

Note: A program name can be one to eight characters long. The first character must be a letter from A to Z or θ. The second through eighth characters can be letters, numbers, or θ.
4. Enter zero to seven letters, numbers, or θ to complete the new program name.
5. Press ENTER. The program editor is displayed.
6. Enter one or more program commands.
7. Press [2nd [QUIT] to leave the program editor and return to the home screen.

Managing Memory and Deleting a Program

To check whether adequate memory is available for a program you want to enter:

1. Press [2nd [MEM] to display the MEMORY menu.
2. Select 2:Mem Management/Delete to display the MEMORY MANAGEMENT/DELETE menu (Chapter 18).
3. Select 7:Prgm to display the PRGM editor.

| RAM FREE | 21528 |
| :--- | ---: |
| PRC FREE | 3056 K |
| P *CYLINDER | 44 |
| PROGRAM1 | 42 |
| PR0GRMM2 | 96 |
| | |
| | |
| | |

The TI-84 Plus C expresses memory quantities in bytes.
You can increase available memory in one of two ways. You can delete one or more programs or you can archive some programs.

To increase available memory by deleting a specific program:

1. Press 2nd [MEM] and then select 2:Mem Management/Delete from the MEMORY menu.
```
FET[DETY
1HFbout
2! |em M9mt/Del..
S:Clear Entries
4:ElrH1lLi三t.
5:Archive
G: DrArchive
7+Reset..
```

2. Select 7:Prgm to display the PRGM editor (Chapter 18).

| RAM FREE | 21528 |
| :--- | ---: |
| RRC FREE | 3056 K |
| *CYLINDER | 44 |
| PROGRAM1 | 42 |
| PROGRAM2 | 96 |
| | |
| | |
| | |

3. Press Δ and \square to move the selection cursor ($ا$) next to the program you want to delete, and then press (DEL. The program is deleted from memory.
Note: You will receive a message asking you to confirm this delete action. Select 2:yes to continue.
To leave the PRGM editor screen without deleting anything, press [2nd [QUIT], which displays the home screen.

To increase available memory by archiving a program:

1. Press 2nd [MEM] and then select 2:Mem Management/Delete from the MEMORY menu.
2. Select 2:Mem Management/Delete to display the MEMORY MANAGEMENT/DELETE menu.
3. Select 7:Prgm... to display the PRGM menu.

| RAM FREE | 21528 |
| :--- | ---: |
| RRC FREE | 3056 K |
| P*CYLINDER | 44 |
| PROGRAM1 | 42 |
| PROGRAM2 | 96 |
| | |
| | |
| | |
| | |

4. Press ENTER to archive the program. An asterisk will appear to the left of the program to indicate it is an archived program.

To unarchive a program in this screen, put the cursor next to the archived program and press ENTER. The asterisk will disappear.
Note: Archive programs cannot be edited or executed. In order to edit or execute an archived program, you must first unarchive it.

Entering Command Lines and Executing Programs

Entering a Program Command Line

You can enter on a command line any instruction or expression that you could execute from the home screen. In the program editor, each new command line begins with a colon. To enter more than one instruction or expression on a single command line, separate each with a colon.

Note: A command line can be longer than the screen is wide.
While in the program editor, you can display and select from menus. You can return to the program editor from a menu in either of two ways.

- Select a menu item, which pastes the item to the current command line.
— or —
- Press CLEAR.

When you complete a command line, press ENTER. The cursor moves to the next command line.
Programs can access variables, lists, matrices, and strings saved in memory. If a program stores a new value to a variable, list, matrix, or string, the program changes the value in memory during execution.

You can call another program as a subroutine.

Executing a Program

To execute a program, begin on a blank line on the home screen and follow these steps.

1. Press PRGM to display the PRGM EXEC menu.
2. Select a program name from the PRGM EXEC menu. prgmname is pasted to the home screen (for example, prgmCYLINDER).
3. Press ENTER to execute the program. While the program is executing, the busy indicator is on.

Last Answer (Ans) is updated during program execution. Last Entry is not updated as each command is executed (Chapter 1).

The TI-84 Plus C checks for errors during program execution. It does not check for errors as you enter a program.

Breaking a Program

To stop program execution, press ON. The ERR:BREAK menu is displayed.

- To return to the home screen, select 1:Quit.
- To go where the interruption occurred, select 2:Goto.

Editing Programs

Editing a Program

To edit a stored program, follow these steps.

1. Press PRGM \square to display the PRGM EDIT menu.
2. Select a program name from the PRGM EDIT menu. Up to the first seven lines of the program are displayed.

Note: The program editor does not display a \downarrow to indicate that a program continues beyond the screen.
3. Edit the program command lines.

- Move the cursor to the appropriate location, and then delete, overwrite, or insert.
- Press CLEAR to clear all program commands on the command line (the leading colon remains), and then enter a new program command.
Note: To move the cursor to the beginning of a command line, press 2nd 0 ; to move to the end, press $2 n d$. To scroll the cursor down seven command lines, press ALPHA \square. To scroll the cursor up seven command lines, press ALPHA \triangle.

Inserting and Deleting Command Lines

To insert a new command line anywhere in the program, place the cursor where you want the new line, press 2nd [INS], and then press ENTER. A colon indicates a new line.

To delete a command line, place the cursor on the line, press CLEAR to clear all instructions and expressions on the line, and then press $\triangle E L$ to delete the command line, including the colon.

Copying and Renaming Programs

Copying and Renaming a Program

To copy all command lines from one program into a new program, follow steps 1 through 5 for Creating a New Program, and then follow these steps.

1. Press [2nd [RCL]. Rcl is displayed on the bottom line of the program editor in the new program (Chapter 1).
2. Press PRGM to display the PRGM EXEC menu.
3. Select a name from the menu. prgmname is pasted to the bottom line of the program editor.
4. Press ENTER. All command lines from the selected program are copied into the new program.

Copying programs has at least two convenient applications.

- You can create a template for groups of instructions that you use frequently.
- You can rename a program by copying its contents into a new program.

Note: You also can copy all the command lines from one existing program to another existing program using RCL.

Scrolling the PRGM EXEC and PRGM EDIT Menus

The TI-84 Plus C sorts PRGM EXEC and PRGM EDIT menu items automatically into alphanumerical order. Each menu only labels the first 10 items using 1 through 9 , then 0.

To jump to the first program name that begins with a particular alpha character or θ, press ALPHA [/etter from A to Z or θ].

Note: From the top of either the PRGM EXEC or PRGM EDIT menu, press Δ to move to the bottom. From the bottom, press \square to move to the top. To scroll the cursor down the menu seven items, press ALPHA \square. To scroll the cursor up the menu seven items, press ALPHA \triangle.

PRGM CTL (Control) Instructions

PRGM CTL Menu

To display the PRGM CTL (program control) menu, press PRGM from the program editor only.

| CTL I/O EXEC | |
| :---: | :---: |
| 1: If | Creates a conditional test. |
| 2: Then | Executes commands when If is true. |
| 3: Else | Executes commands when If is false. |
| 4: For (| Creates an incrementing loop. |
| 5: While | Creates a conditional loop. |
| 6: Repeat | Creates a conditional loop. |
| 7: End | Signifies the end of a block. |
| 8: Pause | Pauses program execution. |
| 9: Lbl | Defines a label. |
| 0: Goto | Goes to a label. |
| A: IS>(| Increments and skips if greater than. |
| B: DS<1 | Decrements and skips if less than. |
| C: Menu (| Defines menu items and branches. |
| D: prgm | Executes a program as a subroutine. |
| E: Return | Returns from a subroutine. |
| F: Stop | Stops execution. |
| G: DelVar | Deletes a variable from within program. |
| H: GraphStyle(| Designates the graph style to be drawn. |
| I: GraphColor(| Designates the color of the graph to be drawn |
| J: OpenLib(| No longer used. |
| K: ExecLib (| No longer used. |

Note: Press \square (plus) to run the catalog help application and to use syntax help for programming.
These menu items direct the flow of an executing program. They make it easy to repeat or skip a group of commands during program execution. When you select an item from the menu, the name is pasted to the cursor location on a command line in the program.

To return to the program editor without selecting an item, press CLEAR.

Controlling Program Flow

Program control instructions tell the TI-84 Plus C which command to execute next in a program. If, While, and Repeat check a defined condition to determine which command to execute next.
Conditions frequently use relational or Boolean tests (Chapter 2), as in:

If $A<7: A+1 \rightarrow A$

or
If $\mathbf{N}=1$ and $\mathrm{M}=1$: Goto \mathbf{Z}

If

Use If for testing and branching. If condition is false (zero), then the command immediately following If is skipped. If condition is true (nonzero), then the next command is executed. If instructions can be nested.
:If condition
:command (if true)
:command

Program

Output

If-Then

Then following an If executes a group of commands if condition is true (nonzero). End identifies the end of the group of commands.
:If condition
:Then
:command (if true)
:command (if true)

:End

:command

Program

Output

If-Then-Else

Else following If-Then executes a group of commands if condition is false (zero). End identifies the end of the group of commands.
:If condition
:Then
:command (if true)
:command (if true)
:Else
:command (if false)
:command (if false)

:End

:command

Program

|:Disf GX, Y

Output

Note: In OS 2.55MP and higher and TI-84 Plus C 4.0 and higher, the program name displays again when you press ENTER to repeat the program.

For(

For(loops and increments. It increments variable from begin to end by increment. increment is optional (default is 1) and can be negative (end<begin). end is a maximum or minimum value not to be exceeded. End identifies the end of the loop. For(loops can be nested.
:For(variable,begin,end[,increment])
:command (while end not exceeded)
:command (while end not exceeded)

:End

:command

Program

Output

Fr 9 MSDARE

While

While performs a group of commands while condition is true. condition is frequently a relational test (Chapter 2). condition is tested when While is encountered. If condition is true (nonzero), the program executes a group of commands. End signifies the end of the group. When condition is false (zero), the program executes each command following End. While instructions can be nested.
:While condition
:command (while condition is true)
:command (while condition is true)
:End
:command

Program

Output

Repeat

Repeat repeats a group of commands until condition is true (nonzero). It is similar to While, but condition is tested when End is encountered; therefore, the group of commands is always executed at least once. Repeat instructions can be nested.
:Repeat condition
:command (until condition is true)
:command (until condition is true)

:End

:Command

Program

Output

End

End identifies the end of a group of commands. You must include an End instruction at the end of each For(, While, or Repeat loop. Also, you must paste an End instruction at the end of each If-Then group and each If-Then-Else group.

Pause

Pause suspends execution of the program so that you can see answers or graphs. During the pause, the pause indicator is on in the top-right corner. Press ENTER to resume execution

- Pause without a value temporarily pauses the program. If the DispGraph or Disp instruction has been executed, the appropriate screen is displayed.
- Pause with value displays value on the current home screen. value can be scrolled.Pause [value]

Program

PROGRAM: PHUSE
: 16+
: " $\mathrm{K} 2+2 \mathrm{~F}+\mathrm{Y}$

- DisF "X=", 8
: Pa․․ㅗㄹ
: DíFFir:arh
: Pade
: Disf

Output

Lbl, Goto

Lbl (label) and Goto (go to) are used together for branching.
Lbl specifies the label for a command. label can be one or two characters (A through Z, 0 through 99, or $\theta)$.

LbI label
Goto causes the program to branch to label when Goto is encountered.

Goto label

Program

| FROGRFM: CUEE
 : Lbl 99
 Infut A
 Stor
 : Disf H^{3}

 : Goto 99 |
| :---: |

Output

| FB 9 MOEE | |
| :--- | ---: |
| 23 | 8 |
| 7105 | 27 |
| | Done |

IS>(

IS>((increment and skip) adds 1 to variable. If the answer is > value (which can be an expression), the next command is skipped; if the answer is \leq value, the next command is executed. variable cannot be a system variable.
:IS>(variable, value)
:command (if answer \leq value)
:command (if answer > value)

Program

Output

Note: IS>(is not a looping instruction.

DS<(

$\mathbf{D S}<($ (decrement and skip) subtracts 1 from variable. If the answer is < value (which can be an expression), the next command is skipped; if the answer is \geq value, the next command is executed. variable cannot be a system variable.
:DS<(variable,value)
:command (if answer \geq value)
:command (if answer < value)

Program

Output

| FOMDSKIF | |
| :---: | :---: |
| | Done |

Note: $\mathbf{D S}<$ (is not a looping instruction.

Menu(

Menu(sets up branching within a program. If Menu(is encountered during program execution, the menu screen is displayed with the specified menu items, the pause indicator is on, and execution pauses until you select a menu item.

The menu title is enclosed in quotation marks ("). Up to seven pairs of menu items follow. Each pair comprises a text item (also enclosed in quotation marks) to be displayed as a menu selection, and a label item to which to branch if you select the corresponding menu selection.

```
Menu("title","text1",label1,"text2",label2, . . .)
```

Program

Output

The program above pauses until you select $\mathbf{1}$ or $\mathbf{2}$. If you select $\mathbf{2}$, for example, the menu disappears and the program continues execution at Lbl B.

prgm

Use prgm to execute other programs as subroutines. When you select prgm, it is pasted to the cursor location. Enter characters to spell a program name. Using prgm is equivalent to selecting existing programs from the PRGM EXEC menu; however, it allows you to enter the name of a program that you have not yet created.

prgmname

Note: You cannot directly enter the subroutine name when using RCL. You must paste the name from the PRGM EXEC menu.

Return

Return quits the subroutine and returns execution to the calling program, even if encountered within nested loops. Any loops are ended. An implied Return exists at the end of any program that is called as a subroutine. Within the main program, Return stops execution and returns to the home screen.

Stop

Stop stops execution of a program and returns to the home screen. Stop is optional at the end of a program.

DelVar
DelVar deletes from memory the contents of variable.
DelVar variable
PROGRAM: DELMATR
: Delvar' [A]

GraphStyle(

GraphStyle(designates the style of the graph to be drawn. function\# is the number of the $Y=$ function name in the current graphing mode. graphstyle is a number from 1 to 7 that corresponds to the graph style, as shown below.

1 = ' (Thin)
$2=4$
3 = ${ }^{-1 / 4}$ (Shade above)
4 = 色 (Shade below)

$$
\begin{aligned}
& \mathbf{5}=4 \text { (Path) } \\
& \mathbf{6}=0 \text { (Animate) } \\
& \mathbf{7}=\because \text { (Dot-Thick) } \\
& \mathbf{8}=\because \text { (Dot-Thin) }
\end{aligned}
$$

GraphStyle(function\#,graphstyle)

For example, GraphStyle(1,5) in Func mode sets the graph style for Y1 to 4 (path; 5).
Not all graph styles are available in all graphing modes. For a detailed description of each graph style, see the Graph Styles table in Chapter 3.

GraphColor

GraphColor(designates the color of the graph to be drawn. function\# is the number of the $Y=$ function name in the current graphing mode. color\# is a number from 10 to 24 that corresponds to the graph color, as shown in the table below:

| Color Number | Color Name |
| :--- | :--- |
| 10 | BLUE |
| 11 | RED |
| 12 | BLACK |
| 13 | MAGENTA |
| 14 | GREEN |
| 15 | ORANGE |
| 16 | BROWN |
| 17 | NAVY |
| 18 | LTBLUE |
| 19 | YELLOW |
| 20 | WHITE |
| 21 | LTGRAY |
| 22 | MEDGRAY |
| 23 | GRAY |
| 24 | DARKGRAY |

You can also choose a color name in the VARS menu (color sub-menu).

GraphColor(function\#,color\#)

For example, GraphColor $(\mathbf{2}, \mathbf{4})$ or $\mathbf{G r a p h} C o l o r(2, ~ M A G E N T A) . ~$

PRGM IIO (Input/Output) Instructions

PRGM I/O Menu

To display the PRGM I/O (program input/output) menu, press PRGM \square from within the program editor only.

| CTL | I/O | EXEC |
| :--- | :--- | :--- |
| 1: | Input | Enters a value or uses the cursor. |
| $2:$ | Prompt | Prompts for entry of variable values. |
| $3:$ | Disp | Displays text, value, or the home screen. |
| $4:$ | DispGraph | Displays the current graph. |
| 5: | DispTable | Displays the current table. |

| CTL | I/O | EXEC |
| :--- | :--- | :--- |
| $6:$ | Output (| Displays text at a specified position. |
| $7:$ | getKey | Checks the keyboard for a keystroke. |
| 8: ClrHome | Clears the display. | |
| 9: | ClrTable | Clears the current table. |
| $0:$ | GetCalc (| Gets a variable from another TI-84 Plus C. |
| A: | Get (| Gets a variable from CBL $2^{\text {TM }}$ or CBR |

Note: Press \dagger (plus) to run the catalog help application and to use syntax help for programming.
These instructions control input to and output from a program during execution. They allow you to enter values and display answers during program execution.

To return to the program editor without selecting an item, press CLEAR.

Displaying a Graph with Input

Input without a variable displays the current graph. You can move the free-moving cursor, which updates X and Y (and R and θ for PolarGC format). The pause indicator is on. Press ENTER to resume program execution.

Input

Program

PROIGRH: GIFPUT
: FnOff
: ZDecimal
: Infut
: DisF $\%$ Y

Output

Storing a Variable Value with Input

Input with variable displays a ? (question mark) prompt during execution. variable may be a real number, complex number, list, matrix, string, or $Y=$ function. During program execution, enter a value, which can be an expression, and then press ENTER. The value is evaluated and stored to variable, and the program resumes execution.

Input [variable]

You can display text or the contents of Strn (a string variable) of up to 26 characters as a prompt. During program execution, enter a value after the prompt and then press ENTER. The value is stored to variable, and the program resumes execution.

Input ["text",variable]
Input [Strn,variable]

Program

|: Disf Y'(LDATA)

Output

Note: When a program prompts for input of lists and $\mathbf{Y} n$ functions during execution, you must include the braces (\{ \}) around the list elements and quotation marks (") around the expressions.

Prompt

During program execution, Prompt displays each variable, one at a time, followed by =?. At each prompt, enter a value or expression for each variable, and then press ENTER. The values are stored, and the program resumes execution.

Prompt variable $[$, variable B, \ldots, , variable n]

| Program | Output |
| :---: | :---: |
| PROGRAM: XI | FrambIVDOW |
| : Prompt Xmir | $\mathrm{xmin}=2-10$ |
| : Prompt fmox | $\mathrm{max}=210$ |
| : Prompt Ymax | Ymax=\% |
| | |

Note: $\mathrm{Y}=$ functions are not valid with Prompt.

Displaying the Home Screen

Disp (display) without a value displays the home screen. To view the home screen during program execution, follow the Disp instruction with a Pause instruction.

Disp

Displaying Values and Messages

Disp with one or more values displays the value of each.
Disp [valueA,valueB,valueC, ...,value n]

- If value is a variable, the current value is displayed.
- If value is an expression, it is evaluated and the result is displayed on the right side of the next line.
- If value is text within quotation marks, it is displayed on the left side of the current display line. \rightarrow is not valid as text.

Program

Output

If Pause is encountered after Disp, the program halts temporarily so you can examine the screen. To resume execution, press ENTER.

Note: If a matrix or list is too large to display in its entirety, ellipses (...) are displayed in the last column, but the matrix or list cannot be scrolled. To scroll, use Pause value.

DispGraph

DispGraph (display graph) displays the current graph. If Pause is encountered after DispGraph, the program halts temporarily so you can examine the screen. Press [ENTER to resume execution.

DispTable

DispTable (display table) displays the current table. The program halts temporarily so you can examine the screen. Press ENTER to resume execution.

Output(

Output(displays text or value on the current home screen beginning at row (1 through 10) and column (1 through 26), overwriting any existing characters.

Note: You may want to precede Output(with CIrHome.
Expressions are evaluated and values are displayed according to the current mode settings. Matrices are displayed in entry format and wrap to the next line. \rightarrow is not valid as text.

Output(row,column,"text")
Output(row, column, value)

Program

Output

For Output(on a Horiz split screen, the maximum value for row is 4.

getKey

getKey returns a number corresponding to the last key pressed, according to the key code diagram below. If no key has been pressed, getKey returns 0 . Use getKey inside loops to transfer control, for example, when creating video games.

Program

Output

| Fr"9mETKEY | 41 |
| ---: | ---: |
| | 42 |
| | 4.5 |
| | Conem |

Note: MATH, APPS, PRGM, and ENTER were pressed during program execution.

Note: You can press $O \mathbb{N}$ at any time during execution to break the program.

TI-84 Plus C Key Code Diagram

CIrHome, CIrTable

CIrHome (clear home screen) clears the home screen during program execution.
CIrTable (clear table) clears the values in the table during program execution.

GetCalc(

GetCalc(gets the contents of variable on another TI-84 Plus C and stores it to variable on the receiving TI-84 Plus C. variable can be a real or complex number, list element, list name, matrix element, matrix name, string, $Y=$ variable, graph database, or picture.

GetCaIc(variable[,portflag])

By default, the TI-84 Plus C uses the USB port if it is connected. If the USB cable is not connected, it uses the I/O port. If you want to specify either the USB or I/O port, use the following portflag numbers:
portflag=0 use USB port if connected;
portflag=1 use USB port;
portflag=2 use I/O port
Note: GetCalc(does not work between TI-82 and TI-83 Plus or a TI-82, TI-84 Plus and TI-84 Plus C calculators.

Get(, Send(

Get(gets data from the CBL $2^{\text {TM }}$ or CBR ${ }^{\top M}$ data collection device and stores it to variable on the receiving TI-84 Plus C. variable can be a real number, list element, list name, matrix element, matrix name, string, $\mathrm{Y}=$ variable, graph database, or picture.

Get(variable)

Note: If you transfer a program that references the Get(command to the TI-84 Plus C from a TI-82, the TI-84 Plus C will interpret it as the Get(described above. Use GetCalc(to get data from another TI-84 Plus C.

Send(sends the contents of variable to the CBL $2^{\text {TM }}$ or CBR $^{T M}$ data collection device. You cannot use it to send to another TI-84 Plus C. variable can be a real number, list element, list name, matrix element, matrix name, string, $\mathrm{Y}=$ variable, graph database, or picture. variable can be a list of elements.

Send(variable)

FROGRHMEGETGOUFD : Send cs, 60125 , $99,1,0,0,0,0,17$
: Getct

1) Get. (Lz)

Note: This program gets sound data and time in seconds from CBL $2^{\text {TM. }}$.

Note: You can access Get(, Send(, and GetCalc(from the CATALOG to execute them from the home screen (Chapter 15).

Calling Other Programs as Subroutines

Calling a Program from Another Program

On the TI-84 Plus C, any stored program can be called from another program as a subroutine. Enter the name of the program to use as a subroutine on a line by itself.

You can enter a program name on a command line in either of two ways.

- Press PRGM to display the PRGM EXEC menu and select the name of the program prgmname is pasted to the current cursor location on a command line.
- Select prgm from the PRGM CTL menu, and then enter the program name.
prgmname
When prgmname is encountered during execution, the next command that the program executes is the first command in the second program. It returns to the subsequent command in the first program when it encounters either Return or the implied Return at the end of the second program.

Program

Output

Subroutine $\downarrow \uparrow$
PROGRAM: AREFDIR
: $1 / 2+\mathrm{R}$
: $\pi+R^{2} \rightarrow$ P

- Return

Notes about Calling Programs

Variables are global.
label used with Goto and Lbl is local to the program where it is located. label in one program is not recognized by another program. You cannot use Goto to branch to a label in another program.

Return exits a subroutine and returns to the calling program, even if it is encountered within nested loops.

Running an Assembly Language Program

You can run programs written for the TI-84 Plus C in assembly language. Typically, assembly language programs run much faster and provide greater control than the keystroke programs that you write with the built-in program editor.

Note: Because an assembly language program has greater control over the calculator, if your assembly language program has error(s), it may cause your calculator to reset and lose all data, programs, and applications stored in memory.

When you download an assembly language program, it is stored among the other programs as a PRGM menu item. You can:

- Transmit it using the TI-84 Plus C communication link (Chapter 19).
- Delete it using the Memory Management/ Delete screen (Chapter 18).

To run an assembly Program, the syntax is: Asm(assemblyprgmname)

If you write an assembly language program, use the two instructions below from the CATALOG to identify and compile the program.

| Instructions | Comments |
| :--- | :--- |
| AsmComp(prgmASM1,
 prgmASM2) | Compiles an assembly language program written in
 ASCII and stores the hex version |
| Asm84CPrgm | Identifies an assembly language program; must be
 entered as the first line of an assembly language
 program |

To compile an assembly program that you have written:

1. Follow the steps for writing a program (16-4) but be sure to include Asm84CPrgm as the first line of your program.
2. From the home screen, press 2nd [CATALOG] and then select AsmComp(to paste it to the screen.
3. Press PRGM to display the PRGM EXEC menu.
4. Select the program you want to compile. It will be pasted to the home screen.
5. Press \square and then select prgm from the CATALOG.
6. Key in the name you have chosen for the output program.

Note: This name must be unique - not a copy of an existing program name.
7. Press \square to complete the sequence.

The sequence of the arguments should be as follows:
AsmComp(prgmASM1, prgmASM2)
8. Press ENTER to compile your program and generate the output program.

Note: The TI-84 Plus AsmPrgm transfers to the TI-84 Plus C but fails upon execution.

Chapter 17: Activities

The Quadratic Formula

Note: Each activity in this chapter assumes a default setting.
This example uses MathPrint ${ }^{\text {TM }}$ mode for real answers and a classic format entry using division for nonreal (complex) results. You can also use the Polynomial Root Finder/Simultaneous Equation Solver application to solve these types of problems with a quick set-up. This application comes pre-loaded on your $\mathrm{Tl}-84$ Plus C and can be downloaded from education.ti.com.

Use the quadratic formula to solve the quadratic equations $2 x^{2}-11 x+14=0$ and $2 x^{2}-6 x+5=0$.

Graphing the Functions

Before you begin, look at the graphs of the functions to see the approximate locations of the solutions.

1. Press $Y \neq$ to display the $Y=$ editor.
2. Press $2 \triangle, T, \Theta, \Pi x^{2} \square 11 \triangle, T, \Theta, \pi \square 14$ for $Y 1$, and then press ENTER.

3. Press $2 X, T, \Theta, \Pi \quad x^{2} \square \mathbf{X}, T, \Theta, n \square \mathbf{5}$ for $Y 2$.

4. Press ZOOM and select 4:ZDecimal. The graph of the functions displays.

Note: For quicker graphing, press 2nd [FORMAT]and set Detect Asymptotes OFF.

You can see that the graph of the first function, $2 x^{2}-11 x+14=0$, crosses the x-axis, so it has a real solution. The graph of the second function does not cross the x-axis, so it has a complex
 solution.

Entering a Calculation

Begin with the equation $2 x^{2}-11 x+14=0$.

1. Press $\mathbf{2}$ STO ALPHA A to store the coefficient of the x^{2} term.
2. Press ALPHA [:]. The colon allows you to enter more than one instruction on a line.
3. Press 11 ATO ALPHA B to store the coefficient of the X term. Press ALPHA [:] to enter a new instruction on the same line. Press 14 STO ALPHA C to store the constant.
4. Press ENTER to store the values to the variables A, B, and C.
The last value you stored is shown on the right side of the display. The cursor moves to the next line, ready for your next entry.
5. Press ALPHA [F1] 1 ALPHA B \oplus 2nd [r] ALPHA B $x^{2} \square 4$ ALPHA A ALPHA C $\square \mathbf{A L P H A} \mathbf{A}$ to enter the expression for one of the solutions for the quadratic formula,
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
6. Press ENTER to find one solution for the equation $2 x^{2}-11 x+14=0$.

The answer is shown on the right side of the display. The cursor moves to the next line, ready for you to enter the next expression.

Converting to a Decimal

You can show the solution as a decimal.

1. Press ALPHA [F1] $\mathbf{4}$ to select PF4DD from the FRAC shortcut menu.
2. Press ENTER to convert the result to a decimal.

To save keystrokes, you can scroll up to find an expression you entered, copy it, and then edit it for a new calculation.
3. Press Δ to highlight $\sqrt{\frac{-E+\sqrt{E^{2}-4 A C}}{2 h}}$ and then press ENTER to paste it to the entry line.

| History | [|
| :---: | :---: |
| $2 \rightarrow A$: $-11 \rightarrow B: 14 \rightarrow C$ | |
| $-B+\sqrt{B^{2}-44 C}$ | |
| 2 A | |
| | $\frac{7}{2}$ |
| Äns- ${ }^{\text {¢ }}$ | |
| | . 5. |

4. Press \square until the cursor is on the + sign in the formula. Press \square to edit the quadraticformula expression to become

5. Press ENTER to find the other solution for the quadratic equation $2 x^{2}-11 x+14=0$.

Displaying Complex Results

Now solve the equation $2 x^{2}-6 x+5=0$. When you set $\mathbf{a}+\mathbf{b} i$ complex number mode, the $\mathrm{TI}-84$ Plus C displays complex results.

1. Press MODE $\square_{\square} \rightarrow \square 𠃌$ (6 times), and then press \square to highlight $\mathbf{a + b} i$. Press ENTER to select $\mathbf{a + b} i$ complex-number mode.

2. Press [2nd [QUIT] to return to the home screen, and then press CLEAR to clear it.
3. Press 2 STO ALPHA A ALPHA [:] (-) 6 STO ALPHA B ALPHA [:] 5 STO ALPHA C ENTER.

The coefficient of the x^{2} term, the coefficient of the X term, and the constant for the new equation are stored to A, B, and C, respectively.

4. Enter the quadratic formula using Classic entry: $1(-)$ ALPHA $\mathbf{B} \square$ 2nd $[v]$ ALPHA $\mathbf{B} \times x^{2} \square$ 4 ALPHA A ALPHA CDO $\square \mathbf{O}$ ALPHA A \square.
Because the solution is a complex number, you have to enter the formula using the division operation instead of using the \mathbf{n} / \mathbf{d} shortcut template. Complex numbers are not valid in the \mathbf{n} / \mathbf{d} template in input or output and will cause Error: Data Type to display.
5. Press ENTER to find one solution for the equation $2 x^{2}-6 x+5=0$.
6. Press \triangle to highlight the quadratic-formula expression, and then press ENTER to paste it to the entry line.
7. Press until the cursor is on the + sign in the formula. Press \square to edit the quadraticformula expression to become $\left(-B-\sqrt{B^{2}-4 \mathrm{AC}}\right) /(2 \mathrm{H})$.
8. Press ENTER to find the other solution for
 the quadratic equation: $2 x^{2}-6 x+5=0$.
9. Change the solution to MATH 1:FRAC as needed.

Note: To convert complex numbers to fraction or decimal forms, use MATH 1:FRAC or MATH
2:DEC. ALPHA [F1] 4: PF $\boldsymbol{D} \boldsymbol{D}$ can be used for real numbers only.

Box with Lid

Defining a Function

Take a $20 \mathrm{~cm} \times 25 \mathrm{~cm}$. sheet of paper and cut $X \times X$ squares from two corners. Cut $X \times 121 / 2 \mathrm{~cm}$ rectangles from the other two corners as shown in the diagram below. Fold the paper into a box with a lid. What value of X would give your box the maximum volume V ? Use the table and graphs to determine the solution

Begin by defining a function that describes the volume of the box.

From the diagram:
$2 X+A=20$
$2 X+2 B=25$
$V=A * B * X$
Substituting:
$V=(20-2 X)(25 / 2-X) X$

1. Press $Y=$ to display the $\mathbf{Y}=$ editor.
 $25-2 \square X, T, \Theta, n \square X, T, \Theta, n$ ENTER to define the volume function as $\mathbf{Y 1}$ in terms of \mathbf{X}.
X, T, Θ, η lets you enter \mathbf{X} quickly, without having to press ALPHA. The highlighted = sign indicates that Y1 is selected.

Defining a Table of Values

The table feature of the TI-84 Plus C displays numeric information about a function. You can use a table of values from the function you just defined to estimate an answer to the problem.

1. Press 2nd [TBLSET] to display the TABLE SETUP menu.
2. Press ENTER to accept TblStart=1.
3. Press 1 ENTER to define the table increment $\Delta \mathbf{T b l}=1$. Leave Indpnt: Auto and Depend: Auto so that the table will be generated automatically.
4. Press [2nd [TABLE] to display the table.

Notice that the maximum value for $\mathbf{Y 1}$ (box's volume) occurs when \mathbf{X} is about 4, between 3 and 5.

5. Press and hold to scroll the table until a negative result for $\mathbf{Y} \mathbf{1}$ is displayed.
Notice that the maximum length of \mathbf{X} for this problem occurs where the sign of $\mathbf{Y} 1$ (box's volume) changes from positive to negative, between 10 and 11.

Zooming In on the Table

You can adjust the way a table is displayed to get more information about a defined function. With smaller values for $\Delta \mathbf{T b I}$, you can zoom in on the table. You can change the values on the TBLSET screen by pressing 2nd [TBLSET] or by pressing $⿴$ on the TABLE screen

1. Press [nd [TABLE].
2. Press \triangle to move the cursor to highlight 3.
3. Press \square. The $\Delta \mathbf{T} \mathbf{I}$ displays on the entry line.
4. Enter $\cdot 1$ ENTER. The table updates, showing the changes in X in increments of 0.1.

Notice that the maximum value for Y1 in this table view is 410.26, which occurs at $\mathbf{X}=3.7$. Therefore, the maximum occurs where $\mathbf{3 . 6 < X < 3 . 8}$.
5. With $\mathrm{X}=3.6$ highlighted, press $\square \square 01$ ENTER to set $\Delta \mathbf{T b l}=0.01$.

6. Press \square and to scroll the table.

Four equivalent maximum values are shown, 410.26 at $X=3.67,3.68,3.69$, and 3.70.
 Press \square to move the cursor into the $\mathbf{Y 1}$ column.

The value of $\mathbf{Y 1}$ at $\mathbf{X = 3 . 6 7}$ is displayed on the bottom line in full precision as 410.261226.

| NORMAL FLOAT AUTO REAL PRESS - TO EDIT FUNCTION | | | Radian | MP \quad] |
| :---: | :---: | :---: | :---: | :---: |
| X | Y1 | | | |
| 3.6 | 410.11 | | | |
| 3.61 | 410.15 | | | |
| 3.62 | 419.18 | | | |
| 3.63 | 410.2 | | | |
| 3.64 | 419.23 | | | |
| 3.65 | 410.24 | | | |
| 3.66 | 410.25 | | | |
| 3.67 | 410.26 | | | |
| 3.68 | 410.26 | | | |
| 3.69 | 419.26 | | | |
| 3.7 | 410.26 | | | |
| $\mathrm{Y}_{1}=4$ | 0.261 | 226 | | |

8. Press to display the other maximum.

The value of $\mathbf{Y 1}$ at $\mathbf{X = 3 . 6 8}$ in full precision is $\mathbf{4 1 0 . 2 6 4 0 6 4}$, at $X=3.69$ is $\mathbf{4 1 0 . 2 6 2 3 1 8}$ and at $X=3.7$ is 410.256.

The maximum volume of the box would occur at $\mathbf{3 . 6 8}$ if you could measure and cut the paper at 01-centimeter increments.

$Y_{1}=410.264064$

Setting the Viewing Window

You also can use the graphing features of the TI-84 Plus C to find the maximum value of a previously defined function. When the graph is activated, the viewing window defines the displayed portion of the coordinate plane. The values of the window variables determine the size of the viewing window.

1. Press WINDOW to display the window editor, where you can view and edit the values of the window variables.

| MORMAL FLOAT GUTO REAL RADIAN MP |
| :--- |
| WINDOW |
| $X_{m i n}=-10$ |
| $X \max =10$ |
| $X s c l=1$ |
| Ymin $=-10$ |
| Ymax $=10$ |
| Yscl $=1$ |
| Xres $=1$ |
| $\Delta X=.07575757575757$ |
| TraceStep=.15151515151515 |

The standard window variables define the viewing window as shown. Xmin, Xmax, Ymin, and Ymax define the boundaries of the display. Xscl and Yscl define the distance between tick marks on the \mathbf{X} and \mathbf{Y} axes. Xres controls resolution.

2. Press $\mathbf{0}$ ENTER to define Xmin.
3. Press $\mathbf{2 0} \div \mathbf{2}$ to define Xmax using an expression.
Note: For this example, the division sign is used for the calculation. However, you can use n / d entry format where fraction output can be experienced, depending on mode settings. n / d is not valid for complex
 numbers.
4. Press ENTER. The expression is evaluated, and $\mathbf{1 0}$ is stored in Xmax. Press ENTER to accept Xscl as 1.
5. Press $\mathbf{0}$ ENTER 500 ENTER 100 ENTER 1 ENTER to define the remaining window variables.

Displaying and Tracing the Graph

Now that you have defined the function to be graphed and the window in which to graph it, you can display and explore the graph. You can trace along a function using the TRACE feature.

1. Press GRAPH to graph the selected function in the viewing window.
The graph of $\mathbf{Y 1 = (2 0 - 2 X) (2 5 / 2 - X) X}$ is displayed.

2. Press \square to activate the free-moving graph cursor.

The \mathbf{X} and \mathbf{Y} coordinate values for the position of the graph cursor are displayed on the bottom line.

3. Press $\square, \square, \square$, and \square to move the freemoving cursor to the apparent maximum of the function.

As you move the cursor, the \mathbf{X} and \mathbf{Y} coordinate values are updated continually.

4. Press TRACE. The trace cursor is displayed on the Y1 function.

The function that you are tracing is displayed in the top-left corner.
5. Press \square and to trace along $\mathbf{Y} 1$, one \mathbf{X} dot at a time, evaluating $\mathbf{Y 1}$ at each \mathbf{X}.

You also can enter your estimate for the maximum value of \mathbf{X}.
6. Press $\mathbf{3}$ 8. When you press a number key while in TRACE, the $\mathbf{X}=$ prompt is displayed in the bottom-left corner.

7. Press ENTER.

The trace cursor jumps to the point on the $\mathbf{Y 1}$ function evaluated at $\mathbf{X = 3 . 8}$.

8. Press \square and \square until you are on the maximum \mathbf{Y} value.

This is the maximum of $\mathbf{Y 1 (X)}$ for the \mathbf{X} pixel values. The actual, precise maximum may lie between pixel values.

Zooming In on the Graph

To help identify maximums, minimums, roots, and intersections of functions, you can magnify the viewing window at a specific location using the ZOOM instructions.

1. Press ZOOM to display the ZOOM menu.

This menu is a typical TI-84 Plus C menu. To select an item, you can either press the number or letter next to the item, or you can press \square until the item number or letter is highlighted, and then press ENTER.
2. Press $\mathbf{2}$ to select 2:Zoom In.

| MORMAL FLOAT AUTO REAL RADIAN MP |
| :--- |
| ZOOM MEMORY |
| 1:ZBox |
| 2:Zoom In |
| 3:Zoom Out |
| 4:ZDecimal |
| 5: ZSauare |
| 6:ZStandard |
| 7:ZTri9 |
| 8:ZInteger |
| 9ұZoomStat |

3. The graph is displayed again. The cursor has changed to indicate that you are using a ZOOM instruction.

4. With the cursor near the maximum value of the function, press ENTER.
The new viewing window is displayed. Both Xmax-Xmin and Ymax-Ymin have been adjusted by factors of 4, the default values for the zoom factors.
5. Press \square and \square to search for the maximum value.
6. Press WINDOW to display the new window settings.

Note: To return to the previous graph, press ZOOM \square 1:ZPrevious.

Finding the Calculated Maximum

You can use a CALCULATE menu operation to calculate a local maximum of a function. To do this, pick a point to the left of where you think the maximum is on the graph. This is called the left bound. Next, pick a point to the right of the maximum. This is called the right bound. Finally, guess the maximum by moving the cursor to a point between the left and right bounds. With this information, the maximum can be calculated by the methods programmed in the TI-84 Plus C.

1. Press 2nd [caLC] to display the CALCULATE menu. Press 4 to select 4:maximum.

The graph is displayed again with a Left Bound? prompt.

2. Press \square to trace along the curve to a point to the left of the maximum, and then press ENTER.
A at the top of the screen indicates the selected bound.

A Right Bound? prompt is displayed.

3. Press \square to trace along the curve to a point to the right of the maximum, and then press ENTER.
A 4 at the top of the screen indicates the selected bound.

A Guess? prompt is displayed.

4. Press to trace to a point near the maximum, and then press ENTER.

Or, press $3 \square$ 8, and then press ENTER to enter a guess for the maximum.

When you press a number key in TRACE, the $\mathbf{X}=$ prompt is displayed in the bottomleft corner.

Notice how the values for the calculated maximum compare with the maximums found with the free-moving cursor, the trace cursor, and the table.

Note: In steps 2 and 3 above, you can enter values directly for Left Bound and Right Bound, in the same way as described in step 4.

Comparing Test Results Using Box Plots

Problem

An experiment found a significant difference between boys and girls pertaining to their ability to identify objects held in their left hands, which are controlled by the right side of their brains, versus their right hands, which are controlled by the left side of their brains. The TI Graphics team conducted a similar test for adult men and women.

The test involved 30 small objects, which participants were not allowed to see. First, they held 15 of the objects one by one in their left hands and guessed what they were. Then they held the other 15 objects one by one in their right hands and guessed what they were. Use box plots to compare visually the correct-guess data from this table.

Each row in the table represents the results observed for one subject. Note that 10 women and 12 men were tested.

| Correct Guesses | | | |
| :---: | :---: | :---: | :---: |
| Women
 Left | Women
 Right | Men
 Left | Men
 Right |
| 8 | 4 | 7 | 12 |
| 9 | 1 | 8 | 6 |
| 12 | 8 | 7 | 12 |
| 11 | 12 | 5 | 12 |
| 10 | 11 | 7 | 7 |
| 8 | 11 | 8 | 11 |
| 12 | 11 | 4 | 12 |
| 7 | 12 | 110 | 8 |
| 9 | | 13 | 12 |
| 11 | | 5 | 9 |
| | | | 9 |

Procedure

1. Press STAT $\mathbf{5}$ to select 5:SetUpEditor. Enter list names WLEFT, WRGHT, MLEFT, and MRGHT, separated by commas. Press EENTER. The stat list editor now contains only these four lists. (See Chapter 11: Lists for detailed instructions for using the SetUpEditor.)
2. Press STAT 1 to select 1:Edit.
3. Enter into WLEFT the number of correct guesses each woman made using her left hand (Women Left). Press \square to move to WRGHT and enter the number of correct guesses each woman made using her right hand (Women Right).
4. Likewise, enter each man's correct guesses in MLEFT (Men Left) and MRGHT (Men Right).
5. Press [2nd [STAT PLOT]. Select 1:Plot 1. Turn on plot 1; define it as a modified box plot $4-\cdots$ that uses Xlist as WLEFT. Move the cursor to the top line and select Plot2. Turn on plot 2; define it as a modified box plot that uses Xlist as WRGHT. (See Chapter 12: Statistics for detailed information on using Stat Plots.)
6. Press Y. Turn off all functions.
7. Press WINDOW. Set Xscl=1 and Yscl=0. Press ZOOM $\mathbf{9}$ to select $\mathbf{9}$:ZoomStat. This adjusts the viewing window and displays the box plots for the women's results.
8. Press TRACE.

Use \square and to examine $\boldsymbol{m i n X}$, Q1, Med, Q3, and $\boldsymbol{\operatorname { m a x } X}$ for each plot. Notice the outlier to the women's right-hand data. What is the median for the left hand? For the right hand? With which hand were the women more accurate guessers, according to the box plots?
9. Examine the men's results. Redefine plot 1 to use MLEFT, redefine plot 2 to use MRGHT. Press TRACE.

Press \square and to examine $\mathbf{m i n} \mathbf{X}$, Q1, Med, Q3, and $\boldsymbol{\operatorname { m a x }} \mathbf{~}$ for each plot. What difference do you see between the plots?
10. Compare the left-hand results. Redefine plot 1 to use WLEFT, redefine plot 2 to use MLEFT, and then press TRACE to examine $\min X$, Q1, Med, Q3, and maxX for each plot. Who were the better left-hand guessers, men or women?
11. Compare the right-hand results. Define plot 1 to use WRGHT, define plot 2 to use MRGHT, and then press TRACE to examine $\mathbf{m i n X}, \mathbf{Q 1}, \mathbf{M e d}, \mathbf{Q 3}$, and $\boldsymbol{\operatorname { m a x X }}$ for each plot. Who were the better righthand guessers?

In the original experiment boys did not guess as well with right hands, while girls guessed equally well with either hand. This is not what our box plots show for adults. Do you think that this is because adults have learned to adapt or because our sample was not large enough?

Graphing Piecewise Functions

Problem

The fine for speeding on a road with a speed limit of 45 kilometers per hour (kph) is 50 ; plus 5 for each kph from 46 to 55 kph ; plus 10 for each kph from 56 to 65 kph ; plus 20 for each kph from 66 kph and above. Graph the piecewise function that describes the cost of the ticket.

The fine (Y) as a function of kilometers per hour (X) is:

$$
Y=\left\{\begin{array}{lr}
0 & 0<X \leq 45 \\
50+5(X-45) & 45<X \leq 55 \\
50+5 * 10+10(X-55) & 55<X \leq 65 \\
50+5 * 10+10 * 10+20(X-65) & 65<X
\end{array}\right.
$$

which simplifies to:

$$
Y=\left\{\begin{array}{lr}
0 & 0<X \leq 45 \\
50+5(X-45) & 45<X \leq 55 \\
100+10(X-55) & 55<X \leq 65 \\
200+20(X-65) & 65<X
\end{array}\right.
$$

Procedure

1. Press MODE. Select Func and Classic.

2. Press $Y=$. Turn off all functions and stat plots. Enter the $\mathbf{Y}=$ function to describe the fine. Use the TEST menu operations to define the piecewise function. Set the graph style for $\mathbf{Y 1}$ to ${ }^{\circ}$. (Dot-Thick).

3. Press WINDOW and set $\mathbf{X m i n = - 2 , X s c l = 1 0 , ~ Y m i n = - 5 , ~ Y s c l = 1 0 , ~} \Delta X=.5$ and TraceStep=1. Ignore Xmax and Ymax; they are set in step 4.
4. Press [2nd [QuIT] to return to the home screen. Store $\mathbf{5}$ to $\Delta \mathbf{Y} . \Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ are on the VARS Window \mathbf{X} / \mathbf{Y} secondary menu. $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ specify the horizontal and vertical distance between the centers of adjacent pixels. Integer values for $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ produce nice values for tracing.
5. Press TRACE to plot the function. At what speed does the ticket exceed 250 ?

Graphing Inequalities

Problem

Graph the inequality $0.4 x^{3}-3 x+5<0.2 x+4$. Use the TEST menu operations to explore the values of X where the inequality is true and where it is false.

Note: You can also investigate graphing inequalities using the Inequality Graphing application. The application is pre-loaded on your $\mathrm{Tl}-84$ Plus C and can be downloaded from education.ti.com.

Procedure

1. Press MODE. Select Dot-Thick, Simul, and the default settings. Setting Dot-Thick mode changes all graph style icons to ". (Dot-Thick) in the $\mathbf{Y}=$ editor.
2. Press Y. Turn off all functions and stat plots. Enter the left side of the inequality as $\mathbf{Y} \mathbf{4}$ and the right side as Y5.

3. Enter the statement of the inequality as Y6. This function evaluates to $\mathbf{1}$ if true or $\mathbf{0}$ if false.

Note: You can use the YVARS shortcut menu ([ALPHA [F4]) to paste Y4 and Y5 in the Y= editor.
4. Press ZOOM 6:ZStandard to graph the inequality in the standard window.
5. Press TRACE \square to move to Y6. Then press \square and to trace the inequality, observing the value of Y.

When you trace, you can see that $Y=1$ indicates that $Y 4<Y 5$ is true and that $Y=0$ indicates that $\mathrm{Y} 4<\mathrm{Y} 5$ is false.
6. Press Y. Turn off Y4, Y5, and Y6. Enter equations to graph only the inequality.

7. Press TRACE

Notice that the values of $\mathbf{Y 7}$ and $\mathbf{Y 8}$ are zero where the inequality is false. You only see the intervals of the graph where $\mathrm{Y} 4<\mathrm{Y} 5$ because intervals that are false are multiplied by 0 ($\mathrm{Y} 6 * \mathrm{Y} 4$ and Y6*Y5)

Solving a System of Nonlinear Equations

Problem

Using a graph, solve the equation $x^{3}-2 x=2 \cos (x)$. Stated another way, solve the system of two equations and two unknowns: $\mathrm{y}=\mathrm{x}^{3}-2 \mathrm{x}$ and $\mathrm{y}=2 \cos (\mathrm{x})$. Use ZOOM factors to control the decimal places displayed on the graph and use 2nd [CALC] 5:intersect to find an approximate solution.

Procedure

1. Press MODE. Select the default mode settings. Press $Y=$. Turn off all functions and stat plots. Enter the functions.

NYg $\mathrm{YAX}^{3}-2 X$

- $\ Y_{\theta} \theta_{2} 2 \cos (X)$ ■

2. Press ZOOM 4 to select 4:ZDecimal. The display shows that two solutions may exist (points where the two functions appear to intersect).

3. Press ZOOM $\square 4$ to select 4:SetFactors from the ZOOM MEMORY menu. Set XFact=10 and YFact=10.
4. Press $Z 00 \mathrm{M} 2$ to select $\mathbf{2}$:Zoom In. Use $\square, \square, \square$, and \square to move the free-moving cursor onto the apparent intersection of the functions on the right side of the display.
5. Press ENTER to zoom in. Move the cursor over the intersection.
6. Press ENTER to zoom in again. Move the free-moving cursor onto a point exactly on the intersection. Notice the number of decimal places.
7. Press [2nd [CALC] 5 to select $\mathbf{5}$:intersect. Press ENTER to select the first curve and ENTER to select the second curve. To guess, move the trace cursor near the intersection. Press ENTER. What are the coordinates of the intersection point?
8. Press ZOOM 4 to select 4:ZDecimal to redisplay the original graph.
9. Press $Z O O M$. Select $\mathbf{2}$:Zoom In and repeat steps 4 through 8 to explore the apparent function intersection on the left side of the display.

Using a Program to Create the Sierpinski Triangle

Setting up the Program

This program creates a drawing of a famous fractal, the Sierpinski Triangle, and stores the drawing to a picture. To begin, press PRGM \square 1. Name the program SIERPINS, and then press ENTER. The program editor is displayed.

Program

```
PROGRAM:SIERPINS
:FnOff :ClrDraw
:PlotsOff
:AxesOff:GridOff
:Full
:BackgroundOff
:0->Xmin:1->Xmax Set viewing window.
:0->Ymin:1->Ymax
:rand }->\textrm{X}:\mathrm{ rand }->
:For(K,1,3000)
:rand}->\textrm{N
:If N<1/3
:Then
:.5X->X
:.5Y->Y
:End
:If 1/3<N and N\leq2/3
:Then
:. 5 (.5+X)->X
:. 5 (1+Y) >Y
:End
:If 2/3<N
:Then
:. 5 (1+X) ->X
:.5Y->Y
:End
:Pt-On(X,Y,BLUE)
:End
:StorePic 6
```

Note: This program uses the default BLUE color (\# = 10). See the Draw chapter for available color options.
After you execute the program above, you can recall and display the picture with the instruction RecallPic 6.

Note: After you run this program, press [2nd [FORMAT] $\square \square \square \square \square \square \square \square$ ENTER to turn on the axes in the graph screen.

Graphing Cobweb Attractors

Problem

Using Web format, you can identify points with attracting and repelling behavior in sequence graphing.

Procedure

1. Press MODE. Select Seq and the default mode settings. Press 2nd [FORMAT]. Select Web format and the default format settings.
2. Press Y. Clear all functions and turn off all stat plots. Enter the sequence that corresponds to the expression $\mathrm{Y}=\mathrm{K} \mathrm{X}(1-\mathrm{X})$.
$\mathbf{u}(n)=K \mathbf{u}(n-1)(1-\mathbf{u}(n-1))$
$\mathbf{u}(n$ Min $)=.01$
3. Press 2nd [QuIT] to return to the home screen, and then store $\mathbf{2 . 9}$ to \mathbf{K}.
4. Press WINDOW. Set the window variables.

| n Min=0 | Xmin=0 | Ymin=-.26 |
| :--- | :--- | :--- |
| n Max=10 | Xmax=1 | Ymax=1.1 |
| PlotStart=1 | Xscl=1 | Yscl=1 |
| PlotStep=1 | | |

5. Press TRACE to display the graph, and then press to trace the cobweb. This is a cobweb with one attractor.

6. Change \mathbf{K} to $\mathbf{3 . 4 4}$ and trace the graph to show a cobweb with two attractors.
7. Change \mathbf{K} to $\mathbf{3 . 5 4}$ and trace the graph to show a cobweb with four attractors.

Using a Program to Guess the Coefficients

Setting Up the Program

This program graphs the function $A \sin (B X)$ with random integer coefficients between 1 and 10. Try to guess the coefficients and graph your guess as $C \sin (D X)$. The program continues until your guess is correct.

Note: This program changes the graph window and graph styles. After you run the program, you can change individual settings as needed or you can press [2nd [MEM] $\mathbf{7 2} \mathbf{2}$ to return to default settings.
Programs typically do not restore your settings in MODE, $\mathrm{Y}=$, WINDOW and other locations that were used by the program. This is dependent on who created the program.

Program

```
PROGRAM:GUESS
:PlotsOff :Func
:FnOff :Radian
:ClrHome
:AxesOn
:Sequential
:GridOff
:Background Off
:DetectAsym Off
:"Asin(BX)"->Y1
:"Csin(DX)"->Y2
:GraphStyle(1,1)
:GraphStyle(2,5)
:GraphColor (1, BLUE)
:GraphColor (2, RED)
:FnOff 2
:randInt (1,10) ->A
:randInt (1,10) >B
:0->C:0->D
:-2\pi->Xmin
: 2\pi->Xmax
:\pi/2->Xscl
:-10->Ymin
:10->Ymax
:1->Yscl
```

:GraphStyle (2,5)
:GraphColor (2, RED)
:FnOff 2
$:$ randInt $(1,10) \rightarrow A$
: randInt $(1,10) \rightarrow B$
$: 0 \rightarrow C: 0 \rightarrow D$
$:-2 \pi \rightarrow \mathrm{Xmin}$
: $2 \pi \rightarrow$ Xmax
$: \pi / 2 \rightarrow$ Xscl
$:-10 \rightarrow$ Ymin
: $10 \rightarrow$ Ymax
: $1 \rightarrow$ Yscl

Define equations.
\square Set line and path graph styles.

- Initialize coefficients.

Set viewing window.

```
:DispGraph
:Pause
:FnOn 2
:Lbl Z
: Prompt C,D Prompt for guess.
:DispGraph
:Pause
:If C=A
:Text(1,1,"C IS OK")
:If C\not=A
:Text(1,1,"C IS
WRONG")
:If D=B
:Text(1,150,"D IS
OK")
:If D\not=B
:Text(1,150,"D IS
WRONG")
:DispGraph
:Pause
:If C=A and D=B
:Stop
:Goto Z
```

\qquad Display graph.

Prompt for guess.

Display graph

Display results.

Display graph.

Quit if guesses are correct.

Graphing the Unit Circle and Trigonometric Curves

Problem

Using parametric graphing mode, graph the unit circle and the sine curve to show the relationship between them.

Any function that can be plotted in Func mode can be plotted in Par mode by defining the \mathbf{X} component as \mathbf{T} and the \mathbf{Y} component as $\mathbf{F}(\mathbf{T})$.

Procedure

1. Press MODE. Select Parametric, Simul, and the default settings.
2. Press WINDOW. Set the viewing window.

| Tmin $=0$ | Xmin $=-2$ | Ymin $=-3$ |
| :--- | :--- | :--- |
| Tmax $=2 \pi$ | Xmax $=7.4$ | Ymax $=3$ |
| Tstep $=.05$ | Xscl= $\pi / 2$ | Yscl=1 |

3. Press Y=. Turn off all functions and stat plots. Enter the expressions to define the unit circle centered on $(0,0)$

4. Enter the expressions to define the sine curve.
5. Press TRACE. As the graph is plotting, you may press ENTER to pause and ENTER again to resume graphing as you watch the sine function "unwrap" from the unit circle.

Note:

- You can generalize the unwrapping. Replace $\boldsymbol{\operatorname { s i n } (\mathbf { T }) \text { in Y2T with any other trig function to unwrap }}$ that function.
- You can graph the functions again by turning the functions off and then turning them back on on the $Y=$ editor or by using the FnOff and FnOn commands on the home screen.

Finding the Area between Curves

Problem

Find the area of the region bounded by:
$f(x)=300 x /\left(x^{2}+625\right)$
$g(x)=3 \cos (.1 x)$
$x=75$

Procedure

1. Select the default mode settings [2nd [MEM] 72 2. Press MODE to view.
2. Press WINDOW. Set the viewing window.

| Xmin=0 | Ymin=-5 | Xres=1 |
| :--- | :--- | :--- |
| Xmax=100 | Ymax=10 | |
| Xscl=10 | Yscl=1 | |

3. Press Y. Turn off all functions and stat plots. Enter the upper and lower functions.

4. Press [2nd [calc] $\mathbf{5}$ to select $\mathbf{5}$:Intersect. The graph is displayed. Select a first curve, second curve, and guess for the intersection toward the left side of the display. The solution is displayed, and the value of \mathbf{X} at the intersection, which is the lower limit of the integral, is stored in Ans and \mathbf{X}.
5. Press [2nd [QUIT] to go to the home screen. Press [2nd [DRAW] 7 and use Shade(to see the area graphically.

Shade(Y2,Y1,Ans, 75, 4, 4, 18)

6. Press [2nd [QUIT] to return to the home screen. Enter the expression to evaluate the integral for the shaded region.

```
fnInt(Y1-Y2,X,Ans,75)
```

The area is $\mathbf{3 2 5 . 8 3 9 9 6 2}$

Using Parametric Equations: Ferris Wheel Problem

Problem

Using two pairs of parametric equations, determine when two objects in motion are closest to each other in the same plane.

A ferris wheel has a diameter (d) of 20 meters and is rotating counterclockwise at a rate (s) of one revolution every 12 seconds. The parametric equations below describe the location of a ferris wheel passenger at time T, where α is the angle of rotation, $(0,0)$ is the bottom center of the ferris wheel, and $(10,10)$ is the passenger's location at the rightmost point, when $\mathrm{T}=0$.
$X(T)=r \cos \alpha \quad$ where $\alpha=2 \pi T$ s and $r=d / 2$
$Y(T)=r+r \sin \alpha$

A person standing on the ground throws a ball to the ferris wheel passenger. The thrower's arm is at the same height as the bottom of the ferris wheel, but 25 meters (b) to the right of the ferris wheel's lowest point $(25,0)$. The person throws the ball with velocity $\left(v_{0}\right)$ of 22 meters per second at an angle (θ) of 66° from the horizontal. The parametric equations below describe the location of the ball at time T .
$X(T)=b-\mathrm{Tv}_{0} \cos \theta$
$Y(T)=T v_{0} \sin \theta-(g / 2) T^{2} \quad$ where $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$

Procedure

1. Press MODE. Select Par, Simul, and the default settings. Simul (simultaneous) mode simulates the two objects in motion over time.
2. Press WINDOW. Set the viewing window.

| Tmin=0 | Xmin=-13 | Ymin=0 |
| :--- | :--- | :--- |
| Tmax $=12$ | Xmax=34 | Ymax $=31$ |
| Tstep $=.1$ | Xscl=10 | Yscl=10 |

3. Press $Y=$. Turn off all functions and stat plots. Enter the expressions to define the path of the ferris wheel and the path of the ball. Set the graph style for X2T to 4 (path).

| mormal floht auto real radifin mp |
| :---: |
| Plot1 Plot2 Plot3 |
| - $\mathrm{X}_{1 \text { т }} \mathrm{l} 10 \cos (\pi \mathrm{~T} / 6)$ |
| |
| -0X2t日25-22Tcos(660) |
| $\mathrm{Y}_{2 \text { t }} \mathrm{E} 22 \mathrm{~T} \sin \left(66^{\circ}\right)-\frac{9.8}{2} \mathrm{~T}^{2}$ |
| - $\mathrm{X}_{\text {¢ }}^{\text {T }}=\square$ |
| $Y_{34}=$ |
| - $\times_{4 \text { 4 }}=$ |
| $\mathrm{Y}_{4} \mathrm{~T}=$ |

Note: Try setting the graph styles to 4 X1T and $\mathbf{X 2 T}$, which simulates a chair on the ferris wheel and the ball flying through the air when you press GRAPH.
4. Press GRAPH to graph the equations. Watch closely as they are plotted. Notice that the ball and the ferris wheel passenger appear to be closest where the paths cross in the top-right quadrant of the ferris wheel.

5. Press WINDOW. Change the viewing window to concentrate on this portion of the graph.

| Tmin=1 | Xmin=0 | Ymin=10 |
| :--- | :--- | :--- |
| Tmax $=3$ | Xmax=23.5 | Ymax $=25.5$ |
| Tstep $=.03$ | Xscl=10 | Yscl=10 |

6. Press TRACE. After the graph is plotted, press \square to move near the point on the ferris wheel where the paths cross. Notice the values of \mathbf{X}, \mathbf{Y}, and \mathbf{T}.

7. Press to move to the path of the ball. Notice the values of \mathbf{X} and \mathbf{Y} (\mathbf{T} is unchanged). Notice where the cursor is located. This is the position of the ball when the ferris wheel passenger passes the intersection. Did the ball or the passenger reach the intersection first?

You can use TRACE to, in effect, take snapshots in time and explore the relative behavior of two objects in motion.

Demonstrating the Fundamental Theorem of Calculus

Problem 1

Using the functions fnInt(and nDeriv(from the FUNC shortcut menu or the MATH menu to graph functions defined by integrals and derivatives demonstrates graphically that:
$F(x)=\int_{1}^{x} \frac{1}{\mathrm{t}} d t=\ln (x), x>0$ and that
$\frac{d}{d x}\left[\int_{1}^{x} \frac{1}{t} d t\right]=\frac{1}{x}$

Procedure 1

1. Select the default settings 2nd [MEM] $\mathbf{7} 2$ 2. Press MODE to view.
2. Press WINDOW. Set the viewing window.

| Xmin=.01 | Ymin $=-1.5$ | Xres=3 |
| :--- | :--- | :--- |
| Xmax=10 | Ymax $=2.5$ | |
| Xscl=1 | Yscl=1 | |

3. Press Y. Turn off all functions and stat plots. Enter the numerical integral of $1 / T$ from 1 to X and the function $\ln (X)$. Set the graph style for $\mathbf{Y 1}$ to : (line) and Y2 to 4 (path). Set DetectAsymOff,

4. Press TRACE. Press $\square, \square, \square$, and \square to compare the values of $\mathbf{Y} 1$ and $\mathbf{Y 2}$.
5. Press $Y=$. Turn off Y1 and Y2, and then enter the numerical derivative of the integral of $1 / X$ and the function 1/X. Set the graph style for Y3 to " (line) and Y4 to "it (thick).

6. Press TRACE. Again, use the cursor keys to compare the values of the two graphed functions, Y3 and Y4.

Problem 2

Explore the functions defined by

$$
v=\int_{-2}^{x} t^{2} d t, \int_{0}^{x} t^{2} d t, \text { and } \int_{2}^{x} t^{2} d t
$$

Procedure 2

1. Press $Y=$. Turn off all functions and stat plots. Use a list to define these three functions simultaneously. Store the function in Y5. Set Detect AsymOff, [2nd [FORMAT] \square [ENTER]..

| Xmin $=-3.5$ | Ymin $=-10$ |
| :--- | :--- |
| Xmax $=3.5$ | Ymax $=10$ |
| Xscl=1 | Yscl=1 |

2. The graphs are displayed as each calculation of the integral and derivative occurs at the pixel point, which may take some time.
3. Press TRACE. Notice that the functions appear identical, only shifted vertically by a constant.
4. Press $Y=$. Enter the numerical derivative of $\mathbf{Y} 5$ in $\mathbf{Y 6}$.

5. Press TRACE. Notice that although the three graphs defined by Y5 are different, they share the same derivative. The graph of $\mathbf{Y} 6$ takes time to graph since the numerical derivative is being calculated for each point before it graphs.

Computing Areas of Regular N-Sided Polygons

Problem

Use the equation solver to store a formula for the area of a regular N -sided polygon, and then solve for each variable, given the other variables. Explore the fact that the limiting case is the area of a circle, πr^{2}.

Consider the formula $A=N B^{2} \sin (\pi / N) \cos (\pi / N)$ for the area of a regular polygon with N sides of equal length and B distance from the center to a vertex.

$\mathrm{N}=4$ sides

$\mathrm{N}=8$ sides

$\mathrm{N}=12$ sides

Procedure

1. Press MATH \triangle B to select B:Solver from the MATH menu. Either the equation editor or the interactive solver editor is displayed. If the interactive solver editor is displayed, press Δ to display the equation editor.
2. Enter the formula as $\mathbf{A}=\mathbf{N B}^{2} \boldsymbol{\operatorname { s i n }}(\pi / \mathbf{N}) \boldsymbol{\operatorname { c o s }}(\pi / \mathbf{N})$, and then press ENTER. The interactive solver editor is displayed.

| | [|
| :---: | :---: |
| $A=N B^{2} \sin (\pi / N) \cos (\pi / N)$ | |
| $\begin{aligned} & \begin{array}{l} \mathrm{A}=0 \\ \mathrm{~N}=0 \\ \mathrm{~B}=0 \\ \text { bound }=\{-1 \mathrm{E} 99,1 \mathrm{E} 99\} \end{array} \end{aligned}$ | |

3. Enter $\mathbf{N}=\mathbf{4}$ and $\mathbf{B}=\mathbf{6}$ to find the area (\mathbf{A}) of a square with a distance (B) from center to vertex of 6 centimeters.
4. Press $\Delta \Delta$ to move the cursor onto \mathbf{A}, and then press $\operatorname{ALPHA}[S O L V E]$. The solution for \mathbf{A} is displayed on the interactive solver editor.

| HORMAL FLOAT AUTO REAL RADIAN MP SOLUTION IS MARKED | |
| :---: | :---: |
| $A=N B^{2} \sin (\pi / N) \cos (\pi / N)$ | |
| $\begin{aligned} & \text { - } \mathrm{A}=72.000000000001 \\ & \mathrm{~N}=4 \\ & \mathrm{~B}=6 \\ & \text { bound=\{-1E99,1E99\}} \\ & \text { - E1-E2= } \end{aligned}$ | |

5. Now solve for \mathbf{B} for a given area with various number of sides. Enter $\mathbf{A}=\mathbf{2 0 0}$ and $\mathbf{N}=\mathbf{6}$. To find the distance B, move the cursor onto B, and then press ALPHA [SOLVE].

| HORMAL FLOAT AUTO REAL RADIAN MP SOLUTION IS MARKED | |
| :---: | :---: |
| $A=N B^{2} \sin (\pi / N) \cos (\pi / N)$ | |
| $\begin{aligned} & \mathrm{A}=200 \\ & \mathrm{~N}=6 \\ & -\mathrm{B}=8.7738267530167 \\ & \text { bound=\{-1E99,1E99\}} \\ & \text { - } \mathrm{E} 1-\mathrm{E} 2=\emptyset \end{aligned}$ | |

Enter $\mathbf{N}=\mathbf{8}$. To find the distance B, move the cursor onto B, and then press ALPHA [SOLVE]. Find B for $\mathbf{N}=\mathbf{9}$, and then for $\mathbf{N}=10$.

Find the area given $\mathbf{B}=\mathbf{6}$, and $\mathbf{N}=\mathbf{1 0}, \mathbf{1 0 0}, \mathbf{1 5 0}, \mathbf{1 0 0 0}$, and $\mathbf{1 0 0 0 0}$. Compare your results with $\pi 6^{\mathbf{2}}$ (the area of a circle with radius 6), which is approximately 113.097.

| NORMAL FLOAT AUTO REAL RADIAN MP |
| :--- |
| SOLUTION IS MARKED : |
| $A=N^{2} \sin (\pi / N) \cos (\pi / N)$
 $-A=105.80134541264$
 $N=10$
 $B=6$
 $b o u n d=\{-1 E 99,1 E 99\}$
 $-E 1-E 2=0$ |

| NORMAL FLOAT AUTO REAL RADIAN MP solution is marked : |
| :---: |
| $A=N B^{2} \sin (\pi / N) \cos (\pi / N)$ |
| ```- A=113.06426506884 N=150 B=6 bound={-1 E99,1E99} -E1-E2=0``` |

| NORMAL FLOAT AUTO REAL RADIAN MP SOLUTION IS MARKED |
| :---: |
| $A=N B^{2} \sin (\pi / N) \cos (\pi / N)$ |
| $\begin{aligned} & \text { - } \mathrm{A}=113.09659138007 \\ & \mathrm{~N}=1000 \\ & \mathrm{~B}=6 \\ & \text { bound=\{-1E99,1E99\}} \\ & \text { - E1-E2= }=0 \end{aligned}$ |

| NORMAL FLOAT AUTO REGL RADIATA MP SOLUTION IS MARKED - |
| :---: |
| $A=N B^{2} \sin (\pi / N) \cos (\pi / N)$ |
| $\begin{aligned} & \text { - } \begin{array}{l} \mathrm{A}=113.09733545482 \\ N=100000 \\ B=6 \\ \text { bound }=\{-1 \mathrm{E} 99,1 \mathrm{E} 99\} \\ -E 1-E 2=0 \end{array} \end{aligned}$ |

6. Enter $\mathbf{B}=6$. To find the area \mathbf{A}, move the cursor onto \mathbf{A}, and then press ALPHA [SOLVE]. Find \mathbf{A} for $\mathbf{N}=10$, then $\mathbf{N}=\mathbf{1 0 0}$, then $\mathbf{N}=150$, then $\mathbf{N}=1000$, and finally $\mathbf{N}=\mathbf{1 0 0 0 0}$. Notice that as \mathbf{N} gets large, the area \mathbf{A} approaches $\pi \mathbf{B}^{2}$.
Now graph the equation to see visually how the area changes as the number of sides gets large.
7. Press [MODE. Select the default mode settings 2nd [MEM] $\mathbf{2} 22$.
8. Press WINDOW. Set the viewing window.

| Xmin=0 | Ymin=0 | Xres=1 |
| :--- | :--- | :--- |
| Xmax=200 | Ymax=150 | |
| Xscl=10 | Yscl=10 | |

9. Press $Y=$. Turn off all functions and stat plots. Enter the equation for the area. Use \mathbf{X} in place of \mathbf{N}. Set the graph styles as shown.

| Normal floft auto real raditin mp |
| :---: |
| Plot1 Plot2 Plot3 |
| - $Y_{1} \mathrm{EXXB}^{2} \sin (\pi / X) \cos (\pi / X)$ |
| -0Y ${ }_{2}$ 日 $\pi \mathrm{B}^{2}$ ■ |
| $\mathrm{NY}_{3}=$ |
| -\Y4 $=$ |
| - $\mathrm{Y}_{5}=$ |
| - Y $_{6}=$ |
| -\Y7= |

10. Press TRACE. After the graph is plotted, press 100 ENTER to trace to $\mathbf{X}=100$. Press 150 ENTER. Press 188 ENTER. Notice that as \mathbf{X} increases, the value of \mathbf{Y} converges to $\pi 6^{2}$, which is approximately 113.097. $\mathbf{Y} \mathbf{2}=\pi \mathbf{B}^{2}$ (the area of the circle) is a horizontal asymptote to $\mathbf{Y} \mathbf{1}$. The area of an N -sided regular polygon, with r as the distance from the center to a vertex, approaches the area of a circle with radius $r\left(\pi r^{2}\right)$ as N gets large.

Computing and Graphing Mortgage Payments

Problem

You are a loan officer at a mortgage company, and you recently closed on a 30-year home mortgage at 8 percent interest with monthly payments of 800 . The new home owners want to know how much will be applied to the interest and how much will be applied to the principal when they make the 240th payment 20 years from now.

Procedure

1. Select the default mode settings 2nd [MEM] $\mathbf{7} \mathbf{2}$ 2.Press MODE and set the fixed-decimal mode to $\mathbf{2}$ decimal places.

| NORMAL FIX2 AUTO REAL RADIAN MP DECIMAL SETTING |
| :---: |
| MATHPRINT CLASSIC |
| NORMAL SCI ENG |
| FLOAT O123456789 |
| RADIAN DEGREE |
| FUNCTION PARAMETRIC POLAR SEQ |
| THICK DOT-THICK THIN DOT-THIN |
| SEQUENTITAL SIMUL |
| REAL ${ }^{\text {a }}$ +bi $\mathrm{re}^{\wedge}(\theta i)$ |
| FULL HORIZONTAL GRAPH-TABLE |
| FRACTIONTYPE: med Unod |
| ANSWERS: GUTO DEC FRAC-APPROX |
| GO TO 2ND FORMAT GRAPH: NO YES |
| STATDIAGNOSTICS: DFF ON |
| STAT WIZARDS: ON OFF |
| ET CLOCK 11/05 12 1:5 |

2. Press APPS ENTER ENTER to display the TVM Solver. Enter these values.

| Normal Fixz auto real radian mp |
| :---: |
| $\mathrm{N}=360.00$ |
| $\mathrm{I} \%=8.00$ |
| $\mathrm{PV}=0.00$ |
| PMT $=800.00$ |
| $\mathrm{FV}=0.00$ |
| $\mathrm{P} / \mathrm{Y}=12.00$ |
| $\mathrm{C} / \mathrm{Y}=12.00$ |
| PMT: END BEGIN |

Note: Enter a positive number (800) to show PMT as a cash inflow. Payment values will be displayed as positive numbers on the graph. Enter $\mathbf{0}$ for $\mathbf{F V}$, since the future value of a loan is 0 once it is paid in full. Enter PMT: END, since payment is due at the end of a period.
3. Move the cursor onto the $\mathbf{P V}=$ prompt, and then press ALPHA [SOLVE]. The present value, or mortgage amount, of the house is displayed at the $\mathbf{P V}=$ prompt.

| NORMAL FIXZ AUT0 REAL RADIAN MP |
| :--- |
| $\mathrm{N}=360.00$ |
| $\mathrm{I} \%=8.00$ |
| $\mathrm{PV}=-109026.80$ |
| $\mathrm{PMT}=800.00$ |
| $\mathrm{FV}=0.00$ |
| $\mathrm{P} Y=12.00$ |
| $\mathrm{CY}=12.00$ |
| PMT:END BEGIN |

Now compare the graph of the amount of interest with the graph of the amount of principal for each payment.
4. Press MODE]. Set Par and Simul.
5. Press Y. Turn off all functions and stat plots. Enter these equations and set the graph styles as shown.

Note: Use the Y-VARS shortcut menu ALPHA [F4] to locate Y1T and Y2T.

Note: $\Sigma \operatorname{Prn}($ and $\Sigma \operatorname{Int}($ are located on the FINANCE menu (APPS 1:FINANCE).
6. Press WINDOW. Set these window variables.

| Tmin=1 | Xmin=0 | Ymin=0 |
| :--- | :--- | :--- |
| Tmax $=360$ | Xmax=360 | Ymax $=1000$ |
| Tstep=12 | Xscl=10 | Yscl=100 |

Note: To increase the graph speed, change Tstep to 24.
7. Press TRACE. After the graph is drawn, press $\mathbf{2 4 0}$ ENTER to move the trace cursor to $\mathbf{T}=\mathbf{2 4 0}$, which is equivalent to 20 years of payments.

The graph shows that for the 240th payment ($\mathbf{X}=\mathbf{2 4 0}$), 358.03 of the 800 payment is applied to principal ($Y=358.03$).

Note: The sum of the payments ($\mathbf{Y} \mathbf{3 T} \mathbf{T}=\mathbf{Y 1 T + Y 2 T}$) is always 800.
8. Press \square to move the cursor onto the function for interest defined by X2T and Y2T. Enter 240.

The graph shows that for the 240th payment ($\mathbf{X}=\mathbf{2 4 0}$), 441.97 of the 800 payment is interest ($\mathrm{Y}=441.97$).
9. Press 2nd [QUIT] APPS ENTER 9 to paste 9:bal(to the home screen. Check the figures from the graph.

At which monthly payment will the principal allocation surpass the interest allocation?

Chapter 18:
 Memory and Variable Management
 Checking Available Memory

MEMORY Menu

At any time you can check available memory or manage existing memory by selecting items from the MEMORY menu. To access this menu, press 2nd [MEM].

| MEMORY | Displays information about the graphing | |
| :--- | :--- | :--- |
| $1:$ | About... | calculator including current OS version number.
 Reports memory availability and variable
 usage. |
| $2:$ | Mem Management/Delete... | Clears ENTRY (last-entry storage). |
| $3:$ | Clear Entries | Clears all lists in memory. |
| $4:$ | ClrAllLists | Archives a selected variable. |
| $5:$ | Archive | UnArchives a selected variable. |
| $6:$ | UnArchive | Displays the RAM, ARCHIVE, and ALL menus |
| $7:$ | Reset... | Displays GROUP and UNGROUP menus. |
| $8:$ | Group... | |

To check memory availability, first press 2nd [MEM] and then select 2:Mem Management/Delete.

Available RAM, Archive, and App Slots

The TI-84 Plus C / TI-84 Plus Silver Edition has Archive, RAM, and Application (App) slot memory for you to use and manage. The available RAM stores computations, lists, variables, and data. The available Archive lets you store programs, Apps, groups, and other variables. The App slots are actually individual sectors of Flash ROM where Apps are stored.

| Graphing
 calculator | Available RAM | Available
 Archive | App
 Slots |
| :--- | :--- | :--- | :--- |
| TI-84 Plus | 24 Kilobytes | 491 Kilobytes | 30 |
| TI-84 Plus Silver
 Edition | 24 Kilobytes | 1.5 Megabytes | 94 |
| TI-84 Plus C | 21 Kilobytes | 3.5 Megabytes | 216 |

Note: Some Apps take up several App slots.

Displaying the About Screen

About displays information about the TI-84 Plus C Operating System (OS) Version, Product Number, Product Identification (ID), and Flash Application (App) Certificate Revision Number. To display the About screen, press 2nd [MEM] and then select 1:About.

Displays the Product ID. Each Flash-based graphing calculator has a unique product ID, which you may need if you contact technical support. You can also use this ID to register your calculator at
education.ti.com, or identify your calculator in the event that it is lost or stolen.

Displaying the MEMORY MANAGEMENT/DELETE Menu

Mem Management/Delete displays the MEMORY MANAGEMENT/DELETE menu. The two lines at the top report the total amount of available RAM (RAM FREE) and Archive (ARC FREE) memory. By selecting menu items on this screen, you can see the amount of memory each variable type is using. This information can help you determine if you need to delete variables from memory to make room for new data, such as programs or Apps.

To check memory usage, follow these steps.

1. Press [2nd [MEM] to display the MEMORY menu.
```
NORMAL FLOAT AUTO REAL RADIfN MP
MEMORY
1:About
2:Mem Mana9ement/Delete...
3:Clear Entries
4:ClrAllLists
5:Archive
6:UnArchive
7:Reset...
8:Group..
```

2. Select 2:Mem Management/Delete to display the MEMORY MANAGEMENT/DELETE menu. The TI-84 Plus C expresses memory quantities in bytes.

Note: The \uparrow and \downarrow in the top or bottom of the left column indicate that you can scroll up or down to view more variable types.
3. Select variable types from the list to display memory usage.

Notes: Real, List, Y-Vars, and Prgm variable types never reset to zero, even after memory is cleared.

Apps are independent applications which are stored in Flash ROM. AppVars is a variable holder used to store variables created by Apps. You cannot edit or change variables in AppVars unless you do so through the application which created them.
To leave the MEMORY MANAGEMENT/DELETE menu, press either [2nd [QuIT] or CLEAR. Both options display the home screen.

Deleting Items from Memory

Deleting an Item

To increase available memory by deleting the contents of any variable (real or complex number, list, matrix, $\mathbf{Y}=$ variable, program, Apps, AppVars, Pics Vars, Images Vars, graph database, or string), follow these steps.

1. Press [2nd [MEM] to display the MEMORY menu.
2. Select 2:Mem Management/Delete to display the MEMORY MANAGEMENT/DELETE menu.
3. Select the type of data you want to delete, or select 1:All for a list of all variables of all types. A screen is displayed listing each variable of the type you selected and the number of bytes each variable is using.
For example, if you select 4:List, the LIST editor screen is displayed.

| RAM FREE | 21788 |
| :---: | ---: |
| RRC FREE | 3373 K |
| Li | 12 |
| L2 $_{3}$ | 12 |
| L4 | 12 |
| L5 | 12 |
| L6 | 12 |
| | 12 |

4. Press Δ and \square to move the selection cursor ($\boldsymbol{\nabla}$) next to the item you want to delete, and then press DEL. The variable is deleted from memory. You can delete individual variables one by one from this screen. No warning will be given to verify the deletion.

Note: If you are deleting programs or Apps, you will receive a message asking you to confirm this delete action. Select 2:Yes to continue.
To leave any variable screen without deleting anything, press [2nd [QUIT], which displays the home screen.

You cannot delete some system variables, such as the last-answer variable Ans and the statistical variable RegEQ.

Clearing Entries (Home Screen) and List Editor Elements

Clear Entries

Clear Entries clears the contents of the ENTRY (last entry on home screen) storage area. To clear the ENTRY storage area, follow these steps.

1. Press $2 n d$ [MEM] to display the MEMORY menu.
2. Select 3:Clear Entries to paste the instruction to the home screen.
3. Press ENTER to clear the ENTRY storage area.
```
Clear Entries
    \mathrm{ Lone}
```

To cancel Clear Entries, press CLEAR.
Note: If you select 3:Clear Entries from within a program, the Clear Entries instruction is pasted to the program editor, and the Entry (last entry) is cleared when the program is executed.

ClrAllLists

CIrAllLists sets the dimension of each list in RAM to $\mathbf{0}$.
To clear all elements from all lists, follow these steps.

1. Press [2nd [MEM] to display the MEMORY menu.
2. Select 4:CIrAllLists to paste the instruction to the home screen.
3. Press ENTER to set the dimension of each list in memory to $\mathbf{0}$.
```
ClrFl1Lists
```

To cancel ClrAllLists, press CLEAR.
ClrAllLists does not delete list names from memory, from the LIST NAMES menu, or from the stat list editor.

Note: If you select 4:CIrAllLists from within a program, the CIrAllLists instruction is pasted to the program editor. The lists are cleared when the program is executed.

Archiving and UnArchiving Variables

Archiving and UnArchiving Variables

Archiving lets you store data, programs, or other variables to the user data archive (ARC) where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory.

Archived variables cannot be edited or executed. They can only be seen and unarchived. For example, if you archive list L1, you will see that $\mathbf{L 1}$ exists in memory but if you select it and paste the name $\mathbf{L 1}$ to the home screen, you won't be able to see its contents or edit it.

Note: Not all variables may be archived. Not all archived variables may be unarchived. For example, system variables including r, t, x, y, and θ cannot be archived. Apps and Groups always exist in Flash ROM so there is no need to archive them. Groups cannot be unarchived. However, you can ungroup or delete them

| Variable Type | Names | Archive?
 (yes/no) | UnArchive?
 (yes/no) |
| :--- | :--- | :--- | :--- |
| Real numbers | A, B, ... , Z | yes | yes |
| Complex
 numbers | A, B, ... , Z | yes | yes |
| Matrices | [A], [B], [C], ... , [J] | yes | yes |
| Lists | L1, L2, L3, L4, L5, L6,
 and user-defined
 names | yes | yes |
| Programs | Y1, Y2, ..., Y9, Y0 | no | not
 applicable |
| Functions | X1T and Y1T, ... , X6T
 and Y6T | no | not
 applicable |
| Parametric
 equations | yes | yes | |

| Variable Type | Names | Archive?
 (yes/no) | UnArchive?
 (yes/no) |
| :--- | :--- | :--- | :--- |
| Polar functions | r1, r2, r3, r4, r5, r6 | no | not
 applicable |
| Sequence
 functions | u, v, w | no | not
 applicable |
| Stat plots | Plot1, Plot2, Plot3 | no | not
 applicable |
| Graph
 databases | GDB1, GDB2,... | yes | yes |
| Pictures (Pic
 Vars) | Pic1, Pic2, ... , Pic9,
 Pic0 | yes | no |
| Background
 Images (Image
 Vars) | Image1, Image2, ...,
 Image9, Image0 | yes | no |
| Strings | Str1, Str2, . . Str9,
 Str0 | yes | yes |
| Tables | TbIStart, Δ TbI,
 TblInput | no | not
 applicable |
| Apps | Applications | see Note
 above | no |
| AppVars | Application variables | yes | yes |
| Groups | see Note
 above | no | |
| Variables with
 reserved names | minX, maxX, RegEQ,
 and others | no | not
 applicable |
| System variables | Xmin, Xmax, and
 others | no | not
 applicable |

Archiving and unarchiving can be done in two ways:

- Use the 5:Archive or 6:UnArchive commands from the MEMORY menu or CATALOG.
- Use a Memory Management editor screen.

Before archiving or unarchiving variables, particularly those with a large byte size (such as large programs) use the MEMORY menu to:

- Find the size of the variable.
- See if there is enough free space.

| For: | Sizes must be such that: |
| :--- | :--- |
| Archive | Archive free size > variable size |
| UnArchive | RAM free size > variable size |

Note: If there is not enough space, unarchive or delete variables as necessary. Be aware that when you unarchive a variable, not all the memory associated with that variable in user data archive will be released since the system keeps track of where the variable has been and where it is now in RAM.
Even if there appears to be enough free space, you may see a Garbage Collection message when you attempt to archive a variable. Depending on the usability of empty blocks in the user data archive, you may need to unarchive existing variables to create more free space.

To archive or unarchive a list variable (L1) using the Archive/UnArchive options from the MEMORY menu:

1. Press [2nd [MEM] to display the MEMORY menu.
```
MEMORY
1: About
2:Mem Management/Delete..
3:Clear Entries
4:ClrAllLists
5:Archive
6:UnArchive
7:Reset...
8:Group...
```

2. Select 5:Archive or 6:UnArchive to place the command in the Home screen.
3. Press $2 n d[L 1]$ to place the $\mathbf{L 1}$ variable in the Home screen.

Frohive Li
4. Press ENTER to complete the archive process.

```
Archive L1
```

An asterisk (*) is displayed to the left of the Archived variable name to indicate it is archived.
Note: Pic Vars that are stored always run from and remain in archive memory (*Pic). Image Vars are also stored in archive memory however, they are displayed without an asterisk.

To archive or unarchive a list variable (L1) using a Memory Management editor:

1. Press [2nd [MEM] to display the MEMORY menu.
```
MEMORY
1:Pbout
2:Mem Management/Delete...
3:Clear Entries
4:ClrAllLists
5:Archive
6:UnArchive
7:Reset..
8:Group.
```

2. Select 2:Mem Management/Delete to display the MEMORY MANAGEMENT/DELETE menu.

| RAM FREE | 21777 |
| :--- | :--- |
| ARC FREE | 3428 K |
| 1:All...... | |
| 2:Real... | |
| 3:Complex... | |
| 4:List... | |
| 5:Matrix... | |
| 6:Y-Vars... | |
| 7:Pr9m... | |
| 8 \downarrow Pic \& Image... | |

3. Select 4:List to display the LIST menu.
4. Press ENTER to archive L1. An asterisk will appear to the left of $\mathbf{L 1}$ to indicate it is an archived variable. To unarchive a variable in this screen, put the cursor next to the archived variable and press ENTER. The asterisk will disappear.

| RAM FREE | 21777 |
| :--- | ---: |
| ARC FREE | 3428 K |
| \rightarrow *Li | 12 |
| L2 | 12 |
| L3 | 12 |
| L4 | 12 |
| L5 | 12 |
| L6 | 12 |
| | |

5. Press [2nd [QUIT] to leave the LIST menu.

Note: You can access an archived variable for the purpose of linking, deleting, or unarchiving it, but you cannot edit it.

Resetting the TI-84 Plus C

RAM ARCHIVE ALL Menu

Reset displays the RAM ARCHIVE ALL menu. This menu gives you the option of resetting all memory (including default settings) or resetting selected portions of memory while preserving other data stored in memory, such as programs and $\mathbf{Y}=$ functions. For instance, you can choose to reset all of RAM or just restore the default settings. Be aware that if you choose to reset RAM, all data and programs in RAM will be erased.

Note: Pics and Images in archive are not deleted when RAM is reset.
For archive memory, you can reset variables (Vars), applications (Apps), or both of these. Be aware that if you choose to reset Vars, all data and programs in archive memory will be erased. If you choose to reset Apps, all applications in archive memory will be erased.

When you reset defaults on the TI-84 Plus C, all defaults in RAM are restored to the factory settings. Stored data and programs are not changed.

These are some examples of TI-84 Plus C defaults that are restored by resetting the defaults.

- Mode settings such as Normal (notation); Func (graphing); Real (numbers); and Full (screen)
- $\mathbf{Y =}$ functions off
- Window variable values such as $\mathbf{X m i n}=\mathbf{- 1 0}, \mathbf{X m a x}=10, \mathrm{Xscl}=1, Y \mathrm{Ycl}=1$, and $\mathbf{X r e s = 1}$
- STAT PLOTS off
- Format settings such as CoordOn (graphing coordinates on); AxesOn; and ExprOn (expression on)
- rand seed value to 0

Displaying the RAM ARCHIVE ALL Menu

To display the RAM ARCHIVE ALL menu on the TI-84 Plus C, follow these steps.

1. Press 2nd [MEM] to display the MEMORY menu.
2. Select 7:Reset to display the RAM ARCHIVE ALL menu.

Resetting RAM Memory

Resetting all RAM restores RAM system variables to factory settings and deletes all nonsystem variables and all programs. Resetting RAM defaults restores all system variables to default settings without deleting variables and programs in RAM. Resetting all RAM or resetting defaults does not affect variables and applications in user data archive (Pic Vars and Image Vars in archive are not deleted by a RAM reset).

Note: Before you reset all RAM memory, consider restoring sufficient available memory by deleting only selected data.

To reset all RAM memory or RAM defaults on the TI-84 Plus C, follow these steps.

1. From the RAM ARCHIVE ALL menu, select 1:All RAM to display the RESET RAM menu or 2:Defaults to display the RESET DEFAULTS menu.

| |
| :---: |
| Resetting RHM ereses all data and Frograms from RHill. |

2. If you are resetting RAM, read the message below the RESET RAM menu.

- To cancel the reset and return to the HOME screen, press ENTER.
- To erase RAM memory or reset defaults, select 2:Reset. Depending on your choice, the message RAM cleared or Defaults set is displayed on the home screen.

Resetting Archive Memory

When resetting archive memory on the TI-84 Plus C, you can choose to delete from user data archive all variables, all applications, or both variables and applications.

To reset all or part of user data archive memory, follow these steps.

1. From the RAM ARCHIVE ALL menu, press \square to display the ARCHIVE menu.

| |
| :---: |

2. Select one of the following:

1:Vars to display the RESET ARC VARS menu.
Note: Resetting the archive includes resetting Pic and Image Vars.

| |
| :---: |
| Resetting Vare erases all data And frogerrs. hive. |

2:Apps to display the RESET ARC APPS menu.

3:Both to display the RESET ARC BOTH menu.

| Sas mix ETMH 1 HO
 24 Reset
 Resetting Both erases all data, Frogrems \& AFFs from Archive. |
| :---: |
| | |
| | |
| | |
| | |
| | |

Note: Resetting the archive includes resetting Pic and Image Vars.
3. Read the message below the menu.

- To cancel the reset and return to the HOME screen, press ENTER.
- To continue with the reset, select 2:Reset. A message indicating the type of archive memory cleared will be displayed on the HOME screen.

Resetting All Memory

When resetting memory, consider backing up your data to another calculator unit. You can also backup existing data to a computer using the TI -Connect ${ }^{\mathrm{TM}}$ software.

When resetting all memory on the TI-84 Plus C, RAM and user data archive memory is restored to factory settings. All nonsystem variables, applications, and programs are deleted. All system variables are reset to default settings.
Before you reset all memory, consider restoring sufficient available memory by deleting only selected data.

To reset all memory on the TI-84 Plus C, follow these steps.

1. From the RAM ARCHIVE ALL menu, press \square to display the ALL menu.
```
RGM ARCHIVE EHLI
LBAll Memor't...
```

2. Select 1:All Memory to display the RESET MEMORY menu.

|
 17 No
 2RReset.
 Resetting FLL
 will delete ヨll

 Arofive. |
| :---: |
| | |
| | |
| | |
| | |
| | |
| | |

3. Read the message below the RESET MEMORY menu.

- To cancel the reset and return to the HOME screen, press ENTER.
- To continue with the reset, select 2:Reset. The message MEM cleared is displayed on the HOME screen.

When you clear memory, the brightness contrast may change. If the screen is faded or blank, adjust the contrast by pressing 2nd Δ or \square.

Grouping and Ungrouping Variables

Grouping Variables

Grouping allows you to make a copy of two or more variables residing in RAM and then store them as a group in user data archive. The variables in RAM are not erased. The variables must exist in RAM before they can be grouped. In other words, archived data cannot be included in a group. Once grouped, the variables can be deleted from RAM to open memory. When the variables are needed later, they can be ungrouped for use.

To create a group of variables:

1. Press [2nd [MEM] to display the MEMORY menu.

| MEMORY |
| :--- |
| 1:About |
| 2: Mem Management/Delete... |
| 3: Clear Entries |
| 4: ClrAllLists |
| 5: Archive |
| 6:UnArchive |
| 7: Reset... |
| 8:Group... |

2. Select 8:Group to display GROUP UNGROUP menu.

3. Press ENTER to display the GROUP menu.

4. Enter a name for the new group and press ENTER.

Note: A group name can be one to eight characters long. The first character must be a letter from A to Z or θ. The second through eighth characters can be letters, numbers, or θ.

```
GROUP
Namに=FROUP'A
```

5. Select the type of data you want to group. You can select 1:All+ which shows all variables of all types available and selected. You can also select $\mathbf{2}$:All- which shows all variables of all types available but not selected. A screen is displayed listing each variable of the type you selected.

For example, suppose some variables have been created in RAM, and selecting 2:All- displays the following screen.

6. Press \triangle and \square to move the selection cursor ($ا$) next to the first item you want to copy into a group, and then press ENTER. A small square will remain to the left of all variables selected for grouping.

Repeat the selection process until all variables for the new group are selected and then press \square to display the DONE menu.

7. Press ENTER to complete the grouping process.

Note: You can only group variables in RAM. You cannot group some system variables, such as the lastanswer variable Ans and the statistical variable RegEQ.

Ungrouping Variables

Ungrouping allows you to make a copy of variables in a group stored in user data archive and place them ungrouped in RAM.

DuplicateName Menu

During the ungrouping action, if a duplicate variable name is detected in RAM, the DUPLICATE NAME menu is displayed.

```
DuplicateName
1: Rename Prompts to rename receiving variable.
2: Overwrite Overwrites data in receiving duplicate variable.
3: Overwrite All Overwrites data in all receiving duplicate
            variables.
4: Omit Skips ungrouping of sending variable.
5: Quit Stops ungrouping at duplicate variable.
```


Notes about Menu Items:

- When you select 1:Rename, the Name= prompt is displayed, and alpha-lock is on. Enter a new variable name, and then press ENTER. Ungrouping resumes.
- When you select 2:Overwrite, the unit overwrites the data of the duplicate variable name found in RAM. Ungrouping resumes.
- When you select 3: Overwrite All, the unit overwrites the data of all duplicate variable names found in RAM. Ungrouping resumes.
- When you select 4:Omit, the unit does not ungroup the variable in conflict with the duplicated variable name found in RAM. Ungrouping resumes with the next item.
- When you select 5:Quit, ungrouping stops, and no further changes are made.

To ungroup a group of variables:

1. Press [2nd [MEM] to display the MEMORY menu.
```
MEMORY
1: About
2:Mem Management/Delete...
3:Mem Management
3:Clear Entrie
4:ClrAllLi
5:Archive
6:UnArchive
7:Reset...
8:Group...
```

2. Select 8:Group to display the GROUP UNGROUP menu.
3. Press \square to display the UNGROUP menu.

4. Press \triangle and \square to move the selection cursor ($ا$) next to the group variable you want to ungroup, and then press ENTER.

The ungroup action is completed.
Note: Ungrouping does not remove the group from user data archive. You must delete the group in user data archive to remove it.

Garbage Collection

Garbage Collection Message

If you use the user data archive extensively, you may see a Garbage Collect? message. This occurs if you try to archive a variable when there is not enough free contiguous archive memory.

The Garbage Collect? message lets you know an archive will take longer than usual. It also alerts you that the archive will fail if there is not enough memory.

The message can also alert you when a program is caught in a loop that repetitively fills the user data archive. Select No to cancel the garbage collection process, and then find and correct the errors in your program.

When YES is selected, the TI-84 Plus C will attempt to rearrange the archived variables to make additional room.

Responding to the Garbage Collection Message

- To cancel, select 1:No.
- If you select 1:No, the message ERROR:ARCHIVE FULL will be displayed.
- To continue archiving, select 2:Yes.
- If you select 2:Yes, the process message

Garbage Collecting... or Defragmenting... will be displayed.

Note: The process message Defragmenting... is displayed whenever an application marked for deletion is encountered. Garbage collection may take up to 20 minutes, depending on how much of archive memory has been used to store variables.
After garbage collection, depending on how much additional space is freed, the variable may or may not be archived. If not, you can unarchive some variables and try again.

Why Is Garbage Collection Necessary?

The user data archive is divided into sectors. When you first begin archiving, variables are stored consecutively in sector 1 . This continues to the end of the sector.
An archived variable is stored in a continuous block within a single sector. Unlike an application stored in user data archive, an archived variable cannot cross a sector boundary. If there is not enough space left in the sector, the next variable is stored at the beginning of the next sector. Typically, this leaves an empty block at the end of the previous sector.

Each variable that you archive is stored in the first empty block large enough to hold it.
This process continues to the end of the last sector. Depending on the size of individual variables, the empty blocks may account for a significant amount of space. Garbage collection occurs when the variable you are archiving is larger than any empty block.

How Unarchiving a Variable Affects the Process

When you unarchive a variable, it is copied to RAM but it is not actually deleted from user data archive memory. Unarchived variables are "marked for deletion," meaning they will be deleted during the next garbage collection.

After you unarchive

 variables B and C, they continue to take up space.

If the MEMORY Screen Shows Enough Free Space

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get a Garbage Collect? message or an ERROR: ARCHIVE FULL message.

When you unarchive a variable, the Archive free amount increases immediately, but the space is not actually available until after the next garbage collection.

If the Archive free amount shows enough available space for your variable, there probably will be enough space to archive it after garbage collection (depending on the usability of any empty blocks).

The Garbage Collection Process

The garbage collection process:

- Deletes unarchived variables from the user data archive.
- Rearranges the remaining variables into consecutive blocks.

Note: Power loss during garbage collection may cause all memory (RAM and Archive) to be deleted.

Using the GarbageCollect Command

You can reduce the number of automatic garbage collections by periodically optimizing memory. This is done by using the GarbageCollect command.

To use the GarbageCollect command, follow these steps.

1. From the HOME screen, press 2nd [CATALOG] to display the CATALOG.

2. Press \square or \square to scroll the CATALOG until the selection cursor points to the GarbageCollect command or press G to skip to the commands starting with the letter G .
3. Press ENTER to paste the command to the HOME screen.
4. Press ENTER to display the Garbage Collect? message.
5. Select 2:Yes to begin garbage collection.

ERROR:ARCHIVE FULL Message

Even if the MEMORY screen shows enough free space to archive a variable or store an application, you may still get an ERROR: ARCHIVE FULL message.

| ERROR: ARCHIVE FULL |
| :--- |
| 1:Quit |
| Manage Archive in |
| 2nd Memi Memoryt : |
| Manasement |
| Largest single... |
| Variable $=$ |
| Rpp $=424256$ |

An ERROR:ARCHIVE FULL message may be displayed:

- When there is insufficient space to archive a variable within a continuous block and within a single sector.
- When there is insufficient space to store an application within a continuous block of memory.

When the message is displayed, it will indicate the largest single space of memory available for storing a variable and an application.

To resolve the problem, use the GarbageCollect command to optimize memory. If memory is still insufficient, you must delete variables or applications to increase space.

Chapter 19:
 Communication Link

Getting Started: Sending Variables

Getting Started is a fast-paced introduction. Read the chapter for details.
Create and store a variable and store a matrix to an archive; then transfer them to another TI-84 Plus C.

1. On the home screen of the sending unit, press $\mathbf{5} \square \mathbf{5}$ STO* ALPHA Q. Press ENTER to store 5.5 to \mathbf{Q}.
2. Press ALPHA [F3] to display the quick matrix editor. The default size of the matrix is two rows by two columns. Press ENTER. Press $1 \square 2 \square 3 \square 4 \square$ to enter the values. Press STO 2nd [MATRX] and select 1: [A]. Press ENTER.
3. On the sending unit, press [2nd [MEM] to display the MEMORY menu.

4. On the sending unit, press $\mathbf{2}$ to select 2:Mem Management/Del. The MEMORY MANAGEMENT menu is displayed.

| Mormal float ruto real radian mp | |
| :---: | :---: |
| RAM FREE | 21604 |
| ARC FREE | 3316K |
| 1:All... | |
| 2:Real... | |
| 3:Complex... | |
| 4:List... | |
| 5:Matrix... | |
| 6:Y-Vars... | |
| 7:Prgm... | |
| 8 \downarrow Pic \& Im | |

5. On the sending unit, press $\mathbf{5}$ to select 5:Matrix. The MATRIX editor screen is displayed.
6. On the sending unit, press ENTER to archive [A]. An asterisk $(*)$ will appear, signifying that $[\mathrm{A}]$ is now archived.

| Hokmal float muto real radian mip | |
| :---: | :---: |
| $\begin{aligned} & \text { RAM FREE } \\ & \text { ARC FREE } \\ & \text { p*[A] } \end{aligned}$ | $\begin{array}{r} 21642 \\ 3316 \mathrm{~K} \\ 47 \end{array}$ |

7. Connect the graphing calculators with the USB unit-to-unit cable. Push both ends in firmly.
8. On the receiving unit, press 2nd [LINK] \square to display the RECEIVE menu. Press 1 to select 1:Receive. The message Waiting... is displayed and the busy indicator is on.
9. On the sending unit, press 2nd [LINK] to display the SEND menu.
10. Press $\mathbf{2}$ to select $\mathbf{2}$:All-. The All- SELECT screen is displayed.

11. Press \square until the selection cursor (\downarrow) is next to [A] MATRX. Press ENTER.
12. Press \square until the selection cursor is next to \mathbf{Q} REAL. Press ENTER. A square dot next to [A] and \mathbf{Q} indicates that each is selected to send.

13. On the sending unit, press \square to display the TRANSMIT menu.
14. On the sending unit, press 1 to select 1:Transmit and begin transmission. The receiving unit displays the message Receiving....When the items are transmitted, both units display the name and type of each transmitted variable.

| (NoRmal float auto real radian mp \] | | |
| :---: | :---: | :---: |
| Receiving... *[A] - Q | MATRX REAL | Done |
| | | |

TI-84 Plus C LINK

The TI-84 Plus C Silver Edition has a USB port using a USB unit-to-unit cable to connect and communicate with another TI-84 Plus C Silver Edition, TI-84 Plus Silver Edition, or TI-84 Plus. The TI-84 Plus C also has an I/O port using an I/O unit-to-unit cable to communicate with a TI-84 Plus C Silver Edition, TI-84 Plus Silver Edition, TI-84 Plus, TI-83 Plus Silver Edition, TI-83 Plus, TI-83, TI-82 Stats, TI-73, CBL $2^{\text {TM }}$, or a CBR $2^{\text {TM }}$ System.
With TI Connect ${ }^{\text {TM }}$ software and a USB computer cable, you can also link the TI-84 Plus C to a personal computer. TI Connect ${ }^{\text {TM }}$ software is available as a free download from education.ti.com/go/download.

As future software upgrades become available on the TI Web site, you can download the software to your PC and then use the TI Connect ${ }^{\text {TM }}$ software and a USB computer cable to upgrade your TI-84 Plus C.

Linking Compatibility

The TI-84 Plus C has files and variables that may or may not be compatible with the TI-84 Plus family of graphing calculators. The table below is provided as a reference for what you can SEND and RECEIVE.
Note: Not all TI-84 Plus C graphing calculator files are compatible with other TI-84 Plus Family graphing calculator files because of the high resolution of the TI-84 Plus C color screen. In general, numeric files (not limited to lists, variables, matrices, and functions) are shared between these graphing calculators but Apps are not shared between these graphing calculators even if they have the same title. When not compatible, the computer file extensions for the TI-84 Plus C are different from a similar variable from the TI-84 Plus/TI-84 Plus Silver Edition graphing calculators.

| File type | Link from TI-84 to
 TI-84 Plus C? | Link from TI-84 Plus C
 to TI-84? |
| :--- | :---: | :---: |
| Operating System | No | No |
| Apps | No | No |
| AppVar* | Yes | Yes |
| Programs - TI Basic* | Yes | Yes |
| Assembly | Yes | No |
| Programs* | | |
| Pictures | No | No |
| Background Images | N/A | No |
| Group files | Yes | Yes |
| User Zoom | Yes | Yes |
| String | Yes | Yes |
| Table | Yes | Yes |
| Function file | Yes | Yes |

| GDB** | Yes | Yes |
| :--- | :--- | :---: |
| List | Yes | Yes |
| Matrix | Yes | Yes |
| Number | Yes | Yes |
| Complex | Yes | Yes |
| Window Setup | Yes | Yes |
| Certificate | No | No |
| Backup | No | No |

* Programs created using commands available only in the latest OS version will not transfer to graphing calculators with an earlier OS version.
* App Vars and Programs should be reviewed for use after the transfer between the TI-84 Plus Family and TI-84 Plus C graphing calculators. Some App Vars may not set up an App as expected. Some Programs will need to be modified due to the difference in screen resolution and new commands.
** You may receive a version error if you used DOT-THIN line style. Change the line style to avoid the error.

Connecting Two Graphing Calculators with a USB Unit-to-Unit Cable or an I/O Unit-to-Unit Cable USB Unit-to-Unit Cable

The USB link port is located at the top right edge of the graphing calculator.

1. Firmly insert either end of the USB unit-to-unit cable into the USB port.
2. Insert the other end of the cable into the other graphing calculator's USB port.

I/O Unit-to-Unit Cable

The I/O link port is located at the top left edge of the graphing calculator.

1. Firmly insert either end of the I/O unit-to-unit cable into the port.
2. Insert the other end of the cable into the other graphing calculator's I/O port.

TI-84 Plus C to a TI-83 Plus using I/O Unit-to-Unit Cable

The TI-84 Plus C I/O link port is located at the top left edge of the graphing calculator. The TI-83 Plus I/O link port is located at the bottom edge of the graphing calculator.

1. Firmly insert either end of the I/O unit-to-unit cable into the port.
2. Insert the other end of the cable into the other graphing calculator's I/O port.

Linking to the CBL/CBR System

The CBL $2^{\text {TM }}$ system and the CBR $2^{\text {TM }}$ system are optional accessories that also connect to a Tl-84 Plus C with the I/O unit-to-unit cable. With a CBL $2^{\text {TM }}$ system or CBR $2^{\text {TM }}$ system and a TI-84 Plus C, you can collect and analyze real-world data using the Vernier Easy Data ${ }^{\text {TM }}$ application.

Selecting Items to Send

LINK SEND Menu

To display the LINK SEND menu, press [2nd [LINK].

```
SEND RECEIVE
1: All+... Displays all items as selected, including RAM
    and Flash applications.
2: All-... Displays all items as deselected.
3: Prgm... Displays all program names.
4: List... Displays all list names.
5: GDB... Displays all graph databases.
6: Pic... Displays all picture data types.
7: Matrix... Displays all matrix data types.
8: Real... Displays all real variables.
9: Complex... Displays all complex variables.
0: Y-Vars... Displays all Y= variables.
A: String... Displays all string variables.
B: Apps... Displays all software applications.
C: AppVars... Displays all software application variables.
D: Group... Displays all grouped variables.
E: SendId Sends the Calculator ID number immediately.
    (You do not need to select SEND.)
F: SendOS Sends operating system updates from a
    TI-84 Plus C to another TI-84 Plus C.
G: Back Up... Selects all RAM and mode settings (no Flash
    applications or archived items) for backup to
    another TI-84 Plus C.
```

When you select an item on the LINK SEND menu, the corresponding SELECT screen is displayed.
Note: Each SELECT screen, except All+..., is initially displayed with nothing pre-selected. All+... is displayed with everything pre-selected.

To select items to send:

1. Press [2nd [LINK] on the sending unit to display the LINK SEND menu.
2. Select the menu item that describes the data type to send. The corresponding SELECT screen is displayed.
3. Press Δ and \square to move the selection cursor (\downarrow) to an item you want to select or deselect.
4. Press ENTER to select or deselect the item. Selected names are marked with a \quad.

Note: An asterisk (*) to the left of an item indicates the item is archived.
5. Repeat steps 3 and 4 to select or deselect additional items.

Sending the Selected Items

After you have selected items to send on the sending unit and set the receiving unit to receive, follow these steps to transmit the items. To set the receiving unit, see Receiving Items.

1. Press \square on the sending unit to display the TRANSMIT menu.

EELECT METHRETITI
 Hirnersmit

2. Confirm that Waiting... is displayed on the receiving unit, which indicates it is set to receive.
3. Press ENTER to select 1:Transmit. The name and type of each item are displayed line-by-line on the sending unit as the item is queued for transmission, and then on the receiving unit as each item is accepted.

Note: Items sent from the RAM of the sending unit are transmitted to the RAM of the receiving unit. Items sent from user data archive (flash) of the sending unit are transmitted to user data archive (flash) of the receiving unit.

After all selected items have been transmitted, the message Done is displayed on both calculators. Press Δ and \square to scroll through the names.

Sending to a TI-84 Plus C Silver Edition, TI-84 Plus Silver Edition, TI-84 Plus

See section Linking Compatibility in this chapter for information on files and variables that can be transferred.

Note: Keep in mind that the TI-84 Plus has less Flash memory than the TI-84 Plus C Silver Edition.

- Variables stored in RAM on the sending graphing calculator will be sent to the RAM of the receiving graphing calculator.
- Variables and applications stored in the user data archive of the sending graphing calculator will be sent to the user data archive of the receiving graphing calculator.

After sending or receiving data, you can repeat the same transmission to additional graphing calculator units-from either the sending unit or the receiving unit-without having to reselect data to send. The current items remain selected. However, you cannot repeat transmission if you selected All+ or All-.

To send data to an additional graphing calculators:

1. Use a USB unit-to-unit cable to link two units together.
2. On the sending unit press 2nd [LINK] and select a data type and items to SEND.
3. Press \square on the sending unit to display the TRANSMIT menu.
4. On the other unit, press 2nd [LINK] \square to display the RECEIVE menu.
5. Press ENTER on the receiving unit.
6. Press ENTER on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
7. Disconnect the link cable only from the receiving unit and connect it to another unit.
8. Press [2nd [LINK] on the sending unit.
9. Select only the data type. For example, if the unit just sent a list, select 4:LIST.

Note: The item(s) you want to send are pre-selected from the last transmission. Do not select or deselect any items. If you select or deselect an item, all selections or deselections from the last transmission are cleared.
10. Press \square on the sending unit to display the TRANSMIT menu.
11. On the new receiving unit, press [2nd [LINK] \square to display the RECEIVE menu.
12. Press ENTER on the receiving unit.
13. Press ENTER on the sending unit. A copy of the selected item(s) is sent to the receiving unit.
14. Repeat steps 7 through 13 until the items are sent to all additional units.

Receiving Items

LINK RECEIVE Menu

To display the LINK RECEIVE menu, press [2nd [LINK] \square.

```
SEND RECEIVE
1: Receive Sets unit to receive data transmission.
```


Receiving Unit

When you select 1:Receive from the LINK RECEIVE menu on the receiving unit, the message Waiting... and the busy indicator are displayed. The receiving unit is ready to receive transmitted items. To exit the receive mode without receiving items, press $0 \mathbb{N}$, and then select 1:Quit from the Error in Xmit menu.

When transmission is complete, the unit exits the receive mode. You can select 1:Receive again to receive more items. The receiving unit then displays a list of items received. Press [2nd [QUIT] to exit the receive mode.

DuplicateName Menu

During transmission, if a variable name is duplicated, the DuplicateName menu is displayed on the receiving unit.

```
DuplicateName
1: Rename Prompts to rename receiving variable.
2: Overwrite Overwrites data in receiving variable.
3: Omit Skips transmission of sending variable.
4: Quit Stops transmission at duplicate variable.
```

When you select 1:Rename, the Name= prompt is displayed. Enter a new variable name, and then press [ENTER. Transmission resumes.

When you select 2:Overwrite, the sending unit's data overwrites the existing data stored on the receiving unit. Transmission resumes.

When you select 3:Omit, the sending unit does not send the data in the duplicated variable name. Transmission resumes with the next item.

When you select 4：Quit，transmission stops，and the receiving unit exits receive mode．

Receiving from a TI－84 Plus Silver Edition or TI－84 Plus C

The TI－84 Plus Silver Edition and the TI－84 Plus share most file types with the TI－84 Plus C．The notable exceptions are the operating system，Apps，Image Vars and Pic Vars．See table under section＂Linking Compatibility＂for more information．

You cannot send memory backups between the TI－84 Plus C Silver Edition and the TI－84 Plus or TI－84 Plus Silver Editions．You cannot send memory backups between the TI－84 Plus product family and the TI－83 Plus product family．

Receiving from a TI－83 Plus Silver Edition or TI－83 Plus

The TI－84 Plus product family and the TI－83 Plus product family are compatible（numeric files should transfer）with a few exceptions

Backing Up RAM Memory

Warning：H：Back Up overwrites the RAM memory and mode settings in the receiving unit．All information in the RAM memory of the receiving unit is lost．

Note：Archived items on the receiving unit are not overwritten．
You can backup the contents of RAM memory and mode settings（no Flash applications or archived items）to another TI－84 Plus C unit．The backup calculator must also have the same OS version installed． Updating to the latest OS is always recommended．

To perform a RAM memory backup：
1．Use a USB unit－to－unit cable to link two TI－84 Plus C units．
2．On the sending unit press［2nd［LINK］and select H：Back Up．The MEMORYBACKUP screen displays．

```
TETCDETETETETIF
1日Tr・ヨr゙ミウit
2 D Dit.
```

3．On the receiving unit，press［2nd $[\operatorname{LINK}] \square$ to display the RECEIVE menu．
4．Press ENTER on the receiving unit．
5．Press ENTER on the sending unit．A WARNING－Backup message displays on the receiving unit．
6．Press ENTER on the receiving unit to continue the backup．
－or－
Press 2：Quit on the receiving unit to cancel the backup and return to the LINK SEND menu
Note：If a transmission error is returned during a backup，the receiving unit is reset．

Memory Backup Complete

When the backup is complete，both the sending graphing calculator and receiving graphing calculator display a confirmation screen．

HEFORY EFCKUF ${ }^{\text {Done }}$

Error Conditions

A transmission error occurs after one or two seconds if：
－A cable is not attached to the sending unit．
－A cable is not attached to the receiving unit．
Note：If the cable is attached，push it in firmly and try again．
－The receiving unit is not set to receive transmission．

- You attempt a backup between a TI-73 Explorer, TI-82, TI-83, TI-83 Plus, or TI-83 Plus Silver Edition.
- You attempt a data transfer from a TI-84 Plus C to a TI-84 Plus Silver Edition, TI-84 Plus, TI-83 Plus Silver Edition, TI-83 Plus, TI-83, TI-82, or TI-73 Explorer with variables or features not recognized by the receiving graphing calculator.

New variable types and features not recognized by the TI-84 Plus Silver Edition, TI-84 Plus, TI-83, TI-83 Plus, TI-82, or TI-73 include applications, application variables, grouped variables, new variable types, or programs with new features in them. See Appendix A for more information.

- You attempt a data transfer from a TI-84 Plus C to a TI-73 Explorer with data other than real numbers, and real lists $\mathbf{L 1}$ through $\mathbf{L 6}$ or named lists with θ as part of the name.

Although a transmission error does not occur, these two conditions may prevent successful transmission.

- You try to use Get(with a graphing calculator instead of a CBL $2^{\text {TM }}$ system or CBR2 ${ }^{\text {TM }}$ system.
- You try to use GetCalc(with a TI-83 instead of a TI-84 Plus, TI-84 Plus Silver Edition or TI-84-Plus C Silver Edition.

Insufficient Memory in Receiving Unit

- During transmission, if the receiving unit does not have sufficient memory to receive an item, the Memory Full menu is displayed on the receiving unit.
- To skip this item for the current transmission, select 1:Omit. Transmission resumes with the next item.
- To cancel the transmission and exit receive mode, select 2:Quit.

Appendix A:

Functions and Instructions

Functions return a value, list, or matrix. You can use functions in an expression. Instructions initiate an action. Some functions and instructions have arguments. Optional arguments and accompanying commas are enclosed in brackets ([]).

From the CATALOG, you can paste any function or instruction to the home screen or to a command line in the program editor. However, some functions and instructions are not valid on the home screen. The items in this table appear in the same order as they appear in the CATALOG.
\dagger indicates either keystrokes that are valid in the program editor only or ones that paste certain instructions when you are in the program editor. Some keystrokes display menus that are available only in the program editor. Others paste mode, format, or table-set instructions only when you are in the program editor.

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| abs(value) | Returns the absolute value of a real number, expression, list, or matrix. | MATH NUM 1:abs(|
| abs(complex value) | Returns the magnitude of a complex number or list. | MATH
 CMPLX
 5:abs(|
| value A and valueB | Returns 1 if both valueA and value B are $\neq 0$. valueA and value B can be real numbers, expressions, or lists. | 2nd [TEST]
 LOGIC
 1:and |
| angle(value) | Returns the polar angle of a complex number or list of complex numbers. | MATH
 CMPLX
 4:angle(|
| ANOVA(list1,list2
 [,list3,...,list20]) | Performs a one-way analysis of variance for comparing the means of two to 20 populations. | |
| Ans | Returns the last answer. | 2nd [ANS] |
| Archive | Moves the specified variables from RAM to the user data archive memory. | 2nd [MEM] 5:Archive |
| Asm(assemblyprgmname) | Executes an assembly language program. | 2nd [CATALOG] Asm(|
| AsmComp(prgmASM1, prgmASM2) | Compiles an assembly language program written in ASCII and stores the hex version. | 2nd [CATALOG] AsmComp(|
| Asm84CPrgm | Must be used as the first line of an assembly language program. | 2nd [CATALOG] Asm84CPrgm |
| augment(matrixA, matrix B) | Returns a matrix, which is matrixB appended to matrixA as new columns. | 2nd [MATRIX] MATH 7:augment(|
| augment(listA,list B) | Returns a list, which is list B concatenated to the end of listA. | 2nd [LIST]
 OPS
 9:augment(|
| AUTO Answer | Displays answers in a similar format as the input. | MODE
 Answers: AUTO |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| AxesOff | Turns off the graph axes. | \dagger [2nd [FORMAT] AxesOff |
| AxesOn[color\#] | Turns on the graph axes with color. The color option allows the color of the axes to be specified. Color \#: 10-24 or color name. | \dagger [2nd [FORMAT] AxesOn |
| $\mathbf{a + b} i$ | Sets the mode to rectangular complex number mode ($\mathrm{a}+\mathrm{b} \mathrm{i}$). | $\begin{aligned} & \text { + MODE } \\ & \mathbf{a + b} i \end{aligned}$ |
| BackgroundOff | Turns off background image in the graph area. | † 2nd [DRAW] BACKGROUND
 2:BackgroundOff: |
| BackgroundOn n | Displays a menu the Background Image Var n (Image\#n) specified in the graph area. | † [2nd [DRAW] BACKGROUND 1:BackgroundOn |
| bal(npmt[roundvalue]) | Computes the balance at npmt for an amortization schedule using stored values for PV, I\%, and PMT and rounds the computation to roundvalue. | APPS 1:Finance CALC 9:bal(|
| binomcdf(numtrials, p $[, x])$ | Computes a cumulative probability at x for the discrete binomial distribution with the specified numtrials and probability p of success on each trial. | 2nd [DISTR] DISTR
 B:binomcdf(|
| binompdf(numtrials,p $[, x])$ | Computes a probability at x for the discrete binomial distribution with the specified numtrials and probability p of success on each trial. | 2nd [DISTR] DISTR
 A:binompdf(|
| BorderColor[color\#] | Turns on a border color surrounding the graph area with the specified color. Color \#: 1-4. | \dagger 2nd [FORMAT] BorderColor |
| checkTmr(starttime) | Returns the number of seconds since you used startTmr to start the timer. The starttime is the value displayed by startTmr. | 2nd [CATALOG] checkTmr(|
| $\chi^{2} \mathbf{c d f}($ lowerbound, upperbound, d) | Computes the χ^{2} distribution probability between lowerbound and upperbound for the specified degrees of freedom $d f$. | 2nd [DISTR]
 DISTR
 8: $\chi^{2} \mathbf{c d f}($ |
| $\chi^{2} \mathbf{p d f}(x, d f)$ | Computes the probability density function (pdf) for the χ^{2} distribution at a specified x value for the specified degrees of freedom $d f$. | 2nd [DISTR]
 DISTR $\text { 7: } \chi^{2} \mathbf{p d f}$ |
| χ^{2}-Test(observedmatrix, expectedmatrix [,drawflag,color\#]) | Performs a chi-square test. drawflag=1 draws results; drawflag=0 calculates results. Color \#: 10-24 | \dagger STAT
 TESTS
 C: χ^{2}-Test |
| χ^{2} GOF-Test(observedlist, expectedlist,df [,drawflag,color\#]) | Performs a test to confirm that sample data is from a population that conforms to a specified distribution.
 Color \#: 10-24 | \dagger STAT
 TESTS
 D: χ^{2} GOF-Test(|
| Circle(X, Y, radius [, color\#, linestyle\#] | Draws a circle with center (X, Y) and radius with specified color \#: 10-24 and line style \#: 1-2. | 2nd [DRAW]
 DRAW
 9:Circle(|

| Function or
 Instruction/Arguments | Result | Key or
 Keys/Menu or
 Screen/Item |
| :--- | :--- | :--- |
| CLASSIC | Displays inputs and outputs on a single line, such as
 $1 / 2+3 / 4$. | [MODE |
| | Clears the contents of the Last Entry storage area. | CLASSIC |
| 2nd [MEM] | | |
| Clear Entries | | MEMORY
 3:Clear Entries |
| ClockOff | Turns off the clock display in the mode screen. | 2nd [CATALOG] |
| ClockOn | | ClockOff |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| cumSum(matrix) | Returns a matrix of the cumulative sums of matrix elements. Each element in the returned matrix is a cumulative sum of a matrix column from top to bottom. | 2nd [MATRIX] MATH 0:cumSum |
| dayOfWk(year,month, day) | Returns an integer from 1 to 7, with each integer representing a day of the week. Use dayOfWk(to determine on which day of the week a particular date would occur. The year must be 4 digits; month and day can be 1 or 2 digits. | 2nd [CATALOG] dayOfWk(1:Sunday
 2:Monday
 3:Tuesday... |
| dbd(date1,date2) | Calculates the number of days between datel and date 2 using the actual-day-count method. | APPS 1:Finance CALC
 D:dbd(|
| DEC Answers | Displays answers as integers or decimal numbers. | MODE |
| | | Answers: DEC |
| value>Dec | Displays a real or complex number, expression, list, or matrix in decimal format. | MATH
 MATH
 2:〉Dec |
| Degree | Sets degree angle mode. | \dagger MODE Degree |
| DelVar variable | Deletes from memory the contents of variable. | \dagger PRGM
 CTL
 G:DelVar |
| DependAsk | Sets table to ask for dependent-variable values. | \dagger 2nd [TBLSET] Depend: Ask |
| DependAuto | Sets table to generate dependent-variable values automatically. | \dagger 2nd [TBLSET] Depend: Auto |
| $\boldsymbol{\operatorname { d e t }}$ (matrix) | Returns determinant of matrix. | 2nd [MATRIX]
 MATH
 1:det(|
| DetectAsymOff | Turns off checks for rational function aymptotes when graphing. Impacts graph speed. | † 2nd [FORMAT] DetectAsymOff |
| DetectAsymOn | Turns on checks for rational function aymptotes when graphing. Impacts graph speed. | \dagger 2nd [FORMAT] DetectAsymOn |
| DiagnosticOff | Sets diagnostics-off mode; $\mathbf{r}, \mathbf{r}^{2}$, and \mathbf{R}^{2} are not displayed as regression model results. | 2nd [CATALOG] DiagnosticOff |
| DiagnosticOn | Sets diagnostics-on mode; $\mathbf{r}, \mathbf{r}^{2}$, and \mathbf{R}^{2} are displayed as regression model results. | 2nd [CATALOG] DiagnosticOn |
| $\overline{\operatorname{dim}(\text { listname) }}$ | Returns the dimension of listname. | 2nd [LIST]
 OPS
 3:dim(|
| $\mathbf{\operatorname { d i m } (\text { matrixname) }}$ | Returns the dimension of matrixname as a list. | 2nd [MATRIX]
 MATH
 3:dim(|

| Function or
 Instruction/Arguments | Result | Key or
 Keys/Menu or
 Screen/Item |
| :--- | :--- | :--- |
| length \rightarrow dim(listname) | Assigns a new dimension (length) to a new or existing

 listname. | 2nd [LIST]
 OPS |
| 3:dim(| | |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| -Eff(nominal rate, compounding periods) | Computes the effective interest rate. | APPS 1:Finance CALC
 C:VEff(|
| Else
 See If:Then:Else | | |
| End | Identifies end of For(, If-Then-Else, Repeat, or While loop. | $\begin{aligned} & \text { + PRGM } \\ & \text { CTL } \\ & \text { 7:End } \end{aligned}$ |
| Eng | Sets engineering display mode. | † MODE Eng |
| EquiString(Y= var, Str n) | Converts the contents of a $\mathbf{Y}=$ var to a string and stores it in Strn. | 2nd [CATALOG] EquiString(|
| expr(string) | Converts string to an expression and executes it. | 2nd [CATALOG] expr(|
| ExpReg [Xlistname, Ylistname,freqlist,regequ] | Fits an exponential regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC
 0:ExpReg |
| ExprOff | Turns off the expression display during TRACE. | \dagger 2nd [FORMAT] ExprOff |
| ExprOn | Turns on the expression display during TRACE. | \dagger 2nd [FORMAT] ExprOn |
| Fcdf(lowerbound, upperbound, numerator $d f$, denominator $d \boldsymbol{f})$ | Computes the F distribution probability between lowerbound and upperbound for the specified numerator $d f$ (degrees of freedom) and denominator $d f$. | 2nd [DISTR]
 DISTR
 0:Fcdf(|
| - F - ${ }^{\text {D }}$ | Converts an answer from a fraction to a decimal or from a decimal to a fraction. Fraction and or decimal may be an approximation. | ALPHA [F1] 4: \boldsymbol{F} - ${ }^{\text {D }}$ or
 MATH
 NUM
 B: > F 4 D
 MATH
 FRAC
 |
| Fill(value,matrixname) | Stores value to each element in matrixname. | 2nd [MATRIX]
 MATH
 4:Fill(|
| Fill(value,listname) | Stores value to each element in listname. | 2nd [LIST]
 OPS
 4:Fill(|
| Fix \# | Sets fixed-decimal mode for \# of decimal places. | $\begin{aligned} & \hline \text { † MODE } \\ & \mathbf{0 1 2 3 4 5 6 7 8 9} \\ & \text { (select one) } \end{aligned}$ |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Float | Sets floating decimal mode. | † MODE
 Float |
| fMax(expression, variable,lower,upper [,tolerance]) | Returns the value of variable where the local maximum of expression occurs, between lower and upper, with specified tolerance. | MATH
 MATH
 7:fMax(|
| fMin(expression,variable, lower,upper[,tolerance]) | Returns the value of variable where the local minimum of expression occurs, between lower and upper, with specified tolerance. | MATH
 MATH
 6:fMin(|
| fnlnt(expression,variable, lower,upper[,tolerance]) | Returns the function integral of expression with respect to variable, between lower and upper, with specified tolerance. | MATH
 MATH
 9:fnInt(|
| FnOff [function\#, function\#,...,function n] | Deselects all $\mathbf{Y}=$ functions or specified $\mathbf{Y}=$ functions. | VARS
 Y-VARS
 4:On/Off
 2:FnOff |
| FnOn [function\#, function\#,...,function n] | Selects all $\mathbf{Y}=$ functions or specified $\mathbf{Y}=$ functions. | VARS
 Y-VARS
 4:On/Off
 1:FnOn |
| :For(variable,begin,end
 [,increment])
 :commands
 :End
 :commands | Executes commands through End, incrementing variable from begin by increment until variable>end. | $\begin{aligned} & \text { † PRGM } \\ & \text { CTL } \\ & \text { 4:For(} \end{aligned}$ |
| fPart(value) | Returns the fractional part or parts of a real or complex number, expression, list, or matrix. | MATH
 NUM
 4:fPart(|
| Fpdf(x,numerator df, denominator $d f)$ | Computes the F distribution probability between lowerbound and upperbound for the specified numerator $d f$ (degrees of freedom) and denominator $d f$. | 2nd [DISTR]
 DISTR
 9:Fpdf(|
| FRAC-APPROX Answers | Displays answers as fractions, if possible. Fraction output is attempted from the internal decimal approximation of results. | MODE
 Answers: FRACAPPROX |
| value Frac | Displays a real or complex number, expression, list, or matrix as a fraction simplified to its simplest terms. | MATH
 MATH
 1:)Frac |
| Full | Sets full screen mode. | + MODE
 Full |
| Func | Sets function graphing mode. | \dagger MODE Func |
| GarbageCollect | Displays the garbage collection menu to allow cleanup of unused archive memory. | 2nd [CATALOG] GarbageCollect |
| $\mathbf{g c d}$ (valueA, valueB) | Returns the greatest common divisor of valueA and valueB, which can be real numbers or lists. | MATH
 NUM
 9:gcd(|

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| geometcdf(p, x) | Computes a cumulative probability at x, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success p. | 2nd [DISTR]
 DISTR
 F:geometcdf(|
| geometpdf(p, x) | Computes a probability at x, the number of the trial on which the first success occurs, for the discrete geometric distribution with the specified probability of success p. | 2nd [DISTR]
 DISTR
 E:geometpdf(|
| Get(variable) | Gets data from the CBL $2^{\text {TM }}$ or CBR ${ }^{\text {TM }}$ System and stores it in variable. | $\begin{aligned} & \dagger \text { PRGM } \\ & \text { I/O } \\ & \text { A:Get(} \end{aligned}$ |
| GetCaIc(variable [.portflag]) | Gets contents of variable on another TI-84 Plus and stores it to variable on the receiving TI-84 Plus. By default, the TI-84 Plus uses the USB port if it is connected. If the USB cable is not connected, it uses the I/O port.
 portflag=0 use USB port if connected;
 portflag=1 use USB port;
 portflag=2 use I/O port. | + PRGM I/O 0:GetCalc(|
| getDate | Returns a list giving the date according to the current value of the clock. The list is in \{year,month,day\} format. | 2nd [CATALOG] getDate |
| getDtFmt | Returns an integer representing the date format that is currently set on the device. $\begin{aligned} & 1=M / D / Y \\ & 2=D / M / Y \\ & 3=Y / M / D \end{aligned}$ | [2nd [CATALOG] getDtFmt |
| getDtStr(integer) | Returns a string of the current date in the format specified by integer, where: $\begin{aligned} & 1=M / D / Y \\ & 2=D / M / Y \\ & 3=Y / M / D \end{aligned}$ | 2nd [CATALOG] getDtStr(|
| getTime | Returns a list giving the time according to the current value of the clock. The list is in $\{$ hour,minute,second $\}$ format. The time is returned in the 24 hour format. | 2nd [CATALOG] getTime |
| getTmFmt | Returns an integer representing the clock time format that is currently set on the device.
 $12=12$ hour format
 $24=24$ hour format | [2nd [CATALOG] getTmFmt |
| getTmStr(integer) | Returns a string of the current clock time in the format specified by integer, where:
 $12=12$ hour format
 $24=24$ hour format | [2nd [CATALOG] getTmStr(|
| getKey | Returns the key code for the current keystroke, or $\mathbf{0}$, if no key is pressed. | \dagger PRGM I/O 7:getKey |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Goto label | Transfers control to label. | $\begin{aligned} & \dagger \text { PRGM } \\ & \text { CTL } \\ & \text { 0:Goto } \end{aligned}$ |
| GraphColor(function\#, color\#) | Sets the color for function\#. Color \#: 10-24. | $\begin{aligned} & \text { † PRGM } \\ & \text { CTL } \\ & \text { H:GraphColor(} \end{aligned}$ |
| GraphStyle(function\#, graphstyle\#) | Sets a graphstyle for function\#. | $\begin{aligned} & \dagger \text { PRGM } \\ & \text { CTL } \\ & \text { H:GraphStyle(} \end{aligned}$ |
| GridDot [color\#] | Turns on grid dots in the graph area in the specified color. Color \#: 10-24. | † [2nd [FORMAT] GridDot |
| GridLine [color\#] | Turns on grid lines in the graph area in the specified color. Color \#: 10-24. | \dagger 2nd [FORMAT] GridLine |
| GridOff | Turns off grid format. | \dagger 2nd [FORMAT] GridOff |
| G-T | Sets graph-table vertical split-screen mode. | † MODE
 GRAPH-TABLE |
| Horiz | Sets horizontal split-screen mode. | \dagger MODE Horiz |
| Horizontal $y[$,color\#, linestyle\#] | Draws a horizontal line at y in a specified Color \#: 1024 and line style \#: 1-4. | 2nd [DRAW] DRAW
 3:Horizontal |
| i | Returns the complex number i. | 2nd [i] |
| identity(dimension) | Returns the identity matrix of dimension rows x dimension columns. | 2nd [MATRIX] MATH 5:identity(|
| :If condition :commandA :commands | If condition $=0$ (false), skips commandA. | $\begin{aligned} & \text { † PRGM } \\ & \text { CTL } \\ & \text { 1:If } \end{aligned}$ |
| :If condition
 :Then
 :commands
 :End
 :commands | Executes commands from Then to End if condition = 1 (true). | $\begin{aligned} & \dagger \text { PRGM } \\ & \text { CTL } \\ & \text { 2:Then } \end{aligned}$ |
| :If condition
 :Then
 :commands
 :Else
 :commands
 :End
 :commands | Executes commands from Then to Else if condition $=1$ (true); from Else to End if condition $=0$ (false). | $\begin{aligned} & \text { † PRGM } \\ & \text { CTL } \\ & \text { 3:Else } \end{aligned}$ |
| imag(value) | Returns the imaginary (non-real) part of a complex number or list of complex numbers. | MATH
 CMPLX
 3:imag(|
| IndpntAsk | Sets table to ask for independent-variable values. | † 2nd [TBLSET] Indpnt: Ask |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| IndpntAuto | Sets table to generate independent-variable values automatically. | \dagger 2nd [TBLSET] Indpnt: Auto |
| Input | Displays graph. | |
| Input [variable]
 Input ["text",variable] | Prompts for value to store to variable. | |
| Input [Strn,variable] | Displays Str n and stores entered value to variable. | |
| inString(string,substring [,start]) | Returns the character position in string of the first character of substring beginning at start. | [2nd [CATALOG] inString(|
| int(value) | Returns the largest integer \leq a real or complex number, expression, list, or matrix. | MATH
 NUM
 5:int(|
| $\Sigma \operatorname{lnt}(p m t 1, p m t 2$
 [,roundvalue]) | Computes the sum, rounded to roundvalue, of the interest amount between pmtl and pmt 2 for an amortization schedule. | APPS 1:Finance CALC
 A: $\operatorname{Ilnt}($ |
| invNorm(area $[, \mu, \sigma]$) | Computes the inverse cumulative normal distribution function for a given area under the normal distribution curve specified by μ and σ. | [2nd [DISTR] DISTR
 3:invNorm(|
| invT(area, $d \boldsymbol{f}$) | Computes the inverse cumulative student-t probability function specified by degree of freedom, df for a given area under the curve. | [2nd [DISTR] DISTR 4:invT(|
| iPart(value) | Returns the integer part of a real or complex number, expression, list, or matrix. | MATH
 NUM
 3:iPart(|
| irr(CF0,CFList[,CFFreq]) | Returns the interest rate at which the net present value of the cash flow is equal to zero. | APPS 1:Finance CALC
 8:irr(|
| isClockOn | Identifies if clock is ON or OFF. Returns 1 if the clock is ON. Returns 0 if the clock is OFF. | [2nd [CATALOG] isClockOn |
| :IS>(variable,value)
 :commandA
 :commands | Increments variable by 1; skips commandA if variable>value. | $\begin{aligned} & \dagger \text { PRGM } \\ & \text { CTL } \\ & \text { A:IS>(} \end{aligned}$ |
| Llistname | Identifies the next one to five characters as a usercreated list name. | 2nd [LIST]
 OPS
 B:L |
| LabelOff | Turns off axes labels. | † 2nd [FORMAT]
 LabelOff |
| LabelOn | Turns on axes labels. | † [2nd [FORMAT] LabelOn |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Lbl label | Creates a label of one or two characters. | $\begin{aligned} & \text { + PRGM } \\ & \text { CTL } \\ & \text { 9:LbI } \end{aligned}$ |
| $\mathbf{I c m (v a l u e A , ~ v a l u e B) ~}$ | Returns the least common multiple of valueA and valueB, which can be real numbers or lists. | MATH NUM
 8:Icm(|
| length(string) | Returns the number of characters in string. | 2nd [CATALOG] length(|
| Line $(X 1, Y 1, X 2, Y 2[$,erase $\#$, color\#,linestyle\#]) | Draws a line from $(X 1, Y 1)$ to $(X 2, Y 2)$ with the following options: erase \#: 1,0, color \#: 10-24, and line style \#: 14. | [2nd [DRAW]
 DRAW
 2:Line(|
| $\begin{aligned} & \text { Line }(X 1, Y 1, X 2, Y 2,0 \\ & [, \text { line } \#]) \end{aligned}$ | Erases a line (erase \#: 1,0) from (X1,Y1) to (X2,Y2). | 2nd [DRAW]
 DRAW
 2:Line(|
| LinReg(a+bx) [Xlistname, Ylistname,freqlist, regequ] | Fits a linear regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC
 8:LinReg(a+bx) |
| LinReg(ax+b) [Xlistname, Ylistname, freqlist, regequ] | Fits a linear regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC
 4:LinReg(ax+b) |
| LinRegTInt [Xlistname,
 Ylistname,freqlist, confidence level, regequ] | Performs a linear regression and computes the t confidence interval for the slope coefficient b. | \dagger STAT
 TESTS
 G:LinRegTInt |
| LinRegTTest [Xlistname, Ylistname, freqlist, alternative,regequ] | Performs a linear regression and a t-test. alternative=-1 is $<$; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. | $\begin{aligned} & \dagger \text { STAT } \\ & \text { TESTS } \\ & \text { F:LinRegTTest } \end{aligned}$ |
| Δ List(list) | Returns a list containing the differences between consecutive elements in list. | 2nd [LIST] OPS 7: Δ List(|
| List • matr(listname1,..., listname n,matrixname) | Fills matrixname column by column with the elements from each specified listname. | 2nd [LIST]
 OPS
 0:List • matr(|
| In(value) | Returns the natural logarithm of a real or complex number, expression, or list. | LN |
| LnReg [Xlistname, Ylistname, freqlist, regequ] | Fits a logarithmic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC 9:LnReg |
| $\boldsymbol{l o g}$ (value) | Returns logarithm of a real or complex number, expression, or list. | L0G |
| IogBASE(value, base) | Returns the logarithm of a specifed value determined from a specified base: logBASE(value, base). | MATH
 A: logBASE |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Logistic [Xlistname, Ylistname,freqlist, regequ] | Fits a logistic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC B:Logistic |
| Manual-Fit
 [equname,color\#, line style\#] | Fits a linear equation to a scatter plot with specified color and line style (color \#: 10-24, line style \#: 1-4). | STAT
 CALC
 D:Manual-Fit |
| MATHPRINT | Displays most entries and answers the way they are displayed in textbooks, such as $\frac{1}{2}+\frac{3}{4}$. | MODE
 MATHPRINT |
| Matrlist(matrix, listnameA,...,listname n) | Fills each listname with elements from each column in matrix. | [2nd [LIST] OPS
 A:Matr>list(|
| Matr>list(matrix, column\#,listname) | Fills a listname with elements from a specified column\# in matrix. | 2nd [LIST] OPS
 A:Matr>list(|
| $\boldsymbol{\operatorname { m a x }}$ (valueA, valueB) | Returns the larger of valueA and valueB. | MATH
 NUM
 7:max(|
| $\overline{\max (\text { list) }}$ | Returns largest real or complex element in list. | 2nd [LIST]
 MATH
 2:max(|
| $\overline{\max (\text { list } A, l i s t B)}$ | Returns a real or complex list of the larger of each pair of elements in list A and listB. | 2nd [LIST]
 MATH
 2:max(|
| $\boldsymbol{\operatorname { m a x } (\text { value,list) }}$ | Returns a real or complex list of the larger of value or each list element. | 2nd [LIST] MATH
 2:max(|
| $\overline{\text { mean(list[_freqlist] }}$ | Returns the mean of list with frequency freqlist. | 2nd [LIST]
 MATH
 3:mean(|
| | Returns the median of list with frequency freqlist. | 2nd [LIST]
 MATH
 4:median(|
| Med-Med [Xlistname, Ylistname,freqlist, regequ] | Fits a median-median model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC
 3:Med-Med |
| Menu("title","text1", label1[...."text7",label7]) | Generates a menu of up to seven items during program execution. | \dagger PRGM
 CTL
 C:Menu(|
| $\boldsymbol{\operatorname { m i n } (\text { value } A , v a l u e B)}$ | Returns smaller of valueA and valueB. | MATH
 NUM
 6:min(|
| $\overline{\min (\text { list })}$ | Returns smallest real or complex element in list. | 2nd [LIST]
 MATH
 1:min(|

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| $\overline{\min (\text { list }, \text {,list } \text {) }}$ | Returns real or complex list of the smaller of each pair of elements in listA and listB. | 2nd [LIST]
 MATH
 1:min(|
| $\boldsymbol{\operatorname { m i n }}$ (value, list) | Returns a real or complex list of the smaller of value or each list element. | 2nd [LIST]
 MATH
 1:min(|
| value $\mathrm{n} \mathbf{n c r}$ valueB | Returns the number of combinations of valueA taken value B at a time. | $\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & \text { 3:nCr } \end{aligned}$ |
| value $\mathbf{n C r}$ list | Returns a list of the combinations of value taken each element in list at a time. | $\begin{aligned} & \overline{\text { MATH }} \\ & \text { PRB } \\ & \mathbf{3 : n C r} \end{aligned}$ |
| list $\mathbf{n C r}$ value | Returns a list of the combinations of each element in list taken value at a time. | $\begin{aligned} & \hline \text { MATH } \\ & \text { PRB } \\ & \text { 3:nCr } \end{aligned}$ |
| list $A \mathbf{n C r}$ list B | Returns a list of the combinations of each element in list A taken each element in list B at a time. | $\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & \text { 3:nCr } \end{aligned}$ |
| n/d | Displays results as a simple fraction. | ALPHA [F1]
 1: n / d
 or
 MATH
 NUM
 D: \mathbf{n} / \mathbf{d}
 or
 MATH
 FRAC
 1:n/d |
| nDeriv(expression, variable,value[, $\varepsilon]$) | Returns approximate numerical derivative of expression with respect to variable at value, with specified ε. | MATH
 MATH
 8:nDeriv(|
| n/d \$ Un/d | Converts the results from a fraction to mixed number or from a mixed number to a fraction, if applicable. | ALPHA [F1]
 3: $\operatorname{n} / \mathrm{d}$ 4 Un/d
 or
 MATH
 NUM
 A: 1 n/d 4 Un/d
 or
 MATH
 FRAC
 4: $\operatorname{n} / \mathrm{d}$ 《 Un/d |
| >Nom(effective rate, compounding periods) | Computes the nominal interest rate. | APPS 1:Finance CALC
 B:PNom(|
| Normal | Sets normal display mode. | † MODE
 Normal |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| normalcdf(lowerbound, upperbound $[, \mu, \sigma]$) | Computes the normal distribution probability between lowerbound and upperbound for the specified μ and σ. | 2nd [DISTR]
 DISTR
 2:normalcdf(|
| normalpdf($x[\mu, \sigma]$) | Computes the probability density function for the normal distribution at a specified x value for the specified μ and σ. | 2nd [DISTR]
 DISTR
 1:normalpdf(|
| not(value) | Returns $\mathbf{0}$ if value is $\neq 0$. value can be a real number, expression, or list. | 2nd [TEST]
 LOGIC
 4:not(|
| value $\mathrm{A} \mathbf{n P r}$ value B | Returns the number of permutations of valueA taken valueB at a time. | $\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & \text { 2:nPr } \end{aligned}$ |
| value $\mathbf{n P r}$ list | Returns a list of the permutations of value taken each element in list at a time. | $\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & \text { 2:nPr } \end{aligned}$ |
| list $\mathbf{n P r}$ value | Returns a list of the permutations of each element in list taken value at a time. | $\begin{aligned} & \text { MATH } \\ & \text { PRB } \\ & \text { 2:nPr } \end{aligned}$ |
| $\overline{l i s t} A \mathbf{n P r}$ list B | Returns a list of the permutations of each element in list A taken each element in list B at a time. | MATH
 PRB
 2:nPr |
| npv(interest rate,CFO, CFList[,CFFreq]) | Computes the sum of the present values for cash inflows and outflows. | APPS 1:Finance CALC 7:npv(|
| value A or value B | Returns 1 if value A or value B is $\neq 0$. value A and value B can be real numbers, expressions, or lists. | 2nd [TEST]
 LOGIC
 2:or |
| Output(row, column, "text") | Displays text beginning at specified row and column of the home screen. | + PRGM
 I/O
 6:Output(|
| Output(row, column, value) | Displays value beginning at specified row and column of the home screen. | † PRGM
 I/O
 6:Output(|
| Param | Sets parametric graphing mode. | † MODE
 Par |
| Pause | Suspends program execution until you press ENTER. | † PRGM
 CTL
 8:Pause |
| Pause [value] | Displays value; suspends program execution until you press ENTER. | \dagger PRGM
 CTL
 8:Pause |
| Plot\#(type,Xlist, Ylist[,mark,color\#]) | Defines Plot\# (1, 2, or 3) of type Scatter or xyLine for Xlist and Ylist using mark and color. Color \#: 10-24.
 Note: Xlist and Ylist represent the Xlist and Ylist names. | \dagger 2nd [STAT PLOT]
 STAT PLOTS
 1:Plot1
 2:Plot2
 3:Plot3 |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Plot\#(type,Xlist, [.freqlist,color\#]) | Defines Plot\# (1, 2, or 3) of type Histogram or Boxplot for Xlist with frequency freqlist and color \#: 10-24.
 Note: Xlist represents the Xlist name. | \dagger 2nd [STAT PLOT]
 STAT PLOTS
 1:Plot1
 2:Plot2
 3:Plot3 |
| Plot\#(type,Xlist, [.freqlist,mark,color\#]) | Defines Plot\# (1, 2, or 3) of type ModBoxplot for Xlist with frequency freqlist using mark and color \#: 10-24.
 Note: Xlist represents the Xlist name. | † 2nd [STAT PLOT]
 STAT PLOTS
 1:Plot1
 2:Plot2
 3:Plot3 |
| Plot\#(type,datalist, [,data axis,mark,color\#]) | Defines Plot\# (1, 2, or 3) of type NormProbPlot for datalist on data axis using mark and color \#: 10-24. data axis can be \mathbf{X} or \mathbf{Y}.
 Note: datalist represents the datalist name. | † 2nd [STAT PLOT]
 STAT PLOTS
 1:Plot1
 2:Plot2
 3:Plot3 |
| PlotsOff [1,2,3] | Deselects all stat plots or one or more specified stat plots (1, 2, or 3). | 2nd [STAT PLOT] STAT PLOTS 4:PlotsOff |
| PlotsOn [1,2,3] | Selects all stat plots or one or more specified stat plots (1, 2, or 3). | 2nd [STAT PLOT] STAT PLOTS 5:PlotsOn |
| Pmt_Bgn | Specifies an annuity due, where payments occur at the beginning of each payment period. | APPS 1:Finance CALC
 F:Pmt_Bgn |
| Pmt_End | Specifies an ordinary annuity, where payments occur at the end of each payment period. | APPS 1:Finance CALC
 E:Pmt_End |
| poissoncdf(μ, x) | Computes a cumulative probability at x for the discrete Poisson distribution with specified mean μ. | 2nd [DISTR]
 DISTR
 D:poissoncdf(|
| poissonpdf(μ, x) | Computes a probability at x for the discrete Poisson distribution with the specified mean μ. | 2nd [DISTR]
 DISTR
 C:poissonpdf(|
| Polar | Sets polar graphing mode. | † MODE Polar |
| complex value PPolar | Displays complex value in polar format. | MATH
 CMPLX
 7:>Polar |
| PolarGC | Sets polar graphing coordinates format. | † [2nd [FORMAT] PolarGC |
| prgmname | Executes the program name. | \dagger PRGM CTRL D:prgm |
| $\overline{\mathrm{Prn}}(p m t 1, p m t 2$ [rroundvalue]) | Computes the sum, rounded to roundvalue, of the principal amount between pmtl and pmt2 for an amortization schedule. | APPS 1:Finance CALC
 0: \sum Prn(|

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| $\overline{\operatorname{prod}(\text { ist [,start,end }])}$ | Returns product of list elements between start and end. | |
| Prompt variablea
 [,variableB,...,variable n] | Prompts for value for variableA, then variableB, and so on. | \dagger \qquad I/O 2:Prompt |
| 1-PropZInt(x, n
 [,confidence level]) | Computes a one-proportion z confidence interval. | \dagger STAT TESTS A:1-PropZInt(|
| $\begin{aligned} & \text { 2-PropZInt(} x 1, n 1, x 2, n 2 \\ & \text { [,confidence level]) } \end{aligned}$ | Computes a two-proportion z confidence interval. | $\begin{aligned} & \dagger \text { STAT } \\ & \text { TESTS } \\ & \text { B:2-PropZInt(} \end{aligned}$ |
| 1-PropZTest $(p 0, x, n$ [,alternative,drawflag, color\#]) | Computes a one-proportion z test. alternative $=-1$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 10-24. | \dagger STAT TESTS
 5:1-PropZTest(|
| 2-PropZTest($x 1, n 1, x 2, n 2$
 [,alternative,drawflag, color\#]) | Computes a two-proportion z test. alternative $=-1$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 10-24. | $\begin{aligned} & \dagger \text { STAT } \\ & \text { TESTS } \\ & \text { 6:2-PropZTest(} \end{aligned}$ |
| Pt-Change ($x, y[$ color $\#]$) | Toggles a point on or off at (x, y) on the graph area. Off will be in the Background color and On will be the specified Color \#: 10-24. | 2nd [DRAW]
 POINTS
 3:Pt-Change(|
| $\mathbf{P t - O f f}(x, y[$ mark $]$) | Erases a point at (x, y) on the graph area using mark. The Off state may be the background color determined by the ImageVar or color setting. | 2nd [DRAW] POINTS 2:Pt-Off(|
| Pt-On($x, y[$ mark,color\#]) | Draws a point at (x, y) on the graph area using mark and the specified Color \#: 10-24. | 2nd [DRAW] POINTS 1:Pt-On(|
| PwrReg [Xlistname, Ylistname, freqlist, regequ] | Fits a power regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC
 A:PwrReg |
| PxI-Change(row, column [, color\#]) | Toggles Off to On in the graph area: with specified color\#
 Toggles On to Off in the graph area: Off will display the set Background Image Var or Color. Color \#: 10-24. | 2nd [DRAW]
 POINTS
 6:PxI-Change(|
| PxI-Off(row, column) | The Off state will display the set Background Image Var or COLOR. | 2nd [DRAW] POINTS
 5:PxI-Off(|
| PxI-On(row, column[,color\#]) | Draws pixel on the graph area at (row, column) in the specified color. Color \#: 10-24. | 2nd [DRAW] POINTS 4:PxI-On(|
| pxl-Test(row,column) | Returns 1 if pixel (row, column) is on, 0 if it is off; | 2nd [DRAW] POINTS 7:pxl-Test(|

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| $\overline{\mathbf{P r} \mathbf{R x}(r, \theta)}$ | Returns \mathbf{X}, given polar coordinates r and θ or a list of polar coordinates. | 2nd [ANGLE]
 ANGLE
 7:P/Rx(|
| $\overline{\mathbf{P r R y}}(r, \theta)$ | Returns Y, given polar coordinates r and θ or a list of polar coordinates. | 2nd [ANGLE]
 ANGLE
 8:PrRy(|
| QuadReg [Xlistname, Ylistname,freqlist, regequ] | Fits a quadratic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC
 5:QuadReg |
| QuartReg [Xlistname, Ylistname,freqlist, regequ] | Fits a quartic regression model to Xlistname and Ylistname with frequency freqlist, and stores the regression equation to regequ. | STAT
 CALC
 7:QuartReg |
| Radian | Sets radian angle mode. | \dagger MODE Radian |
| rand[(numtrials)] | Returns a random number between 0 and 1 for a specified number of trials numtrials. | MATH
 PRB
 1:rand |
| randBin(numtrials,prob [,numsimulations]) | Generates and displays a random real number from a specified Binomial distribution. | MATH
 PRB
 7:randBin(|
| randInt(lower,upper [,numtrials]) | Generates and displays a random integer within a range specified by lower and upper integer bounds for a specified number of trials numtrials. | MATH
 PRB
 5:randInt(|
| randIntNoRep(lowerint, upperint [,numelements]) | Returns a random ordered list of integers from a lower integer to an upper integer which may include the lower integer and upper integer. If the optional argument numelements is specified, the first numelements are listed. The first numelements term in the list of random integers are displayed. | MATH
 PRB
 8:randIntNoRep(|
| randM(rows,columns) | Returns a random matrix of rows (1-99) \times columns (1-99). | 2nd [MATRIX]
 MATH 6:randM(|
| randNorm(μ, σ [numtrials]) | Generates and displays a random real number from a specified Normal distribution specified by μ and σ for a specified number of trials numtrials. | MATH
 PRB
 6:randNorm(|
| $\overline{\mathbf{r} \boldsymbol{\wedge}^{\wedge} \theta i}$ | Sets the mode to polar complex number mode (re^ $\mathrm{e}^{\wedge} i$). | $\begin{aligned} & \hline \text { † MODE } \\ & \mathbf{r} e^{\wedge} \theta i \end{aligned}$ |
| Real | Sets mode to display complex results only when you enter complex numbers. | \dagger MODE Real |
| real(value) | Returns the real part of a complex number or list of complex numbers. | MATH
 CPLX
 2:real(|
| RecallGDB n | Restores all settings stored in the graph database variable GDB n. | 2nd [DRAW] STO 4:RecalIGDB |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| RecallPic n | Displays the graph and adds the picture stored in Picn. | 2nd [DRAW]
 STO
 2:RecallPic |
| complex value \mathbf{R} Rect | Displays complex value or list in rectangular format. | |
| RectGC | Sets rectangular graphing coordinates format. | † 2nd [FORMAT] RectGC |
| $\boldsymbol{r e f}$ (matrix) | Returns the row-echelon form of a matrix. | 2nd [MATRIX] MATH A:ref(|
| remainder(dividend, divisor) | Reports the remainder as a whole number from a division of two whole numbers where the divisor is not zero. | MATH
 NUM
 0:remainder(|
| remainder(list, divisor) | Reports the remainder as a whole number from a division of two lists where the divisor is not zero. | MATH
 NUM
 0:remainder(|
| remainder(dividend, list) | Reports the remainder as a whole number from a division of two whole numbers where the divisor is a list. | MATH
 NUM
 0:remainder(|
| remainder(list, list) | Reports the remainder as a whole number from a division of two lists. | MATH
 NUM
 0:remainder(|
| :Repeat condition
 :commands
 :End
 :commands | Executes commands until condition is true. | † PRGM
 CTL
 6:Repeat |
| Return | Returns to the calling program. | \dagger PRGM
 CTL
 E:Return |
| round(value[,\#decimals]) | Returns a number, expression, list, or matrix rounded to \#decimals (≤ 9). | MATH
 NUM
 2:round(|
| *row(value,matrix,row) | Returns a matrix with row of matrix multiplied by value and stored in row. | 2nd [MATRIX]
 MATH
 E:*row(|
| row+(matrix,rowA,row B) | Returns a matrix with row A of matrix added to row B and stored in rowB. | 2nd [MATRIX] MATH D:row+(|
| *row+(value,matrix, rowA,rowB) | Returns a matrix with rowA of matrix multiplied by value, added to rowB, and stored in rowB. | 2nd [MATRIX]
 MATH
 F:*row+(|

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| rowSwap(matrix,rowA, rowB) | Returns a matrix with rowA of matrix swapped with rowB. | 2nd [MATRIX]
 MATH
 C:rowSwap(|
| $\overline{\operatorname{rref}}$ (matrix) | Returns the reduced row-echelon form of a matrix. | 2nd [MATRIX]
 MATH
 B:rref(|
| $\overline{\mathrm{R}} \mathbf{\operatorname { P r } (x , y)}$ | Returns R, given rectangular coordinates x and y or a list of rectangular coordinates. | 2nd [ANGLE]
 ANGLE
 5:R)Pr(|
| R>P $\theta(x, y)$ | Returns θ, given rectangular coordinates x and y or a list of rectangular coordinates. | 2nd [ANGLE]
 ANGLE
 6:R)P ${ }^{\text {(}}$ |
| 2-SampFTest [listnamel, listname2,freqlist1, freqlist2,alternative, drawflag,color\#] | Performs a two-sample F test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 10-24. | \dagger STAT
 TESTS
 E:2-SampFTest |
| 2-SampFTest $S x 1, n 1$, Sx2,n2[,alternative, drawflag,color\#] | Performs a two-sample F test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 10-24 | \dagger STAT
 TESTS
 E:2-SampFTest |
| 2-SampTInt [listname1,
 listname2,
 freqlist1,freqlist 2, confidence level,pooled] (Data list input) | Computes a two-sample t confidence interval. pooled $=\mathbf{1}$ pools variances; pooled $=\mathbf{0}$ does not pool variances. | $\begin{aligned} & + \text { STAT } \\ & \text { TESTS } \\ & \text { 0:2-SampTInt } \end{aligned}$ |
| $\begin{aligned} & \hline \text { 2-SampTInt } \overline{\mathrm{x}} 1, S x 1, n 1 \text {, } \\ & \overline{\mathrm{x}} 2, S x 2, n 2 \\ & \text { [,confidence level,pooled] } \\ & \text { (Summary stats input) } \end{aligned}$ | Computes a two-sample t confidence interval. pooled=1 pools variances; pooled $=\mathbf{0}$ does not pool variances. | \dagger STAT TESTS 0:2-SampTInt |
| 2-SampTTest [listname1, listname2,freqlist1, freqlist2,alternative, pooled,drawflag,color\#]) | Computes a two-sample t test. alternative $=-1$ is <; alternative $\mathbf{= 0}$ is \neq; alternative $=\mathbf{1}$ is $>$. pooled $=\mathbf{1}$ pools variances; pooled $=\mathbf{0}$ does not pool variances. drawflag=1 draws results; drawflag=0 calculates results. Color \#: 10-24 | \dagger STAT TESTS 4:2-SampTTest |
| 2-SampTTest $\overline{\mathrm{x}} 1, S x 1, n 1$, v2,Sx2,n2[,alternative, pooled,drawflag,color\#]) | Computes a two-sample t test. alternative $=-1$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. pooled $=\mathbf{1}$ pools variances; pooled $=\mathbf{0}$ does not pool variances. drawflag=1 draws results; drawflag=0 calculates results. Color \#: 10-24 | \dagger STAT TESTS
 4:2-SampTTest |
| 2-SampZInt(σ_{1}, σ_{2}
 [,listname1,listname2, freqlist1,freqlist 2, confidence level]) (Data list input) | Computes a two-sample z confidence interval. | \dagger STAT TESTS
 9:2-SampZInt(|

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| $\begin{aligned} & \hline \text { 2-SampZInt }\left(\sigma_{1}, \sigma_{2},\right. \\ & \overline{\mathrm{x}} 1, n 1, \bar{x}_{2, n 2} \\ & [, \text { confidence level }]) \\ & \text { (Summary stats input) } \end{aligned}$ | Computes a two-sample z confidence interval. | \dagger STAT
 TESTS
 9:2-SampZInt(|
| 2-SampZTest(σ_{1}, σ_{2}
 [,listname1,listname2, freqlist1,freqlist2, alternative,drawflag,color\#]) | Computes a two-sample z test. alternative= $=\mathbf{1}$ is <; alternative $\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 10-24. | \square
 \dagger STAT
 TESTS
 3:2-SampZTest(|
| $\begin{aligned} & \text { 2-SampZTest }\left(\sigma_{1}, \sigma_{2},\right. \\ & \overline{\mathrm{x}} 1, n 1, \overline{\mathrm{x}} 2, n 2[, \text { alternative, } d r \\ & \text { awflag,color } \#]) \end{aligned}$ | Computes a two-sample z test. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 10-24. | \dagger STAT
 TESTS
 3:2-SampZTest(|
| Sci | Sets scientific notation display mode. | + MODE Sci |
| Select(Xlistname, Ylistname) | Selects one or more specific data points from a scatter plot or xyLine plot (only), and then store $\bullet s$ the selected data points to two new lists, Xlistname and Ylistname. | 2nd [LIST]
 OPS
 8:Select(|
| Send(variable) | Sends contents of variable to the CBL $2^{\text {TM }}$ or CBR ${ }^{\text {TM }}$ System. | † PRGM I/O B:Send(|
| seq(expression,variable, begin,end[,increment]) | Returns list created by evaluating expression with regard to variable, from begin to end by increment. | 2nd [LIST]
 OPS
 5:seq(|
| Seq | Sets sequence graphing mode. | $\begin{aligned} & \hline \text { + MODE } \\ & \text { Seq } \end{aligned}$ |
| Sequential | Sets mode to graph functions sequentially. | † MODE
 Sequential |
| setDate(year,month,day) | Sets the date using a year, month, day format. The year must be 4 digits; month and day can be 1 or 2 digit. | [2nd [CATALOG] setDate(|
| setDtFmt(integer) | Sets the date format. $\begin{aligned} & 1=M / D / Y \\ & 2=D / M / Y \\ & 3=Y / M / D \end{aligned}$ | 2nd [CATALOG] setDtFmt(|
| setTime(hour,minute, second) | Sets the time using an hour, minute, second format. The hour must be in 24 hour format, in which $13=1$ p.m. | 2nd [CATALOG] setTime(|
| setTmFmt(integer) | Sets the time format.
 $12=12$ hour format
 $24=24$ hour format | 2nd [CATALOG] setTmFmt(|
| SetUpEditor | Removes all list names from the stat list editor, and then restores list names $\mathbf{L 1}$ through $\mathbf{L 6}$ to columns 1 through 6. | STAT
 EDIT
 5:SetUpEditor |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| SetUpEditor listnamel
 [,listname2,...,
 listname20] | Removes all list names from the stat list editor, then sets it up to display one or more listnames in the specified order, starting with column 1. | STAT
 EDIT
 5:SetUpEditor |
| Shade(lowerfunc, upperfunc[,Xleft,Xright, pattern,patres,color\#]) | Draws lowerfunc and upperfunc in terms of \mathbf{X} on the current graph and uses pattern and patres to shade and color the area bounded by lowerfunc, upperfunc, Xleft, and Xright. lowerfunc and upperfunc are shaded in the same specified color. Color \#: 10-24. | 2nd [DRAW]
 DRAW
 7:Shade(|
| Shade χ^{2} (lowerbound, upperbound,df[,color\#]) | Draws the density function for the χ^{2} distribution specified by degrees of freedom $d f$, and shades and colors the area between lowerbound and upperbound. Color is specified as color \#: 10-24. | 2nd [DISTR]
 DRAW $\text { 3:Shade } \chi^{2}($ |
| ShadeF(lowerbound,
 upperbound,
 numerator df,
 denominator $d f[$,color\#]) | Draws the density function for the F distribution specified by numerator $d f$ and denominator $d f$ and shades and colors the area between lowerbound and upperbound. Color is specified as Color \#: 10-24. | 2nd [DISTR] DRAW 4:ShadeF(|
| ShadeNorm(lowerbound, upperbound[, μ, σ,color\#]) | Draws the normal density function specified by μ and σ and shades and colors the area between lowerbound and upperbound. Color is specified as color \#: 10-24. | $\begin{aligned} & \text { 2nd [DISTR] } \\ & \text { DRAW } \\ & \text { 1:ShadeNorm(} \end{aligned}$ |
| Shade_t(lowerbound, upperbound,df[,color\#]) | Draws the density function for the Student-t distribution specified by degrees of freedom df, and shades or colors the area between lowerbound and upperbound. Color is specified as color \#: 10-24. | 2nd [DISTR] DRAW 2:Shade_t(|
| Simul | Sets mode to graph functions simultaneously. | \dagger MODE
 Simul |
| $\boldsymbol{\operatorname { s i n }}$ (value) | Returns the sine of a real number, expression, or list. | SIN |
| $\boldsymbol{\operatorname { s i n }}^{-1}$ (value) | Returns the arcsine of a real number, expression, or list. | 2nd [SIN-1] |
| $\boldsymbol{\operatorname { s i n h }}$ (value) | Returns the hyperbolic sine of a real number, expression, or list. | 2nd [CATALOG] $\boldsymbol{\operatorname { s i n h }}($ |
| $\sinh ^{-1}$ (value) | Returns the hyperbolic arcsine of a real number, expression, or list. | 2nd [CATALOG] $\boldsymbol{\operatorname { s i n h }}^{-1}$ (|
| SinReg [iterations, Xlistname, Ylistname, period,regequ] | Attempts iterations times to fit a sinusoidal regression model to Xlistname and Ylistname using a period guess, and stores the regression equation to regequ. | STAT
 CALC C:SinReg |
| solve(expression, variable,guess, \{lower,upper\}) | Solves expression for variable, given an initial guess and lower and upper bounds within which the solution is sought. | \dagger MATH MATH 0:solve(|
| SortA(listname) | Sorts elements of listname in ascending order. | 2nd [LIST]
 OPS
 1:SortA(|

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| SortA(keylistname, dependlist $1[$ dependlist 2 , ...,dependlist n]) | Sorts elements of keylistname in ascending order, then sorts each dependlist as a dependent list. | 2nd [LIST]
 OPS
 1:SortA(|
| SortD(listname) | Sorts elements of listname in descending order. | 2nd [LIST]
 OPS
 2:SortD(|
| SortD(keylistname, dependlist 1 [dependlist 2 , ..., dependlist n]) | Sorts elements of keylistname in descending order, then sorts each dependlist as a dependent list. | 2nd [LIST]
 OPS
 2:SortD(|
| startTmr | Starts the clock timer. Store or note the displayed value, and use it as the argument for checkTmr() to check the elapsed time. | 2nd [CATALOG] startTmr |
| STATWIZARD OFF | Disables wizard syntax help for statistical commands, distributions, and seq(. | 2nd [CATALOG]
 STATWIZARD OFF |
| STATWIZARD ON | Enables wizard syntax help for statistical commands, distributions, and seq(. | 2nd [CATALOG]
 STATWIZARD ON(|
| stdDev(list[freqlist]) | Returns the standard deviation of the elements in list with frequency freqlist. | 2nd [LIST]
 MATH
 7:stdDev(|
| Stop | Ends program execution; returns to home screen. | $\begin{aligned} & \dagger \text { PRGM } \\ & \text { CTL } \\ & \text { F:Stop } \end{aligned}$ |
| Store: value \rightarrow variable | Stores value in variable. | STO* |
| StoreGDB n | Stores current graph in database GDB n. | 2nd [DRAW] STO 3:StoreGDB |
| StorePic n | Stores current picture in picture Picn. | $\begin{aligned} & \text { 2nd [DRAW] } \\ & \text { STO } \\ & \text { 1:StorePic } \end{aligned}$ |
| String>Equ(string, $\mathbf{Y}=$ var) | Converts string into an equation and stores it in $\mathbf{Y}=$ var. | 2nd [CATALOG] String)Equ(|
| sub(string,begin,length) | Returns a string that is a subset of another string, from begin to length. | 2nd [CATALOG] sub(|
| sum(list[start,end]) | Returns the sum of elements of list from start to end. | 2nd [LIST]
 MATH
 5:sum(|
| summation Σ (expression [,start,end]) | Displays the MathPrint ${ }^{\text {™ }}$ summation entry template and returns the sum of elements of list from start to end, where start <= end. | MATH
 NUM
 0: summation $\Sigma($ |
| $\boldsymbol{\operatorname { t a n } (\text { value) }}$ | Returns the tangent of a real number, expression, or list. | TAN |
| $\boldsymbol{\operatorname { t a n }}^{-1}$ (value) | Returns the arctangent of a real number, expression, or list. | 2nd [TAN-1] |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Tangent(expression, value[,color\#,linestyle\#]) | Draws a line tangent to expression at $\mathbf{X}=$ value with specified color \#: 10-24 and line style linestyle \#: 1-2. | 2nd [DRAW]
 DRAW
 5:Tangent(|
| $\boldsymbol{\operatorname { t a n h }}$ (value) | Returns hyperbolic tangent of a real number, expression, or list. | [2nd [CATALOG] $\boldsymbol{t a n h}$ (|
| $\boldsymbol{t a n h}^{-1}$ (value) | Returns the hyperbolic arctangent of a real number, expression, or list. | 2nd [CATALOG] $\boldsymbol{\operatorname { t a n h }}^{-1}$ (|
| tcdf(lowerbound, upperbound, d) | Computes the Student- t distribution probability between lowerbound and upperbound for the specified degrees of freedom $d f$. | 2nd [DISTR] DISTR 6:tcdf(|
| Text(row, column,text1, text $2, \ldots$, text n) | Writes text on graph beginning at pixel (row, column), where $0 \leq$ row ≤ 164 and $0 \leq$ column ≤ 264.
 Full mode, row must be <=148; column must be 256
 Horiz mode, row must be row<=66 and column must be <=256
 G-T mode, row must be row <=126; column must be 176 | 2nd [DRAW]
 DRAW
 0:Text(|
| TextColor[color\#] | Set text color prior to using the Text(command. Color \#: 10-24. | † 2nd [DRAW] DRAW
 A:TextColor(|
| Then See If:Then | | |
| Thick | Resets all $\mathrm{Y}=$ editor line-style settings to Thick. | † MODE
 Thick |
| Thin | Resets all $\mathrm{Y}=$ editor line-style settings to Thin. | \dagger MODE
 Thin |
| Time | Sets sequence graphs to plot with respect to time. | \dagger 2nd [FORMAT]
 Time |
| timeCnv(seconds) | Converts seconds to units of time that can be more easily understood for evaluation. The list is in \{days,hours,minutes,seconds\} format. | [2nd [CATALOG] timeCnv |
| TInterval [listname, freqlist,confidence level] (Data list input) | Computes a t confidence interval. | \dagger STAT TESTS
 8:TInterval |
| TInterval $\bar{x}, S x, n$
 [,confidence level]
 (Summary stats input) | Computes a t confidence interval. | \dagger STAT
 TESTS
 8:TInterval |
| tpdf($x, d f$) | Computes the probability density function (pdf) for the Student- t distribution at a specified x value with specified degrees of freedom $d f$. | [2nd [DISTR]
 DISTR
 5:tpdf(|
| Trace | Displays the graph and enters TRACE mode. | TRACE |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| T-Test $\mu 0[$, listname, freqlist,alternative, drawflag,color\#])
 (Data list input) | Performs a t test with frequency freqlist. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 1024. | |
| T-Test $\mu 0, \bar{x}_{,} S x, n$ [,alternative,drawflag,color \#]) | Performs a t test with frequency freqlist. alternative $=\mathbf{- 1}$ is <; alternative $=\mathbf{0}$ is \neq; alternative $=\mathbf{1}$ is $>$. drawflag $=\mathbf{1}$ draws results; drawflag=0 calculates results. Color \#: 1024. | \dagger STAT TESTS
 2:T-Test |
| $\begin{aligned} & \text { tvm_FV[(N,I\%,PV,PMT, } \\ & P / Y, C / Y)] \end{aligned}$ | Computes the future value. | APPS 1:Finance CALC 6:tvm_FV |
| $\begin{aligned} & \text { tvm_I } \%\left[\left(\mathbf{N}, P V_{\mathbf{r}} P M T_{\mathbf{r}} F V_{\mathbf{r}}\right.\right. \\ & P / Y, C / Y)] \end{aligned}$ | Computes the annual interest rate. | APPS 1:Finance CALC 3:tvm_I\% |
| $\begin{aligned} & \text { tvm_N[(I\%, } P V_{\mathbf{r}} P M T_{\mathbf{r}} F V, \\ & P / Y, C / Y)] \end{aligned}$ | Computes the number of payment periods. | APPS 1:Finance CALC
 5:tvm_N |
| tvm_Pmt[(N,I\%, PV, $F V$, $P / Y, C / Y)]$ | Computes the amount of each payment. | APPS 1:Finance CALC 2:tvm_Pmt |
| $\begin{aligned} & \text { tvm_PV[(N,I\%,PMT,FV, } \\ & P / Y, C / Y)] \end{aligned}$ | Computes the present value. | APPS 1:Finance CALC 4:tvm_PV |
| UnArchive | Moves the specified variables from the user data archive memory to RAM.
 To archive variables, use Archive. | 2nd [MEM] 6:UnArchive |
| Un/d | Displays results as a mixed number, if applicable. | MATH
 NUM
 C: Un/d
 or
 MATH
 FRAC
 2:Un/d |
| uvAxes | Sets sequence graphs to plot $\mathbf{u}(n)$ on the x -axis and $\mathbf{v}(n)$ on the y-axis. | \dagger [2nd [FORMAT] uv |
| uwAxes | Sets sequence graphs to plot $\mathbf{u}(n)$ on the x -axis and $\mathbf{w}(n)$ on the y-axis. | † 2nd [FORMAT] uw |
| 1-Var Stats [Xlistname, freqlist] | Performs one-variable analysis on the data in Xlistname with frequency freqlist. | STAT
 CALC
 1:1-Var Stats |
| 2-Var Stats [Xlistname, Ylistname,freqlist] | Performs two-variable analysis on the data in Xlistname and Ylistname with frequency freqlist. | STAT
 CALC
 2:2-Var Stats |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| variance(list[^freqlist]) | Returns the variance of the elements in list with frequency freqlist. | 2nd [LIST]
 MATH
 8:variance(|
| Vertical $x[$,color\#, linestyle\#]) | Draws a vertical line at x with specified color and line style. Color \#: 10-24; line style \#: 1-4. | 2nd [DRAW] DRAW 4:Vertical |
| vwAxes | Sets sequence graphs to plot $\mathbf{v}(n)$ on the x -axis and $\mathbf{w}(n)$ on the y-axis. | † 2nd [FORMAT] vw |
| Web | Sets sequence graphs to trace as webs. | † 2nd [FORMAT] Web |
| :While condition
 :commands
 :End
 :command | Executes commands while condition is true. | \dagger PRGM CTL
 5:While |
| value A xor value B | Returns 1 if only value A or value $B=0$. value A and value B can be real numbers, expressions, or lists. | 2nd [TEST]
 LOGIC
 3:xor |
| ZBox | Displays a graph, lets you draw a box that defines a new viewing window, and updates the window. | $\begin{aligned} & \text { † ZOOM } \\ & \text { ZOOM } \\ & \text { 1:ZBox } \end{aligned}$ |
| ZDecimal | Adjusts the viewing window so that TraceStep=0.1, $\Delta \mathbf{X}=\mathbf{0 . 5}$ and $\Delta \mathbf{Y}=\mathbf{0 . 5}$, and displays the graph screen with the origin centered on the screen. | $\begin{aligned} & \text { † ZOOM } \\ & \text { zOOM } \\ & \text { 4:ZDecimal } \end{aligned}$ |
| ZFrac 1/2 | Sets the window variables so that you can trace in increments of $\frac{1}{2}$, if possible. Sets TraceStep to $\frac{1}{2}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to $\frac{1}{4}$. | $\begin{aligned} & \text { ZOOM } \\ & \text { ZOOM } \\ & \text { B:ZFrac1/2 } \end{aligned}$ |
| ZFrac 1/3 | Sets the window variables so that you can trace in increments of $\frac{1}{3}$, if possible. Sets TraceStep to $\frac{1}{3}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to $\frac{1}{6}$. | $\begin{aligned} & \text { Z00M } \\ & \text { ZOOM } \\ & \text { C:ZFrac1/3 } \end{aligned}$ |
| ZFrac 1/4 | Sets the window variables so that you can trace in increments of $\frac{1}{4}$, if possible. Sets TraceStep to $\frac{1}{4}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to $\frac{1}{8}$. | ZOOM ZOOM D:ZFrac1/4 |
| ZFrac 1/5 | Sets the window variables so that you can trace in increments of $\frac{1}{5}$, if possible. Sets TraceStep to $\frac{1}{5}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to $\frac{1}{10}$. | $\begin{aligned} & \text { ZZOOM } \\ & \text { ZOOM } \\ & \text { E:ZFrac1/5 } \end{aligned}$ |
| ZFrac 1/8 | Sets the window variables so that you can trace in increments of $\frac{1}{8}$, if possible. Sets TraceStep to $\frac{1}{8}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to $\frac{1}{16}$. | $\begin{aligned} & \text { ZZOOM } \\ & \text { ZOOM } \\ & \text { F:ZFrac1/8 } \end{aligned}$ |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| ZFrac 1/10 | Sets the window variables so that you can trace in increments of $\frac{1}{10}$, if possible. Sets TraceStep to $\frac{1}{10}$ and $\Delta \mathbf{X}$ and $\Delta \mathbf{Y}$ to $\frac{1}{20}$. | $\begin{aligned} & \hline \text { ZOOM } \\ & \text { ZOOM } \\ & \text { G:ZFrac1/10 } \end{aligned}$ |
| ZInteger | Redefines the viewing window using the following dimensions: TraceStep=1, $\Delta X=0.5$, Xscl=10, $\Delta Y=1$, Yscl=10. | $\begin{aligned} & \hline \text { † ZOOM } \\ & \text { ZOOM } \\ & \text { 8:ZInteger } \end{aligned}$ |
| ZInterval $\sigma[$, listname, freqlist,confidence level] (Data list input) | Computes a z confidence interval. | $\begin{aligned} & \hline \dagger \text { STAT } \\ & \text { TESTS } \\ & \text { 7:ZInterval } \end{aligned}$ |
| ZInterval σ, \bar{x}, n
 [,confidence level]
 (Summary stats input) | Computes a z confidence interval. | $\begin{aligned} & \hline \dagger \text { STAT } \\ & \text { TESTS } \\ & \text { 7:ZInterval } \end{aligned}$ |
| Zoom In | Magnifies the part of the graph that surrounds the cursor location. | † ZOOM ZOOM 2:Zoom In |
| Zoom Out | Displays a greater portion of the graph, centered on the cursor location. | † ZOOM ZOOM
 3:Zoom Out |
| ZoomFit | Recalculates Ymin and Ymax to include the minimum and maximum \mathbf{Y} values, between $\mathbf{X m i n}$ and $\mathbf{X m a x}$, of the selected functions and replots the functions. | $\begin{aligned} & \text { † [ZOOM } \\ & \text { zOOM } \\ & \text { 0:ZoomFit } \end{aligned}$ |
| ZoomRcl | Graphs the selected functions in a user-defined viewing window. | \dagger ZOOM MEMORY 3:ZoomRcl |
| ZoomStat | Redefines the viewing window so that all statistical data points are displayed. | $\begin{aligned} & \dagger \text { †Z00M } \\ & \text { ZOOM } \\ & \text { 9:ZoomStat } \end{aligned}$ |
| ZoomSto | Immediately stores the current viewing window. | \dagger ZOOM MEMORY 2:ZoomSto |
| ZPrevious | Replots the graph using the window variables of the graph that was displayed before you executed the last ZOOM instruction. | † ZOOM MEMORY 1:ZPrevious |
| ZQuadrant1 | Displays the portion of the graph that is in quadrant 1. | $\begin{aligned} & \hline \text { ZOOM } \\ & \text { ZOOM } \\ & \text { A:ZQuadrant1 } \end{aligned}$ |
| ZSquare | Adjusts the \mathbf{X} or \mathbf{Y} window settings so that each pixel represents an equal width and height in the coordinate system, and updates the viewing window. | $\begin{aligned} & \hline \text { † ZOOM } \\ & \text { zOOM } \\ & \text { 5:ZSquare } \end{aligned}$ |
| ZStandard | Replots the functions immediately, updating the window variables to the default values. | † ZOOM ZOOM
 6:ZStandard |

| Function or
 Instruction/Arguments | Result | Key $\mathbf{\text { Or }}$
 Keys/Menu or
 Screen/Item |
| :--- | :--- | :--- |

| Function or Instruction/Arguments | Result | Key or Keys/Menu or Screen/Item |
| :---: | :---: | :---: |
| Cube root: $\sqrt[3]{ }($ value $)$ | Returns the cube root of a real or complex number, expression, or list. | MATH
 MATH
 4: $:^{3}$ |
| Equal: value $A=$ value B | Returns 1 if value $A=$ valueB. Returns 0 if value $A \neq$ value B. value A and value B can be real or complex numbers, expressions, lists, or matrices. | $\begin{aligned} & \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{1 : =} \end{aligned}$ |
| Not equal: value $A \neq$ value B | Returns 1 if value $A \neq$ valueB. Returns 0 if value $A=$ valueB. value A and value B can be real or complex numbers, expressions, lists, or matrices. | $\begin{aligned} & \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{2 :}:= \end{aligned}$ |
| Less than: value $A<$ value B | Returns 1 if value A < valueB. Returns 0 if value $A \geq$ valueB. value A and valueB can be real or complex numbers, expressions, or lists. | $\begin{aligned} & \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{5 : <} \end{aligned}$ |
| Greater than: valueA>valueB | Returns 1 if value $A>v a l u e B$. Returns 0 if value $A \leq$ value B. value A and valueB can be real or complex numbers, expressions, or lists. | $\begin{aligned} & \text { 2nd [TEST] } \\ & \text { TEST } \\ & \text { 3:> } \end{aligned}$ |
| Less than or equal: value $A \leq$ value B | Returns 1 if value $A \leq$ valueB. Returns 0 if value $A>$ valueB. value A and value B can be real or complex numbers, expressions, or lists. | $\begin{aligned} & \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{6 : \leq} \end{aligned}$ |
| Greater than or equal: value $A \geq$ value B | Returns 1 if value $A \geq$ valueB. Returns 0 if value $A<v a l u e B . ~ v a l u e A$ and value B can be real or complex numbers, expressions, or lists. | $\begin{aligned} & \text { 2nd [TEST] } \\ & \text { TEST } \\ & \mathbf{4}: \geq \end{aligned}$ |
| Inverse: value ${ }^{-1}$ | Returns 1 divided by a real or complex number or expression. | x-1 |
| Inverse: list $^{-1}$ | Returns 1 divided by list elements. | x-1 |
| Inverse: matrix ${ }^{-1}$ | Returns matrix inverted. | x-1 |
| Square: value ${ }^{2}$ | Returns value multiplied by itself. value can be a real or complex number or expression. | x^{2} |
| Square: list ${ }^{2}$ | Returns list elements squared. | x^{2} |
| Square: matrix ${ }^{2}$ | Returns matrix multiplied by itself. | x^{2} |
| Powers: value^power | Returns value raised to power. value can be a real or complex number or expression. | \checkmark |
| Powers: list^power | Returns list elements raised to power. | \checkmark |
| Powers: value^list | Returns value raised to list elements. | \checkmark |
| Powers: matrix^power | Returns matrix elements raised to power. | \checkmark |
| Negation: -value | Returns the negative of a real or complex number, expression, list, or matrix. | (-) |
| Power of ten: 10^(value) | Returns 10 raised to the value power. value can be a real or complex number or expression. | 2nd [$10 \times x$ |
| Power of ten: 10^(list) | Returns a list of 10 raised to the list power. | 2nd [$\left.10{ }^{x}\right]$ |

| Function or Instruction／Arguments | Result | Key or Keys／Menu or Screen／Item |
| :---: | :---: | :---: |
| Square root：$\sqrt{(\text { value })}$ | Returns square root of a real or complex number， expression，or list． | ［2nd［ r － |
| Multiplication： valueA＊valueB | Returns valueA times valueB． | 区 |
| Multiplication： value＊list | Returns value times each list element． | 区 |
| Multiplication： list＊value | Returns each list element times value． | 区 |
| Multiplication： listA＊listB | Returns list A elements times list B elements． | 区 |
| Multiplication： value＊matrix | Returns value times matrix elements． | 区 |
| Multiplication： matrix $A *$ matrix B | Returns matrixA times matrixB． | 区 |
| Division：valueA／valueB | Returns valueA divided by valueB． | \div |
| Division：list／value | Returns list elements divided by value． | \bigcirc |
| Division：value／list | Returns value divided by list elements． | \div |
| Division：listA／listB | Returns list A elements divided by list B elements． | \bigcirc |
| Addition：valueA＋valueB | Returns value A plus value B ． | † |
| Addition：list＋value | Returns list in which value is added to each list element． | \pm |
| Addition：listA＋listB | Returns list A elements plus list B elements． | \dagger |
| Addition： matrix $A+$ matrix B | Returns matrixA elements plus matrix B elements． | \pm |
| Concatenation： string1＋string2 | Concatenates two or more strings． | \pm |
| Subtraction： valueA－valueB | Subtracts valueB from valueA． | \square |
| Subtraction： value－list | Subtracts list elements from value． | \square |
| Subtraction： list－value | Subtracts value from list elements． | \square |
| Subtraction：
 listA－listB | Subtracts list B elements from list A elements． | \square |
| Subtraction： matrixA－matrixB | Subtracts matrix B elements from matrixA elements． | \square |
| Minutes notation：degrees ${ }^{\circ}$ minutes ${ }^{\prime}$ seconds＂ | Interprets minutes angle measurement as minutes． | 2nd［ANGLE］ ANGLE 2：＇ |
| Seconds notation： degrees ${ }^{\circ}$ minutes＇seconds＂ | Interprets seconds angle measurement as seconds． | ALPHA［＂］ |

Appendix B:
 Reference Information

Variables

User Variables

The TI-84 Plus C uses the variables listed below in various ways. Some variables are restricted to specific data types.

The variables \mathbf{A} through \mathbf{Z} and θ are defined as real or complex numbers. You may store to them. The TI-84 Plus C can update $\mathbf{X}, \mathbf{Y}, \mathbf{R}, \theta$, and \mathbf{T} during graphing, so you may want to avoid using these variables to store nongraphing data.

The variables (list names) L1 through $\mathbf{L 6}$ are restricted to lists; you cannot store another type of data to them.

The variables (matrix names) [A] through [J] are restricted to matrices; you cannot store another type of data to them.

The variables Pic1 through Pic9 and Pic0 are restricted to pictures; you cannot store another type of data to them.

The variables Image1 through Image9 and Image0 are restricted to Background Images, you cannot store another type of data to them.

The variables GDB1 through GDB9 and GDB0 are restricted to graph databases; you cannot store another type of data to them.

The variables Str1 through Str9 and Str0 are restricted to strings; you cannot store another type of data to them.

Except for system variables, you can store any string of characters, functions, instructions, or variables to the functions $\mathbf{Y} n$, ($\mathbf{1}$ through $\mathbf{9}$, and $\mathbf{0}$), $\mathbf{X} n \mathbf{T} / \mathbf{Y} n \mathbf{T}(\mathbf{1}$ through 6), $\mathbf{r} n(\mathbf{1}$ through 6), $\mathbf{u}(n), \mathbf{v}(n)$, and $\mathbf{w}(n)$ directly or through the $\mathbf{Y}=$ editor. The validity of the string is determined when the function is evaluated.

Archive Variables

You can store data, programs or any variable from RAM to user data archive memory where they cannot be edited or deleted inadvertently. Archiving also allows you to free up RAM for variables that may require additional memory. The names of archived variables are preceded by an asterisk (*) indicating they are in user data archive. Exception VARS 4:Picture \& Background... BACKGROUND menu does not display the * even though Image Vars are stored only in Archive Mode.

System Variables

The variables below must be real numbers. You may store to them. Since the TI-84 Plus C can update some of them, as the result of a ZOOM, for example, you may want to avoid using these variables to store nongraphing data.

- Xmin, Xmax, Xscl, $\Delta \mathbf{X}$, TraceStep, XFact, Tstep, PlotStart, n Min, and other window variables.
- ZXmin, ZXmax, ZXscl, ZTstep, ZPlotStart, Zu($n \mathbf{M i n}$), and other ZOOM variables.

The variables below are reserved for use by the TI-84 Plus C. You cannot store to them.
$\mathbf{n}, \overline{\mathrm{x}}, \mathbf{S x}, \sigma \mathbf{x}, \operatorname{minX}, \operatorname{maxX}, G y, \Sigma \mathbf{y}^{2}, \Sigma \mathbf{x y}, a, b, c, R e g E Q, x 1, x 2, y 1, z, t, F, \chi^{2}, \hat{p}, \bar{x} 1, S x 1, n 1$, lower, upper, $\mathbf{r}^{2}, \mathbf{R}^{2}$ and other statistical variables.

Statistics Formulas

This section contains statistics formulas for the Logistic and SinReg regressions, ANOVA, 2-SampFTest, and 2-SampTTest.

Logistic

The logistic regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

$$
J=\sum_{i=1}^{N}\left(\frac{c}{1+a e^{-b x_{i}}}-y_{i}\right)^{2}
$$

which is the sum of the squares of the residual errors,
where: $x=$ the independent variable list
$y=$ the dependent variable list
$N=$ the dimension of the lists
This technique attempts to estimate the constants a, b, and c recursively to make J as small as possible.

SinReg

The sine regression algorithm applies nonlinear recursive least-squares techniques to optimize the following cost function:

$$
J=\sum_{i=1}^{N}\left[a \sin \left(b x_{i}+c\right)+d-y_{i}\right]^{2}
$$

which is the sum of the squares of the residual errors,
where: $x=$ the independent variable list
$y=$ the dependent variable list
$N=$ the dimension of the lists
This technique attempts to recursively estimate the constants a, b, c, and d to make J as small as possible.

ANOVA(

The ANOVA F statistic is:

$$
\mathbf{F}=\frac{\text { Factor } M S}{\text { Error } M S}
$$

The mean squares $(M S)$ that make up \mathbf{F} are:

$$
\begin{aligned}
& \text { FactorMS }=\frac{\text { Factor } S S}{\text { Factordf }} \\
& \text { ErrorMS }=\frac{\text { ErrorSS }}{\text { Errordf }}
\end{aligned}
$$

The sum of squares ($S S$) that make up the mean squares are:

$$
\begin{aligned}
& \text { Factor } S S=\sum_{i=1}^{I} n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} \\
& \text { ErrorSS }=\sum_{i=1}^{I}\left(n_{i}-1\right) S x_{i}^{2}
\end{aligned}
$$

The degrees of freedom $d f$ that make up the mean squares are:
Factordf $=I-1=$ numerator $d f$ for \mathbf{F}

$$
\text { Errordf }=\sum_{i=1}^{I}\left(n_{i}-1\right)=\text { denominatordf for } \mathbf{F}
$$

where: $I=$ number of populations
$\bar{x}_{i} \quad=$ the mean of each list
$x_{x i}=$ the standard deviation of each list
Sxi $=$ the length of each list
$n i=$ the mean of all lists
\bar{x}

2-SampFTest

Below is the definition for the 2-SampFTest.
Sx1,Sx2 $=$ Sample standard deviations having $n_{1}-1$
and $n_{2}-1$ degrees of freedom $d f$,
respectively.
F $\quad=$ F-statistic $=\left(\frac{S x 1}{S x 2}\right)^{2}$
$d f\left(x, n_{1}-1, n_{2}-1\right)=F p d f()$ with degrees of freedom $d f, n_{1}-1$, and $n_{2}-1$
$p \quad=$ reported p value
2-SampFTest for the alternative hypothesis $\sigma_{1}>\sigma_{2}$.

$$
p=\int_{F}^{\alpha} f\left(x, n_{1}-1, n_{2}-1\right) d x
$$

2-SampFTest for the alternative hypothesis $\sigma_{1}<\sigma_{2}$.

$$
p=\int_{0}^{F} f\left(x, n_{1}-1, n_{2}-1\right) d x
$$

2-SampFTest for the alternative hypothesis $\sigma_{1} \neq \sigma_{2}$. Limits must satisfy the following:

$$
\frac{p}{2}=\int_{0}^{L b n d} f\left(x, n_{1}-1, n_{2}-1\right) d x=\int_{U b n d}^{\infty} f\left(x, n_{1}-1, n_{2}-1\right) d x
$$

where: [Lbnd,Ubnd] = lower and upper limits
The \mathbf{F}-statistic is used as the bound producing the smallest integral. The remaining bound is selected to achieve the preceding integral's equality relationship.

2-SampTTest

The following is the definition for the 2-SampTTest. The two-sample t statistic with degrees of freedom $d f$ is:

$$
t=\frac{\bar{x}_{1}-\bar{x}_{2}}{S}
$$

where the computation of S and $d f$ are dependent on whether the variances are pooled. If the variances are not pooled:

$$
\begin{aligned}
& S=\sqrt{\frac{S x_{1}^{2}}{n_{1}}+\frac{S x_{2}^{2}}{n_{2}}} \\
& d f=\frac{\left(\frac{S x_{1}^{2}}{n_{1}}+\frac{S x_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{S x_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{S x_{2}^{2}}{n_{2}}\right)^{2}}
\end{aligned}
$$

otherwise:

$$
\begin{aligned}
& S x_{p}=\frac{\left(n_{1}-1\right) S x_{1}^{2}+\left(n_{2}-1\right) S x_{2}^{2}}{d f} \\
& S=\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}} S x_{p}} \\
& d f=n_{1}+n_{2}-2
\end{aligned}
$$

and $S x p$ is the pooled variance.

Financial Formulas

This section contains financial formulas for computing time value of money, amortization, cash flow, interest-rate conversions, and days between dates.

Time Value of Money

$$
i=\left[e^{(y \times \ln (x+1))}\right]-1
$$

where: $P M T \neq 0$
$y=C / Y \div P / Y$
$x=(.01 \times I \%) \div C / Y$
$C / Y=$ compounding periods per year
$P / Y=$ payment periods per year
$I \%=$ interest rate per year

$$
i=(-F V \div P V)^{(1 \div N)}-1
$$

where: $\quad P M T=0$

The iteration used to compute i :

$$
\begin{aligned}
& 0=P V+P M T \times G_{i}\left[\frac{1-(1+i)^{-N}}{i}\right]+F V \times(1+i)^{-N} \\
& I \%=100 \times C / Y \times\left[e^{(y \times \ln (x+1))}-1\right]
\end{aligned}
$$

where: $x=i$

$$
\begin{aligned}
& y=P / Y \div C / Y \\
& G_{i}=1+i \times k
\end{aligned}
$$

where: $k=0$ for end-of-period payments

$$
k=1 \text { for beginning-of-period payments }
$$

$$
N=\frac{\ln \left(\frac{P M T \times G_{i}-F V \times i}{P M T \times G_{i}+P V \times i}\right)}{\ln (1+i)}
$$

where: $\quad i \neq 0$

$$
N=-(P V+F V) \div P M T
$$

where: $i=0$

$$
P M T=\frac{-i}{G_{i}} \times\left[P V+\frac{P V+F V}{(1+i)^{N}-1}\right]
$$

where: $i \neq 0$

$$
P M T=-(P V+F V) \div N
$$

where: $\quad i=0$

$$
P V=\left[\frac{P M T \times G_{i}}{i}-F V\right] \times \frac{1}{(1+i)^{N}}-\frac{P M T \times G_{i}}{i}
$$

where: $\quad i \neq 0$

$$
P V=-(F V+P M T \times N)
$$

where: $i=0$

$$
F V=\frac{P M T \times G_{i}}{i}-(1+i)^{N} \times\left(P V+\frac{P M T \times G_{i}}{i}\right)
$$

where: $\quad i \neq 0$

$$
F V=-(P V+P M T \times N)
$$

where: $i=0$

Amortization

If computing $\operatorname{bal}(), p m t 2=n p m t$
Let $\operatorname{bal}(0)=R N D(P V)$

Iterate from $m=1$ to $p m t 2$

$$
\begin{gathered}
\mathrm{I}_{m}=R N D[R N D 12(-i \times \operatorname{bal}(m-1))] \\
\operatorname{bal}(m)=\operatorname{bal}(m-1)-\mathrm{I}_{m}+R N D(P M T)
\end{gathered}
$$

then:

$$
\begin{aligned}
& \operatorname{bal}()=\operatorname{bal}(p m t 2) \\
& \Sigma \operatorname{Pr} n()=\operatorname{bal}(p m t 2)-\operatorname{bal}(p m t 1) \\
& \Sigma \operatorname{Int}()=(p m t 2-p m t 1+1) \times R N D(P M T)-\Sigma \operatorname{Pr} n()
\end{aligned}
$$

where: $R N D=$ round the display to the number of decimal places selected

RND12 = round to 12 decimal places
Balance, principal, and interest are dependent on the values of PMT, PV, I\%, and pmt1 and pmt2.

Cash Flow

$$
n p v()=C F_{0}+\sum_{j=1}^{N} C F_{j}(1+i)^{-S_{j}-1} \frac{\left(1-(1+i)^{-n_{j}}\right)}{i}
$$

where: $\quad S_{j}=\left\{\begin{array}{cc}\sum_{i=1}^{j} n_{i} & j \geq 1 \\ 0 & j=0\end{array}\right.$

Net present value is dependent on the values of the initial cash flow ($C F_{0}$), subsequent cash flows ($C F j$), frequency of each cash flow ($n j$), and the specified interest rate (i).
$\operatorname{irr}()=100 \times i$, where i satisfies $n p v()=0$
Internal rate of return is dependent on the values of the initial cash flow ($C F 0$) and subsequent cash flows (CFj).

$$
i=I \% \div 100
$$

Interest Rate Conversions

Eff $=100 \times\left(e^{C P \times \ln (x+1)}-1\right)$
where: $x=.01 \times$ Nom $\div C P$
-Nom $=100 \times C P \times\left[e^{1 \div C P \times \ln (x+1)}-1\right]$
where: $x=.01 \times$ Eff
Eff $=$ effective rate
$C P=$ compounding periods
Nom $=$ nominal rate

Days between Dates

With the dbd(function, you can enter or compute a date within the range Jan. 1, 1950, through Dec. 31, 2049.

Actual/actual day-count method (assumes actual number of days per month and actual number of days per year):
$d b d$ ((days between dates) $=$ Number of Days II - Number of Days I
Number of Days I $=(Y 1-Y B) \times 365$
$+\quad$ (number of days $M B$ to $M 1$)
$+\quad D T 1$
$+\frac{(Y 1-Y B)}{4}$

$$
\begin{aligned}
\text { Number of Days II } & =(Y 2-Y B) \times 365 \\
& +(\text { number of days } M B \text { to } M 2) \\
& +D T 2 \\
& +\frac{(Y 2-Y B)}{4}
\end{aligned}
$$

where: | $M 1$ | $=$ month of first date |
| :--- | :--- |
| $D T 1$ | $=$ day of first date |
| $Y 1$ | $=$ year of first date |
| $M 2$ | $=$ month of second date |
| $D T 2$ | $=$ day of second date |
| $Y 2$ | $=$ year of second date |
| $M B$ | $=$ base month (January) |
| $D B$ | $=$ base day (1) |
| $Y B$ | $=$ base year (first year after leap year) |

Important Things You Need to Know About Your Tl-84 Plus C

TI-84 Plus C Results

There may be a number of reasons that your TI-84 Plus C is not displaying the expected results; however, the most common solutions involve order of operations or mode settings. Your calculator uses an Equation Operating System ${ }^{\text {TM }}$ (EOS ${ }^{\top}$) which evaluates the functions in an expression in the following order:

1. Functions that precede the argument, such as square root, $\sin ($, or $\log ($
2. Functions that are entered after the argument, such as exponents, factorial, $r{ }^{\circ}{ }^{\circ}$, and conversions
3. Powers and roots, such as $2^{\wedge} 5$, or 5^{*} square root(32)
4. Permutations (nPr) and combinations (nCr)
5. Multiplication, implied multiplication, and division
6. Addition and subtraction
7. Relational functions, such as $>$ or $<$
8. Logic operator and
9. Logic operators or and xor

Remember that EOS ${ }^{\text {TM }}$ evaluates from left to right and calculations within parentheses are evaluated first. You should use parentheses where the rules of algebra may not be clear. In MathPrint ${ }^{\text {TM }}$ mode, parentheses may be pasted in an expression to indicate how the input is interpreted.
If you are using trigonometric functions or performing polar and rectangular conversions, the unexpected results may be caused by an angle mode setting. The Radian and Degree angle mode settings control how the TI-84 Plus C interprets angle values.

To change the angle mode settings, follow these steps:

1. Press MODE to display the Mode settings.
2. Select Degree or Radian.
3. Press ENTER to save the angle mode setting.

Note: See also $e^{\wedge}(i \theta)$ calculators. For $e^{\wedge}(i \theta)$ behavior in Degree and Radian mode, See the Math, Angle, and Test Operations Chapter.

Note: The n / d fraction MathPrint ${ }^{\top \mathrm{M}}$ template does not support non-real numbers in the numerator or denominator entry. Use division or express the complex number as (fraction1) + (fraction2) in your calculations.

ERR:DIMENSION MISMATCH Error

Your TI-84 Plus C displays the ERR:DIMENSION MISMATCH error if you are trying to perform an operation that references one or more lists or matrices whose dimensions do not match. For example, multiplying $\mathrm{L} 1 * \mathrm{~L} 2$, where $\mathrm{L} 1=\{1,2,3,4,5\}$ and $\mathrm{L} 2=\{1,2\}$ produces an ERR:DIMENSION MISMATCH error because the number of elements in L1 and L2 do not match.

ERR:INVALID DIMENSION Error

The ERR:INVALID DIMENSION error message may occur if you are trying to graph a function that does not involve the stat plot features. The error can be corrected by turning off the stat plots. To turn the stat plots off, press [nd [STAT PLOT] and then select 4:PlotsOff.

Link-Receive $\mathbf{L 1}$ (or any file) to Restore Message

If your TI-84 Plus C is in testing mode, the status bar will display TEST MODE. Your TI-84 Plus C displays the Link-Receive $\mathbf{L 1}$ (or any file) to Restore message if it has been disabled for testing, and not reenabled. To restore your calculator to full functionality after testing, link to another TI-84 Plus or TI-84 Plus C and transfer any file to the disabled calculator, or use TI Connect ${ }^{\text {TM }}$ software to download a file from your computer to your TI-84 Plus C.
To transfer a file from another TI-84 Plus C:

1. On the receiving unit, press 2nd [LINK] and then select RECEIVE.
2. On the sending calculator, Press [nd [LINK].
3. Select a file to send by selecting a category, and then selecting a file to send.

| NORMAL FLOAt futo real radian mp | |
| :---: | :---: |
| SELEC | |
| - Li | LIST |
| L2 | LIST |
| L3 | LIST |
| L4 | LIST |
| L5 | LIST |
| L6 | LIST |

4. Select TRANSMIT to send the file.

| MORMAL FLOAT AUTO REAL RADIAN MP |
| :--- |
| SELECT TRANSMIT |
| 1:Transmit |
| |
| |
| |

Brightness Feature

If the brightness setting is too dark (set to 9) or too dim (set to 0) the unit may appear as if it is malfunctioning or turned off. To adjust the brightness, press and release 2nd, and then press and hold $\boxed{\square}$ or \quad. The TI-84 Plus C retains the brightness setting in memory when it is turned off.

Automatic Dimming

The TI-84 Plus C has an automatic dimming feature. To help prolong battery life, the screen dims after 90 seconds of no activity. Press ON to return the screen to the preset brightness setting. Pressing ON does not affect any calculations, cursors, or error messages.

TI-84 Plus C Identification Code

Your graphing calculator has a unique identification (ID) code that you should record and keep. You can use this 14 digit ID to register your calculator at education.ti.com or identify your calculator in the event that it is lost or stolen. A valid ID includes numbers 0 through 9 and the letters A through F .
You can view the calculator's Operating System, Product Number, ID, and Certificate Revision Number from the About screen. To display the About screen, press [2nd [MEM] and then select 1:About.

Your unique product ID code: \qquad

Backups

Your TI-84 Plus C is similar to a computer, in that it stores files and Apps that are important to you. It is always a good idea to back up your graphing calculator device files and Apps using the TI Connect ${ }^{\text {TM }}$ software and a USB computer cable. You can find the specific procedures for backing up your calculator's device files and Apps in the TI Connect ${ }^{\text {TM }}$ Help file.

TI Connect ${ }^{\text {TM }}$ for PC and TI Connect ${ }^{\text {TM }}$ for Mac each have different file types to back up your TI-84 Plus C to your PC or Mac computer. You can also backup your TI-84 Plus C to another TI-84 Plus C, press [2nd [LINK] and then select G:Back Up...

Apps

TI-84 Plus C Software Applications (Apps) is software that you can add to your calculator in the same way you would add software to your computer. Apps let you customize your calculator for peak performance in specific areas of study. You can find apps for the TI-84 Plus C at education.ti.com/go/download.

TI-Cares KnowledgeBase

The TI-Cares KnowledgeBase provides 24-hour access through the Web to find answers to frequently asked questions. The TI-Cares KnowledgeBase searches its repository of known solutions and presents you with the solutions that are most likely to solve your problem. You can search the TI-Cares KnowledgeBase at education.ti.com/support.

Error Conditions

When the TI-84 Plus C Silver Edition detects an error, it returns an error message as a menu title, such as ERR:SYNTAX or ERR:DOMAIN. This table contains each error type, possible causes, and suggestions for correction. The error types listed in this table are each preceded by ERR: on your graphing calculator display. For example, you will see ERR:ARCHIVED as a menu title when your graphing calculator detects an ARCHIVED error type.

| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| ARCHIVED | You have attempted to use, edit, or delete an archived variable. For example, the expression $\operatorname{dim}(\mathrm{L} 1)$ produces an error if L 1 is archived. |
| ARCHIVE FULL | You have attempted to archive a variable and there is not enough space in archive to receive it. |
| ARGUMENT | A function or instruction does not have the correct number of arguments. See Appendix A for function and instruction syntax.
 Appendix A displays the arguments and punctuation needed to execute the function or instruction. For example, $\boldsymbol{\operatorname { s t d D e v }}($ list $[$,freqlist $]$) is a function of the TI-84 Plus C. The arguments are shown in italics. The arguments in brackets are optional and you need not type them. You must also be sure to separate multiple arguments with a comma (,). For example, $\boldsymbol{s t d D e v}(l i s t[$,freqlist $]$) might be entered as $\operatorname{stdDev(L1)~or~} \operatorname{stdDev}(\mathrm{L} 1, \mathrm{~L} 2)$ since the frequency list or freqlist is optional. |
| BAD ADDRESS | You have attempted to send or receive an application and an error (e.g. electrical interference) has occurred in the transmission. |
| BAD GUESS | - In a CALC operation, you specified a Guess that is not between Left Bound and Right Bound.
 - For the solve(function or the equation solver, you specified a guess that is not between lower and upper.
 - Your guess and several points around it are undefined.
 Examine a graph of the function. If the equation has a solution, change the bounds and/or the initial guess. |
| BOUND | - In a CALC operation or with Select(, you defined Left Bound > Right Bound.
 - In fMin(, $\mathbf{f M a x}($, solve(, or the equation solver, you entered lower \geq upper. |
| BREAK | You pressed the $O \mathbb{O N}$ key to break execution of a program, to halt a DRAW instruction, or to stop evaluation of an expression. |
| DATA TYPE | You entered a value or variable that is the wrong data type.
 - For a function (including implied multiplication) or an instruction, you entered an argument that is an invalid data type, such as a complex number where a real number is required. See Appendix A and the appropriate chapter.
 - In an editor, you entered a type that is not allowed, such as a matrix entered as an element in the stat list editor. See the appropriate chapter.
 - You attempted to store an incorrect data type, such as a matrix, to a list.
 - You attempted to enter complex numbers into the $n / d_{\text {MathPrint }}{ }^{T M}$ template. |

| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| DIMENSION MISMATCH | Your calculator displays the ERR:DIMENSION MISMATCH error if you are trying to perform an operation that references one or more lists or matrices whose dimensions do not match. For example, multiplying L1*L2, where $\mathrm{L} 1=\{1,2,3,4,5\}$ and $\mathrm{L} 2=\{1,2\}$ produces an ERR:DIMENSION MISMATCH error because the number of elements in L1 and L2 do not match.
 You may need to turn Plots Off to continue. |
| DIVIDE BY 0 | - You attempted to divide by zero. This error is not returned during graphing. The TI-84 Plus C allows for undefined values on a graph.
 - You attempted a linear regression with a vertical line. |
| DOMAIN | - You specified an argument to a function or instruction outside the valid range. This error is not returned during graphing. The TI-84 Plus C allows for undefined values on a graph. See Appendix A.
 - You attempted a logarithmic or power regression with a-X or an exponential or power regression with a $-\mathbf{Y}$.
 - You attempted to compute $\Sigma \mathbf{P r n}$ (or $\operatorname{\Sigma Int}($ with $p m t 2<p m t 1$. |
| DUPLICATE | You attempted to create a duplicate group name. |
| Duplicate Name | A variable you attempted to transmit cannot be transmitted because a variable with that name already exists in the receiving unit. |
| EXPIRED | You have attempted to run an application with a limited trial period which has expired. |
| Error in Xmit | - The TI-84 Plus C was unable to transmit an item. Check to see that the cable is firmly connected to both units and that the receiving unit is in receive mode.
 - You pressed ON to break during transmission.
 - Setup RECEIVE first and then SEND, when sending files ([LINK]) between graphing calculators. |
| ID NOT FOUND | This error occurs when the SendID command is executed but the proper graphing calculator ID cannot be found. |
| ILLEGAL NEST | - You attempted to use an invalid function in an argument to a function, such as seq(within expression for seq(. |
| INCREMENT | - The increment, step, in seq(is 0 or has the wrong sign. This error is not returned during graphing. The TI-84 Plus C allows for undefined values on a graph.
 - The increment in a For(loop is 0 . |
| INVALID | - You attempted to reference a variable or use a function where it is not valid. For example, $\mathbf{Y} n$ cannot reference $\mathbf{Y}, \mathbf{X m i n}, \Delta \mathbf{X}$, or TbIStart.
 - In Seq mode, you attempted to graph a phase plot without defining both equations of the phase plot.
 - In Seq mode, you attempted to graph a recursive sequence without having input the correct number of initial conditions.
 - In Seq mode, you attempted to reference terms other than ($n-\mathbf{1}$) or ($n-2$).
 - You attempted to designate a graph style that is invalid within the current graph mode.
 - You attempted to use Select(without having selected (turned on) at least one xyLine or scatter plot. |

| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| INVALID DIMENSION | - The ERR:INVALID DIMENSION error message may occur if you are trying to graph a function that does not involve the stat plot features. The error can be corrected by turning off the stat plots. To turn the stat plots off, press 2nd [STAT PLOT] and then select 4:PlotsOff.
 - You specified a list dimension as something other than an integer between 1 and 999.
 - You specified a matrix dimension as something other than an integer between 1 and 99.
 - You attempted to invert a matrix that is not square. |
| ITERATIONS | - The solve(function or the equation solver has exceeded the maximum number of permitted iterations. Examine a graph of the function. If the equation has a solution, change the bounds, or the initial guess, or both.
 - irr(has exceeded the maximum number of permitted iterations.
 - When computing I\%, the maximum number of iterations was exceeded. |
| LABEL | The label in the Goto instruction is not defined with a Lbl instruction in the program. |
| LINK L1 (or any other file) to Restore | The calculator has been disabled for testing. To restore full functionality, use TI Connect ${ }^{\text {TM }}$ software to download a file to your calculator from your computer, or transfer any file to your calculator from another TI-84 Plus C. (You will see TEST MODE in the status bar. See the instructions under Important Things to Know about your TI-84 Plus C, earlier in this chapter.) |
| MEMORY | Memory is insufficient to perform the instruction or function. You must delete items from memory before executing the instruction or function. Recursive problems return this error; for example, graphing the equation $\mathbf{Y 1}=\mathbf{Y 1}$.
 Branching out of an If/Then, For(, While, or Repeat loop with a Goto also can return this error because the End statement that terminates the loop is never reached. |
| MemoryFull | - You are unable to transmit an item because the receiving unit's available memory is insufficient. You may skip the item or exit receive mode.
 - During a memory backup, the receiving unit's available memory is insufficient to receive all items in the sending unit's memory. A message indicates the number of bytes the sending unit must delete to do the memory backup. Delete items and try again. |
| MODE | You attempted to store to a window variable in another graphing mode or to perform an instruction while in the wrong mode; for example, DrawInv in a graphing mode other than Func. |
| NO SIGN CHANGE | - The solve(function or the equation solver did not detect a sign change.
 - You attempted to compute I\% when $\mathbf{F V}$, ($\mathbf{N} * \mathbf{P M T}$), and $\mathbf{P V}$ are all ≥ 0, or when $\mathbf{F V}$, ($\mathbf{N} * \mathbf{P M T}$), and $\mathbf{P V}$ are all ≤ 0.
 - You attempted to compute irr(when neither CFList nor CFO is >0, or when neither CFList nor CFO is <0. |

| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| NONREAL ANSWERS | In Real mode, the result of a calculation yielded a complex result. This error is not returned during graphing. The $\mathrm{TI}-84$ Plus C allows for undefined values on a graph. |
| OVERFLOW | You attempted to enter, or you have calculated, a number that is beyond the range of the graphing calculator. This error is not returned during graphing. The TI-84 Plus C allows for undefined values on a graph. |
| RESERVED | You attempted to use a system variable inappropriately. See Appendix A. |
| SINGULAR MATRIX | - A singular matrix (determinant $=0$) is not valid as the argument for -1.
 - The SinReg instruction or a polynomial regression generated a singular matrix (determinant $=0$) because the algorithm could not find a solution, or a solution does not exist.
 This error is not returned during graphing. The TI-84 Plus C allows for undefined values on a graph. |
| SINGULARITY | expression in the solve(function or the equation solver contains a singularity (a point at which the function is not defined). Examine a graph of the function. If the equation has a solution, change the bounds or the initial guess or both. |
| STAT | You attempted a stat calculation with lists that are not appropriate.
 - Statistical analyses must have at least two data points.
 - Med-Med must have at least three points in each partition.
 - When you use a frequency list, its elements must be ≥ 0.
 - (Xmax - Xmin) / Xscl must be between 0 and 131 for a histogram. |
| STAT PLOT | You attempted to display a graph when a stat plot that uses an undefined list is turned on. |
| SYNTAX | The command contains a syntax error. Look for misplaced functions, arguments, parentheses, or commas. Appendix A displays the arguments and punctuation needed to execute the function or instruction.
 For example, stdDev(list[freqlist $]$) is a function of the TI-84 Plus C. The arguments are shown in italics. The arguments in brackets are optional and you need not type them. You must also be sure to separate multiple arguments with a comma (,). For example stdDev(list[,freqlist $]$) might be entered as $\operatorname{std} \operatorname{Dev}(\mathrm{L} 1)$ or $\operatorname{std} \operatorname{Dev}(\mathrm{L} 1, \mathrm{~L} 2)$ since the frequency list or freqlist is optional. |
| TOLERANCE NOT MET | You requested a tolerance to which the algorithm cannot return an accurate result. |
| UNDEFINED | You referenced a variable that is not currently defined. For example, you referenced a stat variable when there is no current calculation because a list has been edited, or you referenced a variable when the variable is not valid for the current calculation, such as a after Med-Med. |
| VALIDATION | Electrical interference caused a link to fail or this graphing calculator is not authorized to run the application. |
| VARIABLE | You have tried to archive a variable that cannot be archived or you have tried to unarchive an application or group.
 Examples of variables that cannot be archived include:
 - Real numbers LRESID, R, T, X, Y, Theta, Statistic variables under Vars, STATISTICS menu, Yvars, and the AppIdList. |

| Error Type | Possible Causes and Suggested Remedies |
| :---: | :---: |
| VERSION | You have attempted to receive an incompatible variable version from another graphing calculator.
 A program may contain commands not supported in the OS version on your graphing calculator. Always use the latest OS. TI-84 Plus C and TI-84 Plus share programs but a version error will be given if any new TI-84 Plus C programs may need to be adjusted for the high resolution graph area. |
| WINDOW RANGE | A problem exists with the window variables.
 - You defined $\mathbf{X m a x} \leq \mathbf{X m i n}$ or $\mathbf{Y m a x} \leq \mathbf{Y m i n}$.
 - You defined $\theta \mathbf{m a x} \leq \theta \min$ and θ step $>\mathbf{0}$ (or vice versa).
 - You attempted to define $\mathbf{T s t e p}=\mathbf{0}$.
 - You defined $\boldsymbol{T m a x} \leq \mathbf{T m i n}$ and Tstep $>\mathbf{0}$ (or vice versa).
 - Window variables are too small or too large to graph correctly. You may have attempted to zoom in or zoom out to a point that exceeds the TI-84 Plus C's numerical range. |
| ZOOM | - A point or a line, instead of a box, is defined in ZBox.
 - A ZOOM operation returned a math error. |

Accuracy Information

Computational Accuracy

To maximize accuracy, the TI-84 Plus C carries more digits internally than it displays. Values are stored in memory using up to 14 digits with a two-digit exponent.

- You can store a value in the window variables using up to 10 digits (12 for Xscl, Yscl, Tstep, and θ step).
- Displayed values are rounded as specified by the mode setting with a maximum of 10 digits and a two-digit exponent.
- RegEQ displays up to 14 digits in Float mode. Using a fixed-decimal setting other than Float causes RegEQ results to be rounded and stored with the specified number of decimal places.
$\mathbf{X m i n}$ is the center of the left most pixel, and Xmax is the center of the next to the right most pixel of the graph area. (The right most pixel is reserved for the busy indicator.) $\Delta \mathbf{X}$ is the distance between the centers of two adjacent pixels.

Ymin is the center of the next to the bottom pixel; Ymax is the center of the top pixel of the graph area. $\Delta \mathbf{Y}$ is the distance between the centers of two adjacent pixels.

Screen MODE

Full (Xmax-Xmin) / 264 = $\Delta \mathbf{X}$
(Ymax-Ymin) / $164=\Delta \mathbf{Y}$
$\Delta \mathbf{x} * 2=$ TraceStep (Function Mode)
Entering a value for $\Delta \mathbf{X}$ or $\Delta \mathbf{Y}$ from the home screen on a program gives:
$X \max =X \min +\Delta \mathbf{X} * 264$
$Y \max =Y \min +\Delta \mathbf{Y} * 164$

Screen MODE

| Horizontal | $\begin{aligned} & (X \max -X \min) / 264=\Delta \mathbf{X} \\ & (Y \max -Y \min) / 80=\Delta \mathbf{Y} \\ & \Delta \mathbf{X} * 2=\text { TraceStep (Function Mode) } \end{aligned}$
 Entering a value for $\Delta \mathbf{X}$ or $\Delta \mathbf{Y}$ from the home screen on a program gives: $\begin{aligned} & X \max =X \min +\Delta \mathbf{X} * 264 \\ & Y \max =Y \min +\Delta \mathbf{Y} * 80 \end{aligned}$ |
| :---: | :---: |
| Graph-Table | $\begin{aligned} & (X \max -X \min) / 184=\Delta \mathbf{X} \\ & (\text { Ymax-Ymin) } / 144=\Delta \mathbf{Y} \\ & \Delta \mathbf{X} * 2=\text { TraceStep (Function Mode) } \end{aligned}$
 Entering a value for $\Delta \mathbf{X}$ or $\Delta \mathbf{Y}$ from the home screen on a program gives: $\begin{aligned} & X \max =X \min +\Delta \mathbf{X} * 184 \\ & Y \max =Y \min +\Delta \mathbf{Y} * 144 \end{aligned}$ |

Cursor coordinates are displayed as eight-character numbers (which may include a negative sign, decimal point, and exponent) when Float mode is selected. \mathbf{X} and \mathbf{Y} are updated with a maximum accuracy of eight digits.
minimum and maximum on the CALCULATE menu are calculated with a tolerance of $1 \mathrm{E}-5 ; \int \mathbf{f}(\mathbf{x}) \mathbf{d x}$ is calculated at $1 \mathrm{E}-3$. Therefore, the result displayed may not be accurate to all eight displayed digits. For most functions, at least five accurate digits exist. For $\mathbf{f M i n}$ (, fMax(, and fnInt(on the MATH menu and solve(in the CATALOG, the tolerance can be specified.

Function Limits

| Function | Range of Input Values |
| :--- | :--- |
| $\boldsymbol{\operatorname { s i n }} x, \boldsymbol{\operatorname { c o s }} x, \boldsymbol{\operatorname { t a n }} x$ | $0 \leq\|x\|<10^{12}$ (radian or degree) |
| $\boldsymbol{\operatorname { s i n }}^{-1} x, \boldsymbol{\operatorname { c o s }}^{-1} x$ | $-1 \leq x \leq 1$ |
| $\mathbf{I n} x, \boldsymbol{\operatorname { l o g }} x$ | $10^{-100}<x<10^{100}$ |
| $\mathbf{e x}$ | $-10^{100}<x \leq 230.25850929940$ |
| $\mathbf{1 0} x$ | $-10^{100}<x<100$ |
| $\boldsymbol{\operatorname { s i n h }} x, \boldsymbol{\operatorname { c o s h }} x$ | $\|x\| \leq 230.25850929940$ |
| $\boldsymbol{\operatorname { t a n h } x}$ | $\|x\|<10^{100}$ |
| $\boldsymbol{\operatorname { s i n h }}{ }^{-1} x$ | $\|x\|<5 \times 10^{99}$ |
| $\boldsymbol{\operatorname { c o s h }}$ | |
| $\boldsymbol{\operatorname { t a n h }} x$ | $1 \leq x<5 \times 10^{-1} x$ |
| \sqrt{x} (real mode) | $-1<x<1$ |
| \sqrt{x} (complex mode) | $0 \leq x<10^{100}$ |
| $x!$ | $\|x\|<10^{100}$ |

Function Results

| Function | Range of Result | |
| :--- | :--- | :--- |
| $\boldsymbol{\operatorname { s i n }}^{-1} x, \boldsymbol{\operatorname { t a n }}^{-1} x$ | -90° to 90° | or $-\pi / 2$ to $\pi / 2$ (radians) |
| $\boldsymbol{\operatorname { c o s }}^{-1} x$ | 0° to 180° | or 0 to π (radians) |

Texas Instruments Support and Service

For U.S. and Canada:

For General Information

| Home Page: | education.ti.com |
| :--- | :--- |
| KnowledgeBase and | education.ti.com/support |
| e-mail inquiries: | |
| Phone: | (800) TI-CARES / (800) 842-2737 |
| | For U.S., Canada, Mexico, Puerto Rico, and

 Virgin Islands only |
| International
 information: education.ti.com/international | |

For Technical Support

For Product (Hardware) Service

Customers in the U.S., Canada, Mexico, Puerto Rico and Virgin Islands: Always contact Texas Instruments Customer Support before returning a product for service.

For All Other Countries:

For general information
For more information about TI products and services, contact TI by e-mail or visit the TI Internet address.

E-mail inquiries: ti-cares@ti.com
Home Page: education.ti.com

Service and Warranty Information

For information about the length and terms of the warranty or about product service, refer to the warranty statement enclosed with this product or contact your local Texas Instruments retailer/distributor.

Index

- (negation) 17

Symbols

\rightarrow Store 22
$\rightarrow \operatorname{dim}($ (assign dimension) 174
${ }^{\circ}$ (degrees notation) 374

- (negation) 43, 375
- (subtraction) 41, 376
() (parentheses) 17
^ (power) 41, 375
: (colon) 279
! (factorial) 374
\rightarrow Store 369
$\rightarrow \operatorname{dim}($ (assign dimension) 158, 352
' (minutes notation) 67, 376
" " (string indicator) 270
\measuredangle (plot type, normal probability) 218
$\Sigma \operatorname{lnt}($ (sum of interest) 357
EPrn((sum of principal) 362
[] (matrix indicator) 151
\leq (less than or equal to) 375
* (multiplication) 41, 376
+ $+\cdots$ (plot type, modified box) 217
$\int f(x) d x$ operation on a graph 93
*row(162, 365
*row+(365
/ (division) 41, 376
${ }^{-1}$ (inverse) 375
diru (plot type, histogram) 217
\neq (not equal to) 375
ㅁ, \cdot, + (pixel mark) 135, 218
+ (addition) 41, 376
+ (concatenation) 272, 376
+ (pixel mark) 135, 218
" [- (plot type, box) 218
< (less than) 69, 375
$=$ (equal-to relational test) 69, 375
$>$ (greater than) 69, 375
\geq (greater than or equal to) 69,375
$\sqrt{ }($ (square root) 41, 376
${ }^{2}$ (square) 41, 375
${ }^{3}$ (cube) 45, 374
$\sqrt[3]{ }$ ((cube root) 45, 375
- Dec (to decimal conversion) 44, 351

DDMS (to degrees/minutes/seconds) 68, 352
DEff((to effective interest rate) 264
-Frac (to fraction) 44, 354
PNom((to nominal interest rate) 264, 360
PPolar (to polar) 63, 362
Rect (to rectangular) 63, 365
$\chi^{2} \mathrm{pdf}($ (chi-square pdf) 249
χ^{2}-Test (chi-square test) 237, 239, 249
Δ Tbl (table step variable) 118
$\Delta \mathrm{X}$ window variable 80
$\Delta \mathrm{Y}$ window variable 80
Fcdf(249
Fpdf(249
\{ \} (list indicator) 167
${ }^{-1}$ (inverse) 41

Numerics

10^((power of ten) 375
1-PropZInt (one-proportion z confidence interval) 237, 363
1-PropZTest (one-proportion z test) 233, 363
1-Var Stats (one-variable statistics) 206, 371
2-PropZInt (two-proportion z confidence interval) 237, 363
2-PropZTest (two-proportion z test) 233, 363
2-SampFTest (two-sample F-Test) 240, 366
2-SampTInt (two-sample t confidence interval) 236, 366
2-SampTTest (two-sample t test) 232, 367
2-SampZInt (two-sample z confidence interval) 235, 366
2-SampZTest (two-sample z test) 231, 366
2-Var Stats (two-variable statistics) 206, 371

A

a+bi (rectangular complex mode) 14, 57, 349
about 325
above graph style 77
abs((absolute value) 52, 62, 154, 348
AC adapters 36
accuracy information
computational and graphing 392
function limits and results 393
graphing 84
addition (+) 41, 376
alpha cursor 11
alpha-lock 20
alternative hypothesis 226
amortization
$\Sigma \operatorname{lnt}($ (sum of interest) 357
$\Sigma \operatorname{Prn}($ (sum of principal) 362
bal((amortization balance) 261, 349
calculating schedules 261
formula 382
and (Boolean operator) 71, 348
ANGLE menu 67
angle modes 13
angle(62, 348
animate graph style 77
ANOVA((one-way variance analysis) 243, 348, 379
Ans (last answer) 25, 327, 348
APD (Automatic Power Down) 5
applications See examples, applications 40
Apps 22, 327
AppVars 22, 327
arccosine ($\cos ^{-1}() 41$
Archive 23, 328, 348
archive full error 338, 388
garbage collection 336
memory error 336
archived variables 378
arcsine ($\sin ^{-1}() 41$
arctangent (tan ${ }^{-1}$ () 41
Asm(292, 348
AsmComp (292, 348
AsmPrgm (292, 348
assembly language programs 292
augment(160, 178, 348
Automatic Power Down (APD) 5
automatic regression equation 202
automatic residual list (RESID) 201
axes format, sequence graphing 111
axes, displaying (AxesOn, AxesOff) 349
AxesOff 349
AxesOn 349

B

backing up calculator memory 344, 346
bal((amortization balance) 261, 349
batteries 32
charging 36
status 36
troubleshooting 37
below graph style 77
binomcdf(251, 349
binompdf(250, 349
block 336
Boolean logic 70
box pixel mark (\square) 135, 218
Boxplot plot type (凹) 218
busy indicator 11

C

C/Y (compounding-periods-per-year variable) 257, 265
$\chi^{2} \mathrm{cdf}($ (chi-square cdf) 349
$\chi^{2} \mathrm{pdf}($ (chi-square pdf) 349
χ^{2}-Test (chi-square test) 349
CALCULATE menu 91
Calculate output option 225, 227
cash flow
calculating 260
formula 383
$\operatorname{irr}($ (internal rate of return) 261, 357
npv((net present value) 261, 361
CATALOG 268
Catalog Help 19, 31
CBL $2^{\text {TM }} 291,343,355$
CBR ${ }^{\text {™ }} 291,343,355$
charge status
LED indicator 36
charging batteries 36
troubleshooting 37
charging station 35
check memory 325
checkTmr((check timer) 349
Chi 239
chi-square $\operatorname{cdf}\left(\chi^{2} \operatorname{cdf}()\right.$ 249, 349
chi-square goodness of fit test 239
chi-square pdf (χ^{2} pdf() 249, 349
chi-square test (χ^{2}-Test) 237, 239, 349
Circle((draw circle) 132, 349
classroom use
TI-84 Plus C 1
TI-Navigator ${ }^{\text {TM }} 1$
Clear Entries 325, 350
clearing
all lists (ClrAllLists) 325, 350
drawing (ClrDraw) 125, 350
entries (Clear Entries) 325, 350
home screen (ClrHome) 291, 350
list (ClrList) 200, 350
table (CIrTable) 291, 350
Clock 16
ClockOff, turn clock off 350
ClockOn, turn clock on 350
ClrAllLists (clear all lists) 325, 350
ClrDraw (clear drawing) 125, 350
ClrHome (clear home screen) 291, 350
ClrList (clear list) 200, 350
ClrTable (clear table) 291, 350
coefficients of determination (r2, R2) 202
colon separator (:) 279
color
DRAW commands 1
graph format screen 1, 2
spinner 1
stat plots 1
$\mathrm{Y}=$ editor 1,2
color on the TI-84 Plus C 1
combinations (nCr) 64, 360
compiling an assembly program 292, 348
complex
modes (a+bi, re^ θ i) 14, 57, 349, 364
numbers 14, 57, 364
compounding-periods-per-year variable (C/Y) 257, 265
concatenation (+) 272, 376
confidence intervals 40, 227
conj((conjugate) 61, 350
connecting two calculators 342, 343, 345
contrast (display) 6
convergence, sequence graphing 113
conversions
Dec (to decimal) 44, 351
DDMS (to degrees/minutes/ seconds) 68, 352
DEff (to effective interest rate) 264
4F3 4D 56
PFrac (to fraction conversion) 44, 354
4n/d3 4Un/d 56
Nom (to nominal interest rate conversion) 264, 360
PPolar (to polar conversion) 63, 362
Rect (to rectangular conversion) 63, 365
EqulString ((equation-to-string conversion) 272, 353
List>matr((list-to-matrix conversion) 161, 179, 358
Matrlist((matrix-to-list conversion) 160, 179, 359
P>Rx(, P>Ry ((polar-to-rectangular conversion) 68, 364
R $>\operatorname{Pr}($ R $\quad \operatorname{PP} \theta($ (rectangular-to-polar conversion) 68
$R>\operatorname{Pr}($, $\mathrm{R} P \mathrm{P} \theta$ ((rectangular-to-polar conversion) 366
String Equ((string-to-equation conversion) 273, 369
convert time, timeCnv() 370
CoordOff 82, 350
CoordOn 82, 350
correlation coefficient (r) 202
\cos ((cosine) 41, 350
$\cos ^{-1}$ ((arccosine) 41, 350
cosh((hyperbolic cosine) 275, 350
$\cosh ^{-1}$ ((hyperbolic arccosine) 275, 350
cosine ($\cos ($) 41
cosine (cos() 350
cross pixel mark (+) 135, 218
cube (3) 45, 374
cube root $(\sqrt[3]{ }() 45$
cube root $(\sqrt[3]{ }()) 375$
cubic regression (CubicReg) 207, 350
CubicReg (cubic regression) 207, 350
cumSum ((cumulative sum) 161, 175, 350
cumulative sum (cumSum() 161, 175
cumulative sum (cumSum() 350
cursors 11, 20

D

Data input option 225, 226
dayOfWk((day of week) 351
days between dates (dbd () 264
days between dates $(\mathrm{dbd}()$ 351, 384
dbd((days between dates) 264, 351, 384
decimal mode (float or fixed) 13
decrement and skip (DS<() 285
decrement and skip (DS<() 352
definite integral 46, 93, 100
defragmenting 336
Degree angle mode 13, 67, 351
degrees notation (${ }^{\circ}$) 68, 374
delete variable contents (DelVar) 286, 351
deleting items from memory 327
DependAsk 118, 120, 351
DependAuto 118, 120, 351
derivative See numerical derivative 40
det((determinant) 158, 351
determinant (det() 158
determinant (det() 351
DiagnosticOff 202, 351
DiagnosticOn 202, 351
diagnostics display mode(r, r2, R2) 202
differentiation 47, 93, 100, 105
dim((dimension) 158, 174, 351
dimensioning a list or matrix 158, 174, 351
Disp (display) 289, 352
DispGraph (display graph) 290, 352
display brightness 6
display cursors 11
Displaying the Clock Settings 16
DispTable (display table) 290, 352
DISTR (distributions menu) 246
DISTR DRAW (distributions drawing menu) 252
distribution functions
binomcdf(251, 349
binompdf(250, 349
$\chi^{2} \mathrm{cdf}(349$
$\chi^{2} \operatorname{pdf}(349$
Fcdf(248, 370
Fpdf(248, 370
geometcdf(252, 355
geometpdf(252, 355
invNorm(247, 357
normalcdf(247, 361
normalpdf(247, 361
poissoncdf(251, 362
poissonpdf(251, 362
distribution shading instructions
Shade_t (253, 368
Shade $\chi^{2}(253,368$
ShadeF (254, 368
ShadeNorm(253, 368
division (/) 41, 376
Δ List(176, 358
DMS (degrees/minutes/seconds entry notation) 67, 376
dot graph style 77
dot pixel mark (•) 135, 218
$\mathrm{dr} / \mathrm{d} \theta$ operation on a graph 105
DRAW menu 124
Draw output option 225, 227
DRAW POINTS menu 134
DRAW STO (draw store menu) 137
DrawF (draw a function) 129, 352
drawing on a graph
circles (Circle() 132
functions and inverses (DrawF, DrawInv) 129
line segments (Line() 126
lines (Horizontal, Line(, Vertical) 128
points (Pt-Change, Pt-Off, Pt-On) 134
tangents (Tangent) 128
text (Text) 133
using Pen 134
Drawlnv (draw inverse) 130, 352
DS<((decrement and skip) 285, 352
DuplicateName menu 345
$d x / d t$ operation on a graph 93, 100
dy/dx operation on a graph 93, 100, 105

E

E (exponent) 13, 19, 352
e^((exponential) 42, 352
edit keys table 20
Else 282
End 283, 353
Eng (engineering notation mode) 13, 353
ENTRY (last entry key) 24
entry cursor 11
EOS (Equation Operating System) 16
eqn (equation variable) 47
Equ String((equation-to-string conversion) 272, 353
equal-to relational test (=) 69, 375
Equation Operating System (EOS) 16
Equation Solver 47
equations with multiple roots 51
errors
diagnosing and correcting 37
messages 388
examples-applications
area between curves 314
areas of regular n-sided polygons 319
box plots 305
box with lid 297
defining a 297
defining a table of values 298
setting the viewing window 300
tracing the graph 301
zooming in on the graph 302
zooming in on the table 299
cobweb attractors 311
fundamental theorem of calculus 317
guess the coefficients 312
inequalities 308
mortgage payments 322
parametric equations, ferris wheel problem 315
piecewise functions 306
quadratic formula
converting to a fraction 295
displaying complex results 296
entering a calculation 295
Sierpinski triangle 310
solving a system of nonlinear equations 309
unit circle and trig curves 313
examples-Getting Started
coin flip 40
compound interest 256
drawing a tangent line 123
financing a car 255
forest and trees 106
generating a sequence 164
mean height of a population 222
path of a ball 95
pendulum lengths and periods 183
polar rose 101
roots of a function 117
sending variables 339
solving a system of linear equations 147
unit circle 140
volume of a cylinder 276
examples-miscellaneous
calculating outstanding loan balances 262
convergence 113
daylight hours in Alaska 210
predator-prey model 115
examplesóGetting Started
graphing a circle 72
exponential regression (ExpReg) 208, 353
expr((string-to-expression conversion) 273, 353
ExpReg (exponential regression) 208, 353
expression 18
converting from string (expr() 273
converting from string (expr() 353
turning on and off (ExprOn 82, 353
ExprOff (expression off) 82, 353
ExprOn (expression on) 82, 353

F

Faceplates 31
factorial (!) 374
family of curves 83
Fill(159, 353
FINANCE CALC menu 258
FINANCE VARS menu 265
financial functions
amortization schedules 261
cash flows 260
days between dates 264
interest rate conversions 264
payment method 264
time value of money (TVM) 258
Fix (fixed-decimal mode) 13, 353
fixed-decimal mode (Fix) 13, 353
Float (floating-decimal mode) 13, 354
floating-decimal mode (Float) 13, 354
fMax((function maximum) 354
fMin((function minimum) 45, 354
fnInt((function integral) 46, 354
FnOff (function off) 77, 354
FnOn (function on) 77, 354
For (283, 354
format settings 81, 111
formulas
amortization 382
ANOVA 379
cash flow 383
days between dates 384
interest rate conversions 383
logistic regression 379
sine regression 379
time value of money 381
two-sample F-Test 380
two-sample t test 381
fPart((fractional part) 53, 156, 354
fractions
n/d 15, 57
Un/d 15, 57
free-moving cursor 84
frequency 206
Full (full-screen mode) 15, 354
full-screen mode (Full) 15, 354
Func (function graphing mode) 13, 354
function graphing
accuracy 84
CALC (calculate menu) 91
defining and displaying 73
defining in the $Y=$ editor 74
defining on the home screen, in a program 75
deselecting 76
displaying $73,80,82$
$\Delta \mathrm{X}$ and $\Delta \mathrm{Y}$ window variables 80
evaluating 76
family of curves 83
format settings 81
free-moving cursor 84
graph styles 77
maximum of (fMax() 45
maximum of (fMax() 354
minimum of (fMin() 354
modes $13,74,354$
moving the cursor to a value 85
overlaying functions on a graph 83
panning 85
pausing or stopping a graph 82
Quick Zoom 85
selecting 76, 77, 354
shading 78
Smart Graph 83
tracing 84
viewing window 79
window variables 80
$\mathrm{Y}=$ editor 74
ZOOM MEMORY menu 90
ZOOM menu 86
function integral (fnlnt() 46
function integral (fnInt() 354
function, definition of 19
functions and instructions table 348
future value 257, 260
FV (future-value variable) 257, 265

G

garbage collecting 336
GarbageCollect 337, 354
$\operatorname{gcd}($ (greatest common divisor) 55, 354

GDB (graph database) 138
geometcdf(252, 355
geometpdf(252, 355
Get((get data from CBL $2^{\text {TM }}$ or CBR ${ }^{\text {TM }}$) 291, 355
GetCalc((get data from TI-84 Plus) 291, 355
getDate, get current date 355
getDtFmt, get date format 355
getDtStr((get date string) 355
getKey 290, 355
getTime, get current time 355
Getting Started See examples, Getting Started 40
getTmFmt, get time format 355
getTmStr((get time string) 355
Goto 284, 356
graph database (GDB) 138
graph style
above 77
animate 77
below 77
dot 77
line 77
path 77
shade above 77
shade below 77
thick 77
graph styles 77
graphing modes 13
graphing-order modes 14
GraphStyle(286, 356
graph-table split-screen mode (G-T) 15, 143
greater than (>) 69, 375
greater than or equal to (\geq) 69, 375
greatest common divisor $(\operatorname{gcd}() 55$
greatest common divisor $(\operatorname{gcd}() 354$
greatest integer (int() 54, 156
greatest integer (int() 357
GridOff 82, 356
GridOn 82
grouping 333
G-T (graph-table split-screen mode) 15, 143

H

Histogram plot type (Nmb) 217
home screen 6
scrolling 6, 8
Horiz (horizontal split-screen mode) 15, 142, 356
Horizontal (draw line) 128, 356
hyperbolic functions 275
hypothesis tests 228

I

i (complex number constant) 59
I\% (annual interest rate variable) 257, 265
identity(159, 356
If instructions
If 281, 356
If-Then 282, 356
If-Then-Else 282, 356
imag((imaginary part) 62, 356
imaginary part (imag() 62
imaginary part (imag() 356
implied multiplication 17
increment and skip (IS>() 285
increment and skip (IS>() 357
independent variable 118, 120, 356
IndpntAsk 118, 120, 356
IndpntAuto 118, 120, 357
inferential stat editors 225
inferential statistics
alternative hypotheses 226
bypassing editors 227
calculating test results (Calculate) 227
confidence interval calculations 227
data input or stats input 226
entering argument values 226
graphing test results (Draw) 227
input descriptions table 244
pooled option 226
STAT TESTS menu 227
test and interval output variables 245
inferential statistics See stat tests 40
Input 288, 357
insert cursor 11
inserting
calculators in charging station 36
inString((in string) 273, 357
instruction, definition of 19
int((greatest integer) 54, 156, 357
integer part (iPart() 53, 156
integer part (iPart()) 357
integral See numerical integral 40
interest rate conversions
DEff((compute effective interest rate) 264
Nom((compute nominal interest rate) 264
calculating 264
formula 383
internal rate of return (irr() 261
internal rate of return (irr() 357
intersect operation on a graph 92
inverse $\left(^{-1}\right) 41,375$
inverse cumulative normal distribution (invNorm() 247
inverse cumulative normal distribution (invNorm() 357
inverse trig functions 41
invNorm((inverse cumulative normal distribution) 247, 357
invT (inverse Student T distribution) 248
iPart((integer part) 53, 156, 357
$\operatorname{irr}($ (internal rate of return) 261, 357
IS>((increment and skip) 285, 357
isClockOn, is clock on 357

K

keyboard
layout 3
math operations 40
key-code diagram 291

L

L (user-created list name symbol) 180
LabelOff 82, 357
LabelOn 82, 357
labels
graph 82, 357
program 284, 358
Last Entry 24
Lbl (label) 284, 358
Icm ((least common multiple) 55, 358
least common multiple (lcm() 55
least common multiple (lcm () 358
LED lights 36
length(of string 273, 358
less than (<) 69, 375
less than or equal to (\leq) 69, 375
line graph style 77
line segments, drawing 126
Line((draw line) 127, 358
lines, drawing 127, 128
LINK RECEIVE menu 345
LINK SEND menu 343
linking
receiving items 345
to a CBL $2^{\text {TM }}$ or CBR ${ }^{\text {TM }} 343$
to a PC or Macintosh 343
to a TI-84 Plus Silver Edition or TI-84 Plus 346
transmitting items 339
two TI-84 Plus units 344
Link-Receive L1 (or any file) to Restore message 385
LinReg(a+bx) (linear regression) 208, 358
LinReg(ax+b) (linear regression) 207, 358
LinRegTTest (linear regression t test) 241, 358
LinReqTInt (confidence interval for slope) 241
LIST MATH menu 180
LIST NAMES menu 168
LIST OPS menu 173
Listrmatr((lists-to-matrix conversion) 161, 179, 358
lists
accessing an element 167
attaching formulas 169, 170, 194
clearing all elements 192
copying 167
creating 166, 191
deleting from memory 168, 327
detaching formulas 171, 196
dimension 167
entering list names 169, 191
indicator ($\{$ \}) 167
naming lists 165
storing and displaying 167
using to graph a family of curves 83,168
using with math operations 40, 172
$\ln (42,358$
LnReg (logarithmic regression) 208, 358
$\log (42,358$
Logistic (regression) 209, 359
logistic regression formula 379

M

Manual Linear Fit 204, 210
marked for deletion 336
MATH CPX (complex menu) 61
MATH menu 43
MATH NUM (number menu) 51
math operations 40
MATH PRB (probability menu) 64
Matrlist((matrix-to-list conversion) 160, 179, 359
matrices
accessing elements 153
copying 152
defined 148
deleting from memory 149
dimensions 148,158
displaying a matrix 152
displaying matrix elements 148
editing matrix elements 150
indicator ([]) 151
math functions 153
matrix math functions ($\operatorname{det}\left({ }^{\top}, \operatorname{dim}\right.$ (, Fill(, identity(, randM(, augment(, Matrlist(, Listrmatr(, cumSum() 157
quick matrix 145
relational operations 156
row operations (ref(, rref(, rowSwap(, row+(, *row(, *row+() 161
selecting 148
viewing 149
MATRX EDIT menu 148
MATRX MATH menu 157
max((maximum) 54, 180, 359
maximum of a function (fMax() 45
maximum of a function (fMax() 354
maximum operation on a graph 92
mean(181, 359
Med(Med (median-median) 207
median(181, 359
Med-Med (median-median) 359
Mem Mgmt/Del menu 326
memory
backing up 346
checking available 325
clearing all list elements from 328
clearing entries from 327
deleting items from 327
error 337
insufficient during transmission 347
resetting defaults 331
resetting memory 331
MEMORY menu 325
Menu((define menu) 285, 359
menus 25, 26
defining (Menu() 285
defining (Menu() 359
scrolling 26
shortcut 3, 9
$\min ($ (minimum) 54, 180, 359
minimum of a function (fMin() 45
minimum of a function (fMin() 354
minimum operation on a graph 92
minutes notation (') 67, 376
ModBoxplot plot type (마-․) 217
mode
Answers 15
Classic 7, 13
MathPrint 7, 13
mode settings 11
a+bi (complex rectangular) 14, 57, 349
Degree (angle) 13, 68, 351
Eng (notation) 13, 353
Fix (decimal) 13, 353
Float (decimal) 13, 354
Full (screen) 15, 354
Func (graphing) 13, 354
G-T (screen) 15
Horiz (screen) 15, 356
Normal (notation) 13, 360
Par/Param (graphing) 13, 361
Pol/Polar (graphing) 13, 362
Radian (angle) 13, 68, 364
re^ ${ }^{\wedge}$ i (complex polar) 14, 57
re^ $\mathrm{ei}^{\text {(complex polar) } 364}$
Real 14, 364
Sci (notation) 13, 367
Seq (graphing) 13, 367
Sequential (graphing order) 367
Simul (graphing order) 14, 368
modified box plot type (마-*) 217
multiplication (*) 41, 376
multiplicative inverse 41

N

\mathbf{N} (number of payment periods variable) 257, 265
n/d 15, 57
nCr (number of combinations) 64, 360
nDeriv((numerical derivative) 46, 360
negation (-) 17, 43, 375
nonrecursive sequences 109
normal distribution probability (normalcdf() 247,

361

Normal notation mode 13, 360
normal probability plot type (\llcorner) 218
normalcdf((normal distribution probability) 247
normalpdf((probability density function) 247, 361
NormProbPlot plot type (\llcorner) 218
not equal to $(\neq) 69,375$
not((Boolean operator) 71, 361
nPr (permutations) 64, 361
npv((net present value) 261, 361
numerical derivative 46, 93, 100, 105
numerical integral 46, 93

0

Omit 335, 345
one-proportion z confidence interval (1-PropZInt)

237, 363

one-proportion z test (1-PropZTest) 233, 363
one-sample t confidence interval (TInterval) 235, 370
one-variable statistics (1-Var Stats) 206, 371
or (Boolean) operator 71, 361
order of evaluating equations 16
Output(144, 290, 361
Overwrite 335, 345
Overwrite All 335

P

P/Y (number-of-payment-periods-per-year variable) 257, 265
$\mathrm{P} \backslash \mathrm{Rx}($, $\mathrm{P} \backslash \mathrm{Ry}$ ((polar-to-rectangular conversions) 68, 364
panning 85
Par/Param (parametric graphing mode) 13, 361
parametric equations 98
parametric graphing
CALC (calculate operations on a graph) 100
defining and editing 98
free-moving cursor 99
graph format 98
graph styles 97
moving the cursor to a value 100
selecting and deselecting 98
setting parametric mode 97
tracing 99
window variables 98
$\mathrm{Y}=$ editor 97
zoom operations 100
parentheses 17
path graph style 77
Pause 284, 361
pausing a graph 82
Pen 134
permutations (nPr) 64, 361
phase plots 115
Pic (pictures) 137
pictures (Pic) 137
pixels in Horiz/G-T modes 144
Plot1 (218, 361
Plot2 218,361
Plot3(218, 361
PlotsOff 220, 362
PlotsOn 220, 362
plotting stat data 216
PMT (payment amount variable) 257, 265
Pmt_Bgn (payment beginning variable) 265, 362
Pmt_End (payment end variable) 265, 362
poissoncdf(251, 362
poissonpdf(251, 362
Pol/Polar (polar graphing mode) 13, 102, 362
polar equations 102
polar form, complex numbers 60
polar graphing
CALC (calculate operations on a graph) 105
defining and displaying 102
equations 102
free-moving cursor 104
graph format 103
graph styles 102
mode (Pol/Polar) 13, 102, 362
moving the cursor to a value 104
selecting and deselecting 103
tracing 104
window variables 103
$\mathrm{Y}=$ editor 102
ZOOM operations 105
PolarGC (polar graphing coordinates) 82, 362
pooled option 225, 226
power (^) 41, 375
power of ten (10^() 42
power of ten (10^{\wedge} () 375
present value 257, 259
previous entry (Last Entry) 24
prgm (program name) 286, 362
PRGM CTL (program control menu) 281
PRGM EDIT menu 280
PRGM EXEC menu 280
PRGM NEW menu 277
probability 64
probability density function (normalpdf() 247
probability density function (normalpdf() 361
prod((product) 181, 363
programming
copying and renaming 280
creating new 277
defined 277
deleting 278
deleting command lines 280
editing 280
entering command lines 279
executing 279
inserting command lines 280
instructions 281
name (prgm) 286, 362
renaming 280
running assembly language program 292
stopping 279
subroutines 292
Prompt 289, 363
Pt-Change(135, 363
Pt-Off(135, 363
Pt-On(134, 363
PV (present value variable) 257, 265
p-value 245
PwrReg (power regression) 209, 363
Pxl-Change(363
Pxl-Off(363
Pxl-On(363
pxI-Test(363

Q

QuadReg (quadratic regression) 207, 364
QuartReg (quartic regression) 208, 364
Quick Zoom 85
Quit 335, 346

R

r (correlation coefficient) 202
r (radian notation) 68, 374
r2, R2 (coefficients of determination) 202
R $>\operatorname{Pr}($, R>P θ ((rectangular-to-polar conversions) 68

R $\operatorname{Pr}($, $\mathrm{R} P \mathrm{P} \theta($ (rectangular-to-polar conversions) 366
Radian angle mode 13, 68, 364
radian notation (${ }^{(}$) 68,374
RAM ARCHIVE ALL menu 331
rand (random number) 64, 364
randBin((random binomial) 66, 364
randInt((random integer) 65, 364
randIntNoRep(67
randM((random matrix) 159, 364
randNorm((random Normal) 66, 364
random seed 64
RCL (recall) 23
$\mathrm{re}^{\wedge}(\theta \mathrm{i})$ (polar complex mode) 14
re^ ${ }^{\wedge}$ i (polar complex mode) 57
$r^{\wedge}{ }^{\wedge}$ i (polar complex mode) 364
Real mode 14, 364
real((real part) 61, 364
RecalIGDB 139, 364
RecallPic 137, 365
rechargeable batteries
status 36
troubleshooting 37
rectangular form, complex numbers 59
RectGC (rectangular graphing coordinates) 82, 365
recursive sequences 109
re-enabling a disabled calculator 385
ref((row-echelon form) 161, 365
RegEQ (regression equation variable) 202, 327
regression model
automatic regression equation 202
automatic residual list feature 201
diagnostics display mode 202
models 206
relational operations 69, 156
Removing a Faceplate 32
Repeat 284, 365
RESET MEMORY menu 333
resetting
all memory 333
archive memory 332
defaults 331
memory 331
RAM memory 331
residual list (RESID) 201
Return 286, 365
$\operatorname{root}(\times \sqrt{ }) 45,374$
root of a function 92
round(52, 154, 365
row+(365
rowSwap(162, 366
rref((reduced-row-echelon form) 161, 366

S

Sci (scientific notation mode) 13, 367
scientific notation 19
screen modes 15
second cursor (2nd) 11
second key (2nd) 4
seconds DMS notation (") 67
sector 336

Select(176, 367
selecting
data points from a plot 177
functions from the home screen or a program 77
functions in the $\mathrm{Y}=$ editor 76
stat plots from the $\mathrm{Y}=$ editor 76
Send((send to CBL $2^{\text {TM }}$ or CBR $^{\text {TM }}$) 291, 367
SendID 343
sending See transmitting 40
SendSW 343
Seq (sequence graphing mode) 13, 367
seq((sequence) 175, 367
sequence graphing
axes format 111
CALC (calculate menu) 112
evaluating 112
free-moving cursor 111
graph format 111
graph styles 108
moving the cursor to a value 112
nonrecursive sequences 109
recursive sequences 109
selecting and deselecting 108
tracing 111
web plots 113
window variables 110
Y= editor 107
ZOOM (zoom menu) 112
Sequential (graphing order mode) 367
setDate((set date) 367
setDtFmt((set date format) 367
setTime((set time) 367
setting
display contrast 6
graph styles 78
graph styles from a program 79
modes 12
modes from a program 12
split-screen modes 141
split-screen modes from a program 144
tables from a program 118
setTmFmt((set time format) 367
SetUpEditor 200, 367
shade above graph style 77
shade below graph style 77
Shade_t (253, 368
Shade(130, 368
Shade χ^{2} (253,368
ShadeF(254, 368
ShadeNorm(253, 368
shading graph areas 78, 130
Simul (simultaneous graphing order mode) 14, 368
\sin ((sine) 41, 368
$\sin ^{-1}($ (arcsine) 41, 368
sine $(\sin () 41$
sine ($\sin ($) 368
$\sinh ($ (hyperbolic sine) 275, 368
$\sinh ^{-1}$ ((hyperbolic arcsine) 275, 368
SinReg (sinusoidal regression) 209, 368
Smart Graph 83
solve(51, 368

Solver 47
solving for variables in the equation solver 49
SortA((sort ascending) 173, 200, 368
SortD((sort descending) 173, 200, 369
spinner 1
split-screen modes
G-T (graph-table) mode 143
Horiz (horizontal) mode 142
setting 141, 144
split-screen values 134,144
square (${ }^{2}$) 41,375
square root $(\sqrt{ }() 41$
square root ($\sqrt{ }() 376$
startTmr, start timer 369
STAT CALC
Stat Wizards 204
STAT CALC menu 204
STAT EDIT menu 200
stat list editor
attaching formulas to list names 194
clearing elements from lists 192
creating list names 191
detaching formulas from list names 196
displaying 190
edit-elements context 198
editing elements of formula-generated lists 196
editing list elements 192
entering list names 191
enter-names context 199
formula-generated list names 195
removing lists 192
restoring list names L1-L6 192
switching contexts 196
view-elements context 198
view-names context 199
STAT PLOTS menu 218
stat tests and confidence intervals
1-PropZInt (one-proportion z confidence interval) 237
1-PropZTest (one-proportion z test) 233
2-PropZInt (two-proportion z confidence interval) 237
2-PropZTest (two-proportion z test) 233
2-SampFTest (two-sample F-Test) 240
2-SampTInt (two-sample t confidence interval) 236
2-SampTTest (two-sample t test) 232
2-SampZInt (two-sample z confidence interval) 235
2-SampZTest (two-sample z test) 231
ANOVA((one-way analysis of variance) 241
χ^{2}-Test (chi-square test) 237, 239
χ^{2}-Test (chi-square test) 237, 239
LinRegTTest (linear regression t test) 241
TInterval (one-sample t confidence interval) 235
T-Test (one-sample t test) 229
ZInterval (one-sample z confidence interval) 234
Z-Test (one-sample z test) 228
STAT TESTS menu 227
STAT WIZARDS 204, 205
statistical distribution functions See distribution functions 40
statistical plotting 216
Boxplot (regular box plot) 218
defining 218
from a program 220
Histogram 217
ModBoxplot (modified box plot) 217
NormProbPlot (normal probability plot) 218
tracing 220
turning on/off stat plots 76, 220
viewing window 220
xyLine 217
statistical variables table 215
Stats input option 225, 226
status
LED indicator 36
rechargeable batteries 36
status bar 9
stdDev((standard deviation) 182, 369
Stop 286, 369
Store (\rightarrow) 22, 369
StoreGDB 138, 369
StorePic 137, 369
storing
graph databases (GDBs) 138
graph pictures 137
TI-84 Plus C Charging Stations 37
variable values 22
String Equ((string-to-equation conversions) 273, 369
strings
concatenation (+) 272, 376
converting 272
defined 270
displaying contents 271
entering 270
functions in CATALOG 272
indicator (") 270
length (length() 273
length (length() 358
storing 271
variables 271
student- t distribution
probability density function (tpdf() 248
probability density function (tpdf() 370
student- t distribution
probability ($\operatorname{tcdf}($) 248
probability (tcdf() 370
sub((substring) 274, 369
subroutines 286
subtraction (-) 41, 376
sum((summation) 181, 369
system variables 378

T

${ }^{\top}$ (transpose matrix) 158, 374
TABLE SETUP screen 117
tables
description 119
variables 118
tan((tangent) 41, 369
$\tan ^{-1}($ (arctangent) 41, 369
tangent (tan() 41
tangent ($\tan () 369$
tangent lines, drawing 128
Tangent((draw line) 128, 370
tanh((hyperbolic tangent) 275, 370
tanh $^{-1}$ ((hyperbolic arctangent) 275, 370
TblStart (table start variable) 118
tcdf((student- t distribution probability) 248, 370
TEST (relational menu) 69
TEST LOGIC (Boolean menu) 70
Text(
instruction 133, 144, 370
placing on a graph 133, 144
Then 282, 356
thick graph style 77
TI Connect ${ }^{\text {™ }} 343$
TI Rechargeable Batteries charging 36
TI-84 Plus
key code diagram 291
TI-84 Plus C Charging Stations 35
storing 37
Time axes format 111, 370
time value of money (TVM)
C / Y variable (number of compounding periods per year) 265
calculating 258
formulas 381
FV variable (future value) 265
I\% variable (annual interest rate) 265
\mathbf{N} variable (number of payment periods) 265
P/Y variable (number of payment periods per year) 265
PMT variable (payment amount) 265
PV variable (present value) 265
TVM Solver 257
tvm_FV (future value) 260, 371
tvm_I\% (interest rate) 259
tvm_1\% (interest rate) 371
tvm_N (\# payment periods) 260, 371
tvm_Pmt (payment amount) 259, 371
tvm_PV (present value) 259, 371
variables 265
timeCnv(), convert time 370
TI-Navigator ${ }^{\text {TM }}$ software and the TI-84 Plus C 1
TInterval (one-sample t confidence interval) 235
TInterval (one-sample t confidence interval) 370
tpdf((student- t distribution probability density
function) 248, 370
TRACE
cursor 85
entering numbers during 85, 100, 104, 111
expression display 82,85
Trace instruction in a program 85, 370
transmitting
error conditions 346
from a TI-83 346
from a TI-83 Plus Silver Edition or TI-83 Plus 346
from a TI-84 Plus Silver Edition or TI-84 Plus 346

stopping 344

to a TI-84 Plus Silver Edition or TI-84 Plus 344
transpose matrix ${ }^{(T)} 158,374$
trigonometric functions 41
troubleshooting 37
T-Test (one-sample t test) 229, 371
turn clock off, ClockOff 350
turn clock on, ClockOn 350
turning on and off
coordinates 82
expressions 82
functions 76
grid 82
labels 82
points 134
stat plots 76, 220
tvm_FV (future value) 260, 371
tvm_I\% (interest rate) 259
tvm_1\% (interest rate) 371
tvm_N (\# payment periods) 260, 371
tvm_Pmt (payment amount) 259, 371
tvm_PV (present value) 259, 371
two-proportion z confidence interval (2-PropZInt) 237, 363
two-proportion z test (2-PropZTest) 233, 363
two-sample F-Test formula 380
two-sample t test formula 381
two-variable statistics (2-Var Stats) 206, 371

U

u sequence function 107
Un/d 15, 57
UnArchive 23, 328, 371
ungrouping 333
user variables 378
uv/uvAxes (axes format) 111, 371
uw/uwAxes (axes format) 111, 371

V

v sequence function 107
value operation on a graph 91
variables
complex 21
displaying and storing values 22
equation solver 49
graph databases 21
graph pictures 21
independent/dependent 120
list 21, 165
matrix 21, 148
real 21
recalling values 23
solver editor 48
statistical 215
string 271
test and interval output 245
types 21
user and system 22, 378
VARS and Y-VARS menus 28
variance of a list (variance() 182

```
variance of a list (variance( ) 372
variance( (variance of a list) 182,372
VARS menu
    GDB 28
    Picture 28
    Statistics 28
    String }2
    Table 28
    Window }2
    Zoom 28
Vertical (draw line) 128, }37
viewing window }7
vw/uvAxes (axes format) 111, 372
```


W

```
w sequence function 107
Web (axes format) 111, 372
web plots 113
While 283, 372
window variables
function graphing 80
parametric graphing 99
polar graphing 103
```


\mathbf{X}

```
\(\sqrt[x]{ }\) (root) 374
XFact zoom factor 90
x-intercept of a root 92
xor (Boolean) exclusive or operator 71, 372 xth root \((\sqrt[x]{ }) 45\)
xyLine ( \((\sim \sim)\) ) plot type 217
```


Y

```
\(Y=\) editor
function graphing 74
```

parametric graphing 97
polar graphing 102
sequence graphing 107
YFact zoom factor 90
Y-VARS menu
Function 28
On/Off 28
Parametric 28
Polar 28

Z

ZBox 86, 372
ZDecimal 87, 372
zero operation on a graph 92
ZInteger 88, 373
ZInterval (one-sample z confidence interval) 234, 373
zoom 86, 87, 88, 90, 91
cursor 86
factors 90
function graphing 86
parametric graphing 100
polar graphing 105
sequence graphing 112
Zoom In (zoom in) 87, 373
ZOOM MEMORY menu 90
ZOOM menu 86
Zoom Out (zoom out) 87, 373
ZoomFit (zoom to fit function) 88, 373
ZoomRcl (recall stored window) 90, 373
ZoomStat (statistics zoom) 88, 373
ZoomSto (store zoom window) 90, 373
ZPrevious (use previous window) 373
ZSquare (set square pixels) 87, 373
ZStandard (use standard window) 88, 373
Z-Test (one-sample z test) 228, 374
ZTrig (trigonometric window) 88, 374

