TI-Nspire ${ }^{\text {TM }}$ CX CAS Reference Guide

Important Information

Except as otherwise expressly stated in the License that accompanies a program, Texas Instruments makes no warranty, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding any programs or book materials and makes such materials available solely on an "as-is" basis. In no event shall Texas Instruments be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of these materials, and the sole and exclusive liability of Texas Instruments, regardless of the form of action, shall not exceed the amount set forth in the license for the program. Moreover, Texas Instruments shall not be liable for any claim of any kind whatsoever against the use of these materials by any other party.
© 2023 Texas Instruments Incorporated
Actual products may vary slightly from provided images.

Contents

Expression Templates 1
Alphabetical Listing 8
A 8
B 17
C 21
D 45
E 58
F 68
G 78
I 88
L 96
M 112
N 120
0 129
P 132
Q 141
R 143
S 158
T 183
U 199
V 200
W 201
X 203
Z 204
Symbols 213
TI-Nspire ${ }^{\text {TM }}$ CX II - Draw Commands 240
Graphics Programming 240
Graphics Screen 240
Default View and Settings 241
Graphics Screen Errors Messages 242
Invalid Commands While in Graphics Mode 242
C 243
D 244
F 247
G 249
P 250
S 252
U 254
Empty (Void) Elements 255
Shortcuts for Entering Maths Expressions 257
EOS ${ }^{\text {TM }}$ (Equation Operating System) Hierarchy 259
TI-Nspire CX II - TI-Basic Programming Features 261
Auto-indentation in Programming Editor 261
Improved Error Messages for TI-Basic 261
Constants and Values 264
Error Codes and Messages 265
Warning Codes and Messages 273
General Information 275
Index 276

Expression Templates

Expression templates give you an easy way to enter maths expressions in standard mathematical notation. When you insert a template, it appears on the entry line with small blocks at positions where you can enter elements. A cursor shows which element you can enter.

Use the arrow keys or press tab to move the cursor to each element's position, and type a value or expression for the element. Press enter or ctrlenter to evaluate the expression.

Fraction template		$\operatorname{ctrI} \div$	keys
\square	Example:		
Note: See also / (divide), page 215.	12		3
	$8 \cdot 2$		4

Exponent template		Example:
1	2^{3}	8

Note: Type the first value, press \triangle, and 2 then type the exponent. To return the cursor to the baseline, press right arrow ($)$.

Note: See also ^ (power), page 216.

Square root template

Example:
 226.

$\sqrt{4}$	2
$\sqrt{\{9, a, 4\}}$	$\{3, \sqrt{(a), 2\}}$
$\sqrt{\sqrt{4}}$	2
$\sqrt{\{9,16,4\}}$	$\{3,4,2\}$

e exponent template

Example:
$\sqrt[3]{8} \quad 2$
$\sqrt[3]{\{8,27, b\}}$
$\left\{2,3, b^{\frac{1}{3}}\right\}$

Natural exponential e raised to a power Note: See also $\mathbf{e}^{\wedge}()$, page 58.

Log template

Example:

\boldsymbol{e}^{1}	\boldsymbol{e}
$\boldsymbol{e}^{1 .}$	2.71828182846

Calculates log to a specified base. For a default of base 10, omit the base.

Note: See also $\log ()$, page 107.

Piecewise template (2-piece)
Example:

$\log _{4}(2)$.	0.5

$\left\{\begin{array}{l}{[1, ?} \\ \square, ?,\end{array}\right.$
Lets you create expressions and conditions for a two-piece piecewise function. To add a piece, click in the template and repeat the template.

Note: See also piecewise(), page 133.

Catalogue >
1010
Example:

Lets you create expressions and conditions for an N -piece piecewise function. Prompts for N.

Example:
See the example for Piecewise template (2-piece).

Note: See also piecewise(), page 133.

System of 2 equations template

Catalogue >
Example:
solve $\left(\left\{\begin{array}{l}x+y=0 \\ x-y=5\end{array}, x, y\right) \quad x=\frac{5}{2}\right.$ and $y=\frac{-5}{2}$
solve $\left(\left\{\begin{array}{l}y=x^{2}-2 \\ x+2 \cdot y=-1\end{array}, x, y\right)\right.$

$$
x=\frac{-3}{2} \text { and } y=\frac{1}{4} \text { or } x=1 \text { and } y=-1
$$

System of \mathbf{N} equations template

Catalogue >

1010

Lets you create a system of Nequations. Prompts for N.

Example:
See the example for System of equations template (2equation).

Note: See also system(), page 183.

Absolute value template

Catalogue >

Note: See also abs(), page 8.
Example:

dd ${ }^{\circ} \mathbf{m m}{ }^{\prime}$ ss．ss ${ }^{\prime \prime}$ template		Catalogue $>$ 比保
－＇o	Example：	
Lets you enter angles in dd $^{\circ}{ }^{\circ} \mathrm{mm}^{\prime}$ ss．ss＂${ }^{\prime \prime}$ format，where dd is the number of	$30^{\circ} 15^{\prime} 10^{\prime \prime}$	$\frac{10891 \cdot \pi}{64800}$

decimal degrees， mm is the number of minutes，and ss．ss is the number of seconds．

Matrix template（2 x 2）

Catalogue＞
｜ $10 \mid$ 保
［an

Example：
$\left.\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \cdot a \quad\left[\begin{array}{cc}a & 2 \cdot a \\ 3 \cdot a & 4 \cdot a\end{array}\right]$

Creates a 2×2 matrix．
Matrix template（1 x 2）Catalogue $>$ 近保

Example：
$\operatorname{cross} P\left(\left[\begin{array}{ll}1 & 2\end{array}\right],\left[\begin{array}{ll}3 & 4\end{array}\right]\right) \quad\left[\begin{array}{lll}0 & 0 & -2\end{array}\right]$

Matrix template（2 x 1）

Catalogue $>$ 政保
Example：
$\left.\begin{array}{l}5 \\ 8\end{array}\right] \cdot 0.01 \quad\left[\begin{array}{l}0.05 \\ 0.08\end{array}\right]$

Matrix template（mxn）

The template appears after you are prompted to specify the number of rows and columns．

Catalogue＞
olifa
Example：
$\operatorname{diag}\left(\left[\begin{array}{lll}4 & 2 & 6 \\ 1 & 2 & 3 \\ 5 & 7 & 9\end{array}\right]\right) \quad\left[\begin{array}{lll}4 & 2 & 9\end{array}\right]$

Note: If you create a matrix with a large number of rows and columns, it may take a few moments to appear.

Sum template (Σ)

Catalogue $>$ 路国

Example:

Note: See also $\Sigma()$ (sumSeq), page 228.

| Product template (П) | Catalogue $>$ |
| :--- | :--- | :--- |

Note: See also $\Pi()$ (prodSeq), page 227.

First derivative template

Catalogue >
olfor
Example:
$\frac{d}{d x}\left(x^{3}\right)$
$3 \cdot x^{2}$
$\left.\frac{\boldsymbol{d}}{\boldsymbol{d} x}\left(x^{3}\right) \right\rvert\, x=3$
27
used to calculate first derivative at a point.
$\frac{d}{d!}\left(\begin{array}{c}-1 \\ \vdots \\ \vdots\end{array}\right)$

The first derivative template can also be

Note: See also d() (derivative), page 224.
\square
Example:
$\frac{d^{2}}{d]^{2}}(i)$

The second derivative template can also be used to calculate second derivative at a point.
Note: See also d() (derivative), page 224.

Example:
$\frac{d^{2}}{d x^{2}}\left(x^{3}\right)$
$6 \cdot x$
$\left.\frac{d^{2}}{d x^{2}}\left(x^{3}\right) \right\rvert\, x=3$

Nth derivative template

Catalogue >

1010
Example:
$\left.\frac{\boldsymbol{d}^{3}}{\boldsymbol{d} x^{3}}\left(x^{3}\right) \right\rvert\, x=3$
6
The nth derivative template can be used to calculate the nth derivative.

Note: See also d() (derivative), page 224.

Definite integral template

Note: See also $\int($) integral(), page 225.

Catalogue $>$ 政目
Example:
$\int x^{2} \mathrm{~d} x \quad \frac{x^{3}}{3}$

Limit template

Catalogue >
Example:

$$
\begin{equation*}
\lim _{(2 \cdot x+3)}(2) \tag{13}
\end{equation*}
$$

$x \rightarrow 5$

Use - or (-) for left hand limit. Use + for right hand limit.

Note: See also limit(), page 98.

Alphabetical Listing

Items whose names are not alphabetic（such as + ，！and $>$ ）are listed at the end of this section，starting page 213．Unless otherwise specified，all examples in this section were performed in the default reset mode，and all variables are assumed to be undefined．

A

abs（）
Catalogue＞国亚
abs（Expr 1$) \Rightarrow$ expression
abs（List1）\Rightarrow list
abs（Matrixl）\Rightarrow matrix
Returns the absolute value of the argument．

$\left\|\left\{\frac{\pi}{2}, \frac{-\pi}{3}\right\}\right\|$	$\left\{\frac{\pi}{2}, \frac{\pi}{3}\right\}$
$\|2-3 \cdot i\|$	$\sqrt{13}$
$\|z\|$	$\|z\|$
$\|x+y \cdot i\|$	$\sqrt{x^{2}+y^{2}}$

Note：See also Absolute value template，

 page 3.If the argument is a complex number， returns the number＇s modulus．

Note：All undefined variables are treated as real variables．

amortTbl（）

amortTbl（NPmt，N，I，PV，［Pmt］，［FV］， ［PpY］，［CpY］，［PmtAt］， ［roundValue］）\Rightarrow matrix

Amortisation function that returns a matrix as an amortisation table for a set of TVM arguments．
$N P m t$ is the number of payments to be included in the table．The table starts with the first payment．

N，I，PV，Pmt，FV，PpY，CpY and PmtAt are described in the table of TVM arguments，page 197.
－If you omit $P m t$ ，it defaults to Pmt＝tvmPmt （ $N, I, P V, F V, P p Y, C p Y, P m t A t$ ）．
－If you omit $F V$ ，it defaults to $F V=0$ ．
－The defaults for PpY，CpY and PmtAt

Catalogue＞国

amortTbl $(12,60,10,5000,, 12,12)$
$\qquad\left[\begin{array}{cccc}0 & 0 . & 0 . & 5000 . \\ 1 & -41.67 & -64.57 & 4935.43 \\ 2 & -41.13 & -65.11 & 4870.32 \\ 3 & -40.59 & -65.65 & 4804.67 \\ 4 & -40.04 & -66.2 & 4738.47 \\ 5 & -39.49 & -66.75 & 4671.72 \\ 6 & -38.93 & -67.31 & 4604.41 \\ 7 & -38.37 & -67.87 & 4536.54 \\ 8 & -37.8 & -68.44 & 4468.1 \\ 9 & -37.23 & -69.01 & 4399.09 \\ 10 & -36.66 & -69.58 & 4329.51 \\ 11 & -36.08 & -70.16 & 4259.35 \\ 12 & -35.49 & -70.75 & 4188.6\end{array}\right]$

are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.

The columns in the result matrix are in this order: Payment number, amount paid to interest, amount paid to principal, and balance.

The balance displayed in row n is the balance after payment n.

You can use the output matrix as input for the other amortisation functions Σ Int () and $\Sigma \operatorname{Prn}()$, page 228, and bal(), page 17.

and		Catalogue $>$ 国 2
BooleanExpr1 and		
BooleanExpr $2 \Rightarrow$ Boolean expression	$x \geq 3$ and $x \geq 4$	$x \geq 4$
$\{x \geq 3, x \leq 0\}$ and $\{x \geq 4, x \leq-2\}$	$\{x \geq 4, x \leq-2\}$	

BooleanList1 and
BooleanList $2 \Rightarrow$ Boolean list

BooleanMatrixl and
 BooleanMatrix $2 \Rightarrow$ Boolean matrix

Returns true or false or a simplified form of the original entry.

IntegerlandInteger $2 \Rightarrow$ integer
Compares two real integers bit-by-bit using an and operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1; otherwise, the result is 0 . The returned value represents the bit results and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

In Hex base mode:
0h7AC36 and 0h3D5F 0h2C16

Important: Zero, not the letter O.

In Bin base mode:
0b100101 and 0b100 0b100

In Dec base mode:

37 and 0b100
4

Note：A binary entry can have up to 64 digits （not counting the Ob prefix）．A hexadecimal entry can have up to 16 digits．

angle（）
 angle（Exprl）\Rightarrow expression
 Returns the angle of the argument， interpreting the argument as a complex number．
 Note：All undefined variables are treated as real variables．

Catalogue＞国

In Degree angle mode：

```
angle(0+2\cdoti)90
```

In Gradian angle mode：
angle $(0+3 \cdot i)$100

In Radian angle mode：

angle $(1+i)$
angle (z)
$\frac{\frac{\pi}{2} \cdot \operatorname{sign}(y)}{2}-\tan ^{-1}\left(\frac{x}{y}\right)$
angle $(x+i \cdot y)$
$\left\{\frac{\pi}{2}(\{1+2 \cdot i, 3+0 \cdot i, 0-4 \cdot i\})\right.$
$\left.\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right), 0, \frac{-\pi}{2}\right\}$

angle（List 1$) \Rightarrow$ list
angle（Matrixl）\Rightarrow matrix
Returns a list or matrix of angles of the elements in List1 or Matrix1， interpreting each element as a complex number that represents a two－ dimensional rectangular coordinate point．

Performs a one－way analysis of variance for comparing the means of two to 20 populations．A summary of results is stored in the stat．results variable（page 178）．

Flag＝0 for Data，Flag＝1 for Stats

Output variable	Description
stat．F	Value of the F statistic
stat．PVal	Smallest level of significance at which the null hypothesis can be rejected
stat．df	Degrees of freedom of the groups
stat．SS	Sum of squares of the groups
stat．MS	Mean squares for the groups
stat．dfError	Degrees of freedom of the errors
stat．SSError	Sum of squares of the errors
stat．MSError	Mean square for the errors
stat．sp	Pooled standard deviation
stat．xbarlist	Mean of the input of the lists
stat．CLowerList	95% confidence intervals for the mean of each input list
stat．CUpperList	95% confidence intervals for the mean of each input list

ANOVA2way

Catalogue＞国

ANOVA2way Listl，List2［，List3，．．，，List10］［，levRow］
Computes a two－way analysis of variance for comparing the means of two to 10 populations．A summary of results is stored in the stat．results variable（page 178）．

LevRow＝0 for Block
LevRow＝2，3，．．．，Len－1，for Two Factor，where
Len＝length $($ List 1$)=$ length $($ List 2$)=\ldots=$ length $($ List10 $)$ and Len／LevRow $\in\{2,3, \ldots\}$

Outputs：Block Design

Output variable	Description
stat．F	F statistic of the column factor

Output variable	Description
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom of the column factor
stat.SS	Sum of squares of the column factor
stat.MS	Mean squares for column factor
stat.FBlock	F statistic for factor
stat.PValBlock	Least probability at which the null hypothesis can be rejected
stat.dfBlock	Degrees of freedom for factor
stat.SSBlock	Sum of squares for factor
stat.MSBlock	Mean squares for factor
stat.dfError	Degrees of freedom of the errors
stat.SSError	Sum of squares of the errors
stat.MSError	Mean squares for the errors
stat.s	Standard deviation of the error

COLUMN FACTOR Outputs

Output variable	Description
stat.Fcol	F statistic of the column factor
stat.PValCol	Probability value of the column factor
stat.dfCol	Degrees of freedom of the column factor
stat.SSCol	Sum of squares of the column factor
stat.MSCol	Mean squares for column factor

ROW FACTOR Outputs

Output variable	Description
stat.FRow	F statistic of the row factor
stat.PValRow	Probability value of the row factor
stat.dfRow	Degrees of freedom of the row factor
stat.SSRow	Sum of squares of the row factor
stat.MSRow	Mean squares for row factor

INTERACTION Outputs

Output variable	Description
stat.FInteract	F statistic of the interaction
stat.PValInteract	Probability value of the interaction
stat.dfInteract	Degrees of freedom of the interaction
stat.SSInteract	Sum of squares of the interaction
stat.MSInteract	Mean squares for interaction

ERROR Outputs

Output variable	Description
stat.dfError	Degrees of freedom of the errors
stat.SSError	Sum of squares of the errors
stat.MSError	Mean squares for the errors
s	Standard deviation of the error

approx()

approx $($ Expr 1$) \Rightarrow$ expression
Returns the evaluation of the argument as an expression containing decimal values, when possible, regardless of the current Auto or Approximate mode.

This is equivalent to entering the argument and pressing etrle enter.

$$
\begin{aligned}
& \text { approx }(\text { List } 1) \Rightarrow \text { list } \\
& \operatorname{approx}(\text { Matrix } 1) \Rightarrow \text { matrix }
\end{aligned}
$$

Catalogue > 国
$\operatorname{approx}\left(\frac{1}{3}\right)$
$\operatorname{approx}\left(\left\{\frac{1}{3}, \frac{1}{9}\right\}\right\} \quad\{0.333333,0.111111\}$
$\left.\left.\begin{array}{llr}\hline \operatorname{approx}(\{\sin (\pi), \cos (\pi)\}) & \{0 .,-1 .\} \\ \hline \text { approx }[[\sqrt{2} & \sqrt{3}\end{array}\right]\right\} \quad\left[\begin{array}{ll}1.41421 & 1.73205\end{array}\right]$
$\operatorname{approx}\left(\left[\begin{array}{ll}\frac{1}{3} & \frac{1}{9}\end{array}\right]\right) \quad\left[\begin{array}{ll}0.333333 & 0.111111\end{array}\right]$

| $\operatorname{approx}(\{\sin (\pi), \cos (\pi)\})$ | $\{0 .,-1\}$. |
| :--- | :--- | ---: |
| $\operatorname{approx}([\sqrt{2} \sqrt{3}])$ | $\left[\begin{array}{ll}1.41421 & 1.73205\end{array}\right]$ |

Returns a list or matrix where each element has been evaluated to a decimal value, when possible.

DapproxFraction()

Catalogue > 国远

Expr approxFraction
([Tol]) \Rightarrow expression
List /approxFraction $([$ Tol $]) \Rightarrow$ list
Matrix VapproxFraction $([$ Tol $]) \Rightarrow$ matrix
Returns the input as a fraction, using a tolerance of Tol. If Tol is omitted, a tolerance of 5.E-14 is used.

Note: You can insert this function from the computer keyboard by typing @>approxFraction (...).
approxRational()
approxRational(Expr[,
Tol]) \Rightarrow expression
approxRational(List $[, T o l]) \Rightarrow l i s t$
approxRational(Matrix[, Tol] \Rightarrow matrix
Returns the argument as a fraction using a tolerance of Tol. If Tol is omitted, a tolerance of 5.E-14 is used.

$\frac{1}{2}+\frac{1}{3}+\tan (\pi)$	0.833333
0.83333333333333	approxFraction $\left(5 . \mathrm{E}^{-14}\right)$

$\{\pi, 1.5\}$ approxFraction($5 . \mathrm{E}-14$)
$\left\{\frac{5419351}{1725033}, \frac{3}{2}\right\}$
$\left\{\frac{5419351}{1725033}, \frac{3}{2}\right\}$

arcLen()
arcLen(Expr1,Var,Start,End)
\Rightarrow expression
Returns the arc length of Exprl from Start to End with respect to variable Var.

Arc length is calculated as an integral assuming a function mode definition. arcLen(List1,Var,Start,End) \Rightarrow list

Returns a list of the arc lengths of each element of Listl from Start to End with respect to Var.

Catalogue > 国

$\operatorname{arcLen}(\cos (x), x, 0, \pi)$	3.8202
$\operatorname{arcLen}(f(x), x, a, b)$	$\int_{a}^{b} \sqrt{\left(\frac{d}{d x}(f(x))\right)^{2}+1 \mathrm{~d} x}$

$$
\begin{array}{r}
\operatorname{arcLen}(\{\sin (x), \cos (x)\}, x, 0, \pi) \\
\{3.8202,3.8202\} \\
\hline
\end{array}
$$

$\operatorname{arcsec}()$ See $\sec ^{-1}()$, page 159.
$\operatorname{arcsech}()$ See $\operatorname{sech}^{-1}()$, page 159.
$\arcsin ()$ See $\sin ^{-1}()$, page 169.
$\operatorname{arcsinh}()$ See $\sinh ^{-1}()$, page 170.
$\arctan ()$ See $\tan ^{-1}()$, page 184.
augment（）
augment（List1，List2）\Rightarrow list
Returns a new list that is List 2 appended to the end of Listl．
augment（Matrix1，Matrix2）\Rightarrow matrix
Returns a new matrix that is Matrix2 appended to Matrixl．When the＂，＂ character is used，the matrices must have equal row dimensions，and Matrix2 is appended to Matrixl as new columns． Does not alter Matrixl or Matrix2．

$\operatorname{avgRC}()$

avgRC（Exprl，Var［＝Value］［，
Step］$) \Rightarrow$ expression
$\operatorname{avgRC}($ Expr1，Var［＝Value］［， List 1］）\Rightarrow list
avgRC（Listl，Var［＝Value］［，
Step $]$ ）\Rightarrow list
avgRC（Matrix1，Var［＝Value］［， Step］\Rightarrow matrix

Returns the forward－difference quotient （average rate of change）．

Expr1 can be a user－defined function name（see Func）．

When Value is specified，it overrides any prior variable assignment or any current ＂ \mid＂substitution for the variable．

Step is the step value．If Step is omitted， it defaults to 0.001 ．

Note that the similar function centralDiff （）uses the central－difference quotient．
augment $(\{1,-3,2\},\{5,4\}\} \quad\{1,-3,2,5,4\}$
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \rightarrow m 1 \quad\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\left[\begin{array}{l}5 \\ 6\end{array}\right] \rightarrow m 2 \longrightarrow\left[\begin{array}{l}5 \\ 6\end{array}\right]$
augment $(m 1, m 2) \quad\left[\begin{array}{lll}1 & 2 & 5 \\ 3 & 4 & 6\end{array}\right]$

Catalogue＞国

$\operatorname{avgRC}(f(x), x, h) \quad \frac{f(x+h)-f(x)}{h}$
$\operatorname{avgRC}(\sin (x), x, h) \left\lvert\, x=2 \quad \frac{\sin (h+2)-\sin (2)}{h}\right.$

$\operatorname{avgRC}\left(x^{2}-x+2, x\right)$	$2 \cdot(x-0.4995)$
$\operatorname{avgRC}\left(x^{2}-x+2, x, 0.1\right)$	$2 \cdot(x-0.45)$
$\operatorname{avgRC}\left(x^{2}-x+2, x, 3\right)$	$2 \cdot(x+1)$

bal(NPmt,N,I,PV ,[Pmt], [FV], [PpY], $[C p Y],[P m t A t],[r o u n d V a l u e]) \Rightarrow$ value
bal(NPmt,amortTable) \Rightarrow value
Amortisation function that calculates schedule balance after a specified payment.

N, I, PV, Pmt, FV, PpY, CpY and PmtAt are described in the table of TVM arguments, page 197.
$N P m t$ specifies the payment number after which you want the data calculated.

N, I, PV , Pmt, FV, PpY, CpY and PmtAt are described in the table of TVM arguments, page 197.

- If you omit $P m t$, it defaults to Pmt=tvmPmt ($N, I, P V, F V, P p Y, C p Y, P m t A t)$.
- If you omit $F V$, it defaults to $F V=0$.
- The defaults for PpY, CpY and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.
bal(NPmt,amortTable) calculates the balance after payment number NPmt, based on amortisation table amortTable. The amortTable argument must be a matrix in the form described under amortTbl(), page 8.

Note: See also $\Sigma \operatorname{Int}()$ and $\Sigma \operatorname{Prn}()$, page 229.

$\operatorname{bal}(5,6,5.75,5000,12,12)$	833.11

$t b l:=a \operatorname{mortTbl}(6,6,5.75,5000,, 12,12)$

$\quad\left[\begin{array}{cccc}0 & 0 . & 0 . & 5000 . \\ 1 & -23.35 & -825.63 & 4174.37 \\ 2 & -19.49 & -829.49 & 3344.88 \\ 3 & -15.62 & -833.36 & 2511.52 \\ 4 & -11.73 & -837.25 & 1674.27 \\ 5 & -7.82 & -841.16 & 833.11 \\ 6 & -3.89 & -845.09 & -11.98\end{array}\right]$
$\operatorname{bal}(4, t b l)$

Note: You can insert this operator from the computer keyboard by typing @>Base2.

Converts Integerl to a binary number. Binary or hexadecimal numbers always have a Ob or Oh prefix, respectively. Use a zero, not the letter O, followed by b or h.

Ob binaryNumber

Oh hexadecimalNumber

A binary number can have up to 64 digits. A hexadecimal number can have up to 16 .

Without a prefix, Integerl is treated as decimal (base 10). The result is displayed in binary, regardless of the Base mode.

Negative numbers are displayed in "two's complement" form. For example,
-1 is displayed as
OhFFFFFFFFFFFFFFFFF in Hex base mode 0b111... 111 (64 1's) in Binary base mode

- 263 is displayed as

Oh8000000000000000 in Hex base mode 0b100... 000 (63 zeroes) in Binary base mode

If you enter a decimal integer that is outside the range of a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. Consider the following examples of values outside the range.

263 becomes -263 and is displayed as Oh8000000000000000 in Hex base mode 0b100... 000 (63 zeroes) in Binary base mode

264 becomes 0 and is displayed as

OhO in Hex base mode
ObO in Binary base mode
$-263-1$ becomes $263-1$ and is
displayed as
Oh7FFFFFFFFFFFFFFFF in Hex base mode
Ob111．．． 111 （64 1＇s）in Binary base
mode

－Base10	Catalogue＞国 ${ }_{\text {2 }}$	
Integer $1>$ Base $10 \Rightarrow$ integer	0b10011 Base10	19
Note：You can insert this operator from the computer keyboard by typing ＠＞Base10．	0h1F Base10	31
Converts Integerl to a decimal（base 10） number．A binary or hexadecimal entry must always have a Ob or Oh prefix， respectively．		
Ob binaryNumber		
Oh hexadecimalNumber		
Zero，not the letter O，followed by b or h．		
A binary number can have up to 64 digits．A hexadecimal number can have up to 16 ．		
Without a prefix，Integerl is treated as decimal．The result is displayed in decimal，regardless of the Base mode．		

－Base16	Catalogue＞国］	
Integer 1 Base $16 \Rightarrow$ integer	256－Base16	Oh100
Note：You can insert this operator from the computer keyboard by typing	0b111100001111 Base16	OhFOF

Converts Integerl to a hexadecimal number．Binary or hexadecimal numbers always have a Ob or Oh prefix， respectively．

Ob binaryNumber

Oh hexadecimalNumber

Zero，not the letter O，followed by b or h．
A binary number can have up to 64 digits．A hexadecimal number can have up to 16 ．

Without a prefix，Integerl is treated as decimal（base 10）．The result is displayed in hexadecimal，regardless of the Base mode．

If you enter a decimal integer that is too large for a signed，64－bit binary form，a symmetric modulo operation is used to bring the value into the appropriate range．For more information，see $>$ Base2， page 17.
binomCdf ()
binomCdf $(n, p) \Rightarrow$ list
binomCdf $(n, p$, lowBound，upBound $) \Rightarrow$ number if
lowBound and upBound are numbers，list if
lowBound and upBound are lists
binomCdf $(n, p$, upBound $)$ for $\mathrm{P}(0 \leq \mathrm{X}$
\leq upBound $) \Rightarrow$ number if upBound is a number，list if
upBound is a list
Computes a cumulative probability for the discrete
binomial distribution with n number of trials and
probability p of success on each trial．
For $\mathrm{P}(\mathrm{X} \leq$ upBound $)$ ，set lowBound $=0$
binomPdf（）
binomPdf $(n, p) \Rightarrow l i s t$
binomPdf $(n, p, X V a l) \Rightarrow$ number if $X V a l$ is a number， list if $X V a l$ is a list

Computes a probability for the discrete binomial distribution with n number of trials and probability p of success on each trial．
ceiling()
ceiling(Expr1) \Rightarrow integer
Returns the nearest integer that is \geq the argument.

The argument can be a real or a complex number.

Note: See also floor().
ceiling $($ List 1$) \Rightarrow$ list
ceiling(Matrix $) \Rightarrow$ matrix
Returns a list or matrix of the ceiling of each element.
centralDiff()
centralDiff(Expr1,Var [=Value][,Step])
\Rightarrow expression
centralDiff(Expr1,Var
[,Step])|Var=Value \Rightarrow expression
centralDiff(Expr1,Var $[=$ Value $][$ List $]$)
\Rightarrow list
centralDiff(List1,Var [=Value][,Step])
\Rightarrow list
centralDiff(Matrix1,Var [=Value]
[,Step]) \Rightarrow matrix
Returns the numerical derivative using the central difference quotient formula.

When Value is specified, it overrides any prior variable assignment or any current "|" substitution for the variable.

Step is the step value. If Step is omitted, it defaults to 0.001 .

When using Listl or Matrixl, the operation gets mapped across the values in the list or across the matrix elements.
ceiling(.456)
1.

ceiling $(\{-3.1,1,2.5\})$	$\{-3 ., 1,3\}$.
ceiling $\left(\left[\begin{array}{cc}0 & -3.2 \cdot i \\ 1.3 & 4\end{array}\right]\right.$	$\left[\begin{array}{cc}0 & -3 . \cdot i \\ 2 . & 4\end{array}\right]$

Catalogue > 国
centralDiff($\cos (x), x, h)$
$\frac{\frac{-(\cos (x-h)-\cos (x+h))}{2 \cdot h}}{\lim _{h \rightarrow 0}(\text { centralDiff }(\cos (x), x, h)) \quad-\sin (x)}$
centralDiff $\left(x^{3}, x, 0.01\right)$
$3 .\left(x^{2}+0.000033\right)$
centralDiff($\cos (x), x) \left\lvert\, x=\frac{\pi}{2}\right.$
centralDiff $\left(x^{2}, x,\{0.01,0.1\}\right)$ $\{2 \cdot x, 2 \cdot \cdot x\}$

Note: See also avgRC() and $d()$.
$\mathbf{c F a c t o r}($ Expr $1[, V a r]) \Rightarrow$ expression
cFactor(List1[,Var]) \Rightarrow list
cFactor(Matrix $1[, V a r]) \Rightarrow$ matrix
cFactor(Exprl) returns Exprl factored with respect to all of its variables over a common denominator.

Exprl is factored as much as possible toward linear rational factors even if this introduces new non-real numbers. This alternative is appropriate if you want factorization with respect to more than one variable.
cFactor(Expr1,Var) returns Expr1 factored with respect to variable Var.

Exprl is factored as much as possible toward factors that are linear in Var, with perhaps non-real constants, even if it introduces irrational constants or subexpressions that are irrational in other variables.

The factors and their terms are sorted with Var as the main variable. Similar powers of Var are collected in each factor. Include Var if factorization is needed with respect to only that variable and you are willing to accept irrational expressions in any other variables to increase factorization with respect to Var. There might be some incidental factoring with respect to other variables.

For the Auto setting of the Auto or Approximate mode, including Var also permits approximation with floatingpoint coefficients where irrational coefficients cannot be explicitly expressed concisely in terms of the builtin functions. Even when there is only one variable, including Var might yield more complete factorization.
cFactor $\left(a^{3} \cdot x^{2}+a \cdot x^{2}+a^{3}+a, x\right)$
$a \cdot\left(a^{2}+1\right) \cdot(x-i) \cdot(x+i)$

cFactor $\left(x^{2}+\frac{4}{9}\right) \quad$| $\frac{(3 \cdot x-2 \cdot i) \cdot(3 \cdot x+2 \cdot i)}{9}$ |
| ---: |
| $\operatorname{cFactor}\left(x^{2}+3\right)$ |
| $\operatorname{cFactor}\left(x^{2}+a\right)$ |$x^{2}+3$

cFactor $\left(a^{3} \cdot x^{2}+a \cdot x^{2}+a^{3}+a, x\right)$	
	$a \cdot\left(a^{2}+1\right) \cdot(x-\boldsymbol{i}) \cdot(x+\boldsymbol{i})$
cFactor $\left(x^{2}+3, x\right)$	$(x+\sqrt{3} \cdot \boldsymbol{i}) \cdot(x-\sqrt{3} \cdot \boldsymbol{i})$
cFactor $\left(x^{2}+a, x\right)$	$(x+\sqrt{a} \cdot \boldsymbol{i}) \cdot(x+\sqrt{a} \cdot \boldsymbol{i})$

cFactor $\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3\right)$
$\frac{x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3}{\text { cFactor }\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3, x\right)}$
$(x-0.964673) \cdot(x+0.611649) \cdot(x+2.12543) \cdot(x)$

To see the entire result, press $\boldsymbol{\Delta}$ and then use
4 and to move the cursor.

Note: See also factor().

char()

char(Integer) \Rightarrow character
Returns a character string containing the

char(38)	"\&"
char(65)	"A"

charPoly()
charPoly(squareMatrix, Var) \Rightarrow polynomial expression
charPoly(squareMatrix, Expr) \Rightarrow polynomial expression
charPoly(squareMatrix1,Matrix2) \Rightarrow polynomial expression

Returns the characteristic polynomial of squareMatrix. The characteristic polynomial of $n \times n$ matrix A, denoted by $p_{A}(\lambda)$, is the polynomial defined by
$p_{A}(\lambda)=\operatorname{det}(\lambda \cdot I-A)$
where I denotes the $n \times n$ identity matrix.
squareMatrixl and squareMatrix 2 must have the equal dimensions.
χ^{22} way obsMatrix

chi22way obsMatrix

Computes a χ^{2} test for association on the two-way table of counts in the observed matrix obsMatrix. A summary of results is stored in the stat.results variable. (page 178)

For information on the effect of empty elements in a matrix, see "Empty (Void) Elements," page 255.

Output variable	Description
stat. χ^{2}	Chi square stat: sum (observed - expected) ${ }^{2} /$ expected

Output variable	Description
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected
stat.df	Degrees of freedom for the chi square statistics
stat.ExpMat	Matrix of expected elemental count table, assuming null hypothesis
stat.CompMat	Matrix of elemental chi square statistic contributions

$\chi^{2} \mathrm{Cdf}($ lowBound,upBound, $d \boldsymbol{d}) \Rightarrow$ number if lowBound and upBound are numbers, list if lowBound and upBound are lists
chi2Cdf(lowBound,upBound, $d f$) \Rightarrow number if lowBound and upBound are numbers, list if lowBound and upBound are lists

Computes the χ^{2} distribution probability between lowBound and upBound for the specified degrees of freedom $d f$.

For $\mathrm{P}(X \leq$ upBound $)$, set lowBound $=0$.
For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 255.

χ^{2} GOF

$\chi^{2} \mathbf{G O F}$ obsList,expList,df

chi2GOF obsList,expList,df
Performs a test to confirm that sample data is from a population that conforms to a specified distribution. obsList is a list of counts and must contain integers. A summary of results is stored in the stat.results variable. (See page 178.)

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 255.

Output variable	Description
stat. χ^{2}	Chi square stat: sum((observed - expected)²/expected
stat.PVal	Smallest level of significance at which the null hypothesis can be rejected

Output variable	Description
stat.df	Degrees of freedom for the chi square statistics
stat.CompList	Elemental chi square statistic contributions

$\chi^{2 P d f()}$

Catalogue > 国
$\chi^{2} \operatorname{Pdf}(X V a l, d f) \Rightarrow$ number if $X V a l$ is a number, list if
$X V a l$ is a list
chi2Pdf $(X V a l, d f) \Rightarrow$ number if $X V a l$ is a number, list if $X V a l$ is a list

Computes the probability density function (pdf) for the χ^{2} distribution at a specified X Val value for the specified degrees of freedom $d f$.

For information on the effect of empty elements in a list, see "Empty (Void) Elements," page 255.

ClearAZ	Catalogue > [19]	
ClearAZ	$5 \rightarrow b$	5
Clears all single-character variables in	b	5
the current problem space.	ClearAZ	Done
If one or more of the variables are	b	b

ClrErr

CIrErr

Clears the error status and sets system variable errCode to zero.

The Else clause of the Try...Else...EndTry block should use ClrErr or PassErr. If the error is to be processed or ignored, use ClrErr. If what to do with the error is not known, use PassErr to send it to the next error handler. If there are no more pending Try...Else...EndTry error handlers, the error dialogue box will be displayed as normal.

Note: See also PassErr, page 133, and Try, page 193.

Catalogue > 国
For an example of CIrErr, See Example 2 under the Try command, page 193.

Note for entering the example：For instructions on entering multi－line programme and function definitions，refer to the Calculator section of your product guidebook．
colAugment（）
colAugment（Matrix1，Matrix2）\Rightarrow matrix

Returns a new matrix that is Matrix2 appended to Matrix1．The matrices must have equal column dimensions， and Matrix2 is appended to Matrix1 as new rows．Does not alter Matrixl or Matrix2．
colDim（）
colDim（Matrix）\Rightarrow expression
Returns the number of columns
Catalogue＞国

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \rightarrow m 1$	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
$\left[\begin{array}{ll}5 & 6\end{array}\right] \rightarrow m 2$	$\left[\begin{array}{ll}5 & 6\end{array}\right]$
colAugment $(m 1, m 2)$	$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$

$\overline{\operatorname{colDim}\left(\left[\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 5\end{array}\right]\right) \longrightarrow 3}$
contained in Matrix．
Note：See also rowDim（）．
colNorm（）
colNorm（Matrix）\Rightarrow expression
Returns the maximum of the sums of the absolute values of the elements in the columns in Matrix．

Note：Undefined matrix elements are not allowed．See also rowNorm（）．

comDenom（）

Catalogue＞［⿴囗玉心
comDenom $($ Expr $1[, V a r]) \Rightarrow$ expression comDenom（List $1[, V a r]) \Rightarrow$ list comDenom（Matrixl $[, V a r]) \Rightarrow$ matrix
comDenom（Exprl）returns a reduced ratio of a fully expanded numerator over a fully expanded denominator．

Catalogue＞国

| $\left.\begin{array}{ccc}1 & -2 & 3 \\ 4 & 5 & -6\end{array}\right] \rightarrow$ mat |
| :--- | ---: | :--- |\(\quad\left[\begin{array}{rrr}1 \& -2 \& 3

4 \& 5 \& -6\end{array}\right]\)
colNorm（mat） 9
colNorm（）
colNorm（Matrix）\Rightarrow expression
Returns the maximum of the sums of the
absolute values of the elements in the
columns in Matrix．
Note：Undefined matrix elements are not
allowed．See also rowNorm（）．
comDenom（Expr1，Var）returns a reduced ratio of numerator and denominator expanded with respect to Var．The terms and their factors are sorted with Var as the main variable． Similar powers of Var are collected． There might be some incidental factoring of the collected coefficients．Compared to omitting Var，this often saves time， memory，and screen space，while making the expression more comprehensible．It also makes subsequent operations on the result faster and less likely to exhaust memory．
If Var does not occur in Exprl， comDenom（Expr1，Var）returns a reduced ratio of an unexpanded numerator over an unexpanded denominator．Such results usually save even more time，memory，and screen space．Such partially factored results also make subsequent operations on the result much faster and much less likely to exhaust memory．

Even when there is no denominator，the comden function is often a fast way to achieve partial factorization if factor（）is too slow or if it exhausts memory．

Hint：Enter this comden（）function definition and routinely try it as an alternative to comDenom（）and factor（）．

completeSquare（）

completeSquare（ExprOrEqn，Var）\Rightarrow expression or equation
completeSquare（ExprOrEqn，
Var \wedge Power $) \Rightarrow$ expression or equation
completeSquare（ExprOrEqn，Var1， $\operatorname{Var} 2[, \ldots]) \Rightarrow$ expression or equation completeSquare（ExprOrEqn，\｛Varl， $\operatorname{Var} 2[, \ldots]\}) \Rightarrow$ expression or equation
comDenom $\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y, x\right)$

$$
\frac{x^{2} \cdot y \cdot(y+1)+2 \cdot x \cdot y \cdot(y+1)+2 \cdot y \cdot(y+1)}{x^{2}+2 \cdot x+1}
$$

comDenom $\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y, y\right)$

$$
\frac{y^{2} \cdot\left(x^{2}+2 \cdot x+2\right)+y \cdot\left(x^{2}+2 \cdot x+2\right)}{x^{2}+2 \cdot x+1}
$$

$\overline{\text { Define } \operatorname{comden}(\text { exprn })=\text { comDenom }(\text { exprn }, a b c)}$
comden $\left.\left(\frac{y^{2}+y}{(x+1)^{2}}+y^{2}+y\right) \frac{\left(x^{2}+2 \cdot x+2\right) \cdot y \cdot(y+1)}{(x+1)^{2}}\right)$

$$
\begin{array}{r}
\operatorname{comden}\left(1234 \cdot x^{2} \cdot\left(y^{3}-y\right)+2468 \cdot x \cdot\left(y^{2}-1\right)\right) \\
1234 \cdot x \cdot(x \cdot y+2) \cdot\left(y^{2}-1\right)
\end{array}
$$

Catalogue＞国

completeSquare $\left(x^{2}+2 \cdot x+3, x\right)$	$(x+1)^{2}+2$		
completeSquare $\left(x^{2}+2 \cdot x=3, x\right)$	$(x+1)^{2}=4$		
completeSquare $\left(x^{6}+2 \cdot x^{3}+3, x^{3}\right)$	$\left(x^{3}+1\right)^{2}+2$		completeSquare $\left(x^{2}+4 \cdot x+y^{2}+6 \cdot y+3=0, x, y\right)$
---:			
$(x+2)^{2}+(y+3)^{2}=10$			

Converts a quadratic polynomial expression of the form $a \cdot x^{2}+b \cdot x+c$ into the form $a \cdot(x-h)^{2}+k$
－or－
Converts a quadratic equation of the form $a \cdot x^{2}+b \cdot x+c=d$ into the form $a \cdot(x-$ h）${ }^{2}=k$

The first argument must be a quadratic expression or equation in standard form with respect to the second argument．

The Second argument must be a single univariate term or a single univariate term raised to a rational power，for example x, y^{2} ，or $z(1 / 3)$ ．

The third and fourth syntax attempt to complete the square with respect to variables Varl，Var2［，．．．］）．

$$
\begin{array}{r}
\text { completeSquare }\left(3 \cdot x^{2}+2 \cdot y+7 \cdot y^{2}+4 \cdot x=3,\{x, y\}\right) \\
3 \cdot\left(x+\frac{2}{3}\right)^{2}+7 \cdot\left(y+\frac{1}{7}\right)^{2}=\frac{94}{21}
\end{array}
$$

$$
\text { completeSquare }\left(x^{2}+2 \cdot x \cdot y, x, y\right) \quad(x+y)^{2}-y^{2}
$$

conj（）
Catalogue＞国
conj（Exprl）\Rightarrow expression
$\operatorname{conj}($ List 1$) \Rightarrow$ list
conj（Matrixl）\Rightarrow matrix
Returns the complex conjugate of the argument．

Note：All undefined variables are treated as real variables．

$\operatorname{conj}(1+2 \cdot i)$	$1-2 \cdot i$
$\operatorname{conj}\left(\left[\begin{array}{cc}2 & 1-3 \cdot i \\ -i & -7\end{array}\right]\right)$	$\left[\begin{array}{cc}2 & 1+3 \cdot i \\ i & -7\end{array}\right]$
$\operatorname{conj}(z)$	$z-y \cdot i$
$\operatorname{conj}(x+i \cdot y)$	

constructMat（）		Catalogue＞［⿴囗玉心
constructMat （Expr，Var1，Var2，numRows，numCols） $\Rightarrow \text { matrix }$ Returns a matrix based on the arguments． Expr is an expression in variables Varl	$\text { constructMat }\left(\frac{1}{i+j}, i, j, 3,4\right)$	$\left[\begin{array}{llll}\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}\end{array}\right]$

Varl is automatically incremented from 1 through numRows．Within each row， Var2 is incremented from 1 through numCols．

CopyVar

Catalogue＞国
CopyVar Var1，Var2
CopyVar Var1．，Var2．
CopyVar Var1，Var2 copies the value of variable Varl to variable Var2，creating Var2 if necessary．Variable Varl must have a value．

If Varl is the name of an existing user－ defined function，copies the definition of that function to function Var2．Function Varl must be defined．

Varl must meet the variable－naming requirements or must be an indirection expression that simplifies to a variable name meeting the requirements．
CopyVar Var1．，Var2．copies all members of the Varl．variable group to the Var2．group，creating Var2．if necessary．

Varl．must be the name of an existing variable group，such as the statistics stat．nn results，or variables created using the LibShortcut（）function．If Var2． already exists，this command replaces all members that are common to both groups and adds the members that do not already exist．If one or more members of Var2．are locked，all members of Var2．are left unchanged．

Define $a(x)=\frac{1}{x}$	Done
Define $b(x)=x^{2}$	Done
CopyVar $a, c: c(4)$	$\frac{1}{4}$
CopyVar $b, c: c(4)$	16

aa．a：＝45		45
$a a . b=6.78$		6.78
CopyVar $a a, b b$ ．		Done
getVarinfo ${ }^{\text {（ }}$	$l \begin{aligned} & a a . a \\ & \text { aa．}{ }^{\text {＂NUM＂}} \text {＂NUM＂} \\ & \text { bb．a＂NUM＂} \\ & \text { bb．} b \text {＂NUM＂}\end{aligned}$	M＂ 0

corrMat（）
Catalogue＞国
corrMat（List1，List2［，．．［，List20］］）
Computes the correlation matrix for the augmented matrix［List1，List2，．．．，List20］．

Expr $-\cos$

Note: You can insert this operator from the computer keyboard by typing @>cos.

Represents Expr in terms of cosine. This is a display conversion operator. It can is a display conversion operator. It can
be used only at the end of the entry line.
-cos reduces all powers of $\sin (\ldots)$ modulo $1-\cos (\ldots)^{\wedge} 2$ so that any remaining powers of $\cos (\ldots)$ have exponents in the range (0,2). Thus, the result will be free of $\sin (\ldots)$ if and only if $\sin (\ldots)$ occurs in the given expression only to even powers.

Note: This conversion operator is not supported in Degree or Gradian Angle modes. Before using it, make sure that the Angle mode is set to Radians and that Expr does not contain explicit references to degree or gradian angles.

$\cos ()$

$\cos ($ Expr 1$) \Rightarrow$ expression
$\boldsymbol{\operatorname { c o s }}($ List 1$) \Rightarrow$ list
$\boldsymbol{\operatorname { c o s }}($ Expr 1$)$ returns the cosine of the argument as an expression.
$\boldsymbol{\operatorname { c o s }}$ (Listl) returns a list of the cosines of all elements in Listl.

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode setting. You can use ${ }^{\circ}$, G , or r to override the angle mode temporarily.
$\boldsymbol{\operatorname { c o s }}()$
$\boldsymbol{\operatorname { c o s }}($ Expr 1$) \Rightarrow$ expression
$\boldsymbol{\operatorname { c o s }}$ (Listl $) \Rightarrow$ list
$\boldsymbol{\operatorname { c o s }}$ (Exprl) returns the cosine of the
argument as an expression.
$\boldsymbol{\operatorname { c o s } (\text { List } 1) \text { returns a list of the cosines of }}$
all elements in Listl.
$\overline{\langle\sin (x))^{2} \rightarrow \cos } \quad 1-(\cos (x))^{2}$
trig key

In Degree angle mode:

$\cos \left(\frac{\pi}{4} r\right)$	$\frac{\sqrt{2}}{2}$
$\cos (45)$	$\frac{\sqrt{2}}{2}$

$\overline{\cos (\{0,60,90\})}\left\{1, \frac{1}{2}, 0\right\}$

In Gradian angle mode:
$\overline{\cos (\{0,50,100\})}\left\{1, \frac{\sqrt{2}}{2}, 0\right\}$

[^0]| $\cos \left(\frac{\pi}{4}\right)$ | $\frac{\sqrt{2}}{2}$ |
| :--- | :---: |
| $\cos \left(45^{\circ}\right)$ | $\frac{\sqrt{2}}{2}$ |

In Radian angle mode:

$$
\begin{gathered}
\hline \cos \left(\left[\begin{array}{lll}
1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1
\end{array}\right]\right. \\
\\
{\left[\begin{array}{ccc}
0.212493 & 0.205064 & 0.121389 \\
0.160871 & 0.259042 & 0.037126 \\
0.248079 & -0.090153 & 0.218972
\end{array}\right]} \\
\hline
\end{gathered}
$$

Compute the eigenvalues $\left(\lambda_{i}\right)$ and eigenvectors $\left(\mathrm{V}_{i}\right)$ of A .
squareMatrixl must be diagonalizable. Also, it cannot have symbolic variables that have not been assigned a value.

Form the matrices:
$B=\left[\begin{array}{llll}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$ and $X=\left[V_{1}, V_{2}, \ldots, V_{n}\right]$
Then $A=X B X-1$ and $f(A)=X f(B) X-1$. For example, $\cos (A)=X \cos (B) X-1$ where:
$\cos (\mathrm{B})=$
$\left[\begin{array}{llll}\cos \left(\lambda_{1}\right) & 0 & \ldots & 0 \\ 0 & \cos \left(\lambda_{2}\right) & \ldots & 0 \\ 0 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & \cos \left(\lambda_{n}\right)\end{array}\right]$

All computations are performed using floating-point arithmetic.
cos-1(Exprl) \Rightarrow expression
$\cos -1($ List 1$) \Rightarrow$ list

In Degree angle mode:
$\cos ^{-1(1)}$ 0
cos-1(Exprl) returns the angle whose cosine is Exprl as an expression.
$\cos -1$ (Listl) returns a list of the inverse cosines of each element of List1.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arccos (...) . $\cos -1$ (squareMatrixl) \Rightarrow squareMatrix

Returns the matrix inverse cosine of squareMatrixl. This is not the same as calculating the inverse cosine of each element. For information about the calculation method, refer to $\cos ()$.
squareMatrixl must be diagonalizable. The result always contains floating-point numbers.

In Gradian angle mode:
$\cos ^{-1}(0)$
100

In Radian angle mode:
$\cos ^{-1(\{\{0,0.2,0.5\})} \quad\left\{\frac{\pi}{2}, 1.36944,1.0472\right\}$

In Radian angle mode and Rectangular Complex Format:

$\cos ^{-1}\left(\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)$
$\left[\begin{array}{cc}1.73485+0.064606 \cdot \boldsymbol{i} & -1.49086+2.10514 \\ -0.725533+1.51594 \cdot \boldsymbol{i} & 0.623491+0.77836^{\circ} \\ -2.08316+2.63205 \cdot \boldsymbol{i} & 1.79018-1.27182^{\circ} \\ \hline\end{array}\right.$

To see the entire result, press $\boldsymbol{\Delta}$ and then use 4 and to move the cursor.

Catalogue > 国
In Degree angle mode:
$\cosh \left(\left(\frac{\pi}{4}\right) r\right) \quad \cosh (45)$

In Radian angle mode:

$$
\begin{gathered}
\cosh \left(\left[\begin{array}{ccc}
1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1
\end{array}\right]\right) \\
{\left[\begin{array}{lll}
421.255 & 253.909 & 216.905 \\
327.635 & 255.301 & 202.958 \\
226.297 & 216.623 & 167.628
\end{array}\right]}
\end{gathered}
$$

squareMatrixl must be diagonalizable. The result always contains floating-point numbers.
cosh－ 1 （Expr 1$) \Rightarrow$ expression
cosh－1（Listl）\Rightarrow list

```
\mp@subsup{\operatorname{cosh}}{}{-1}(1)
    0
\mp@subsup{\operatorname{cosh}}{}{-1}}({1,2.1,3}
{0,1.37286, 㳴-1}(3)
```

cosh－1（Exprl）returns the inverse hyperbolic cosine of the argument as an expression．
cosh－1（List1）returns a list of the inverse hyperbolic cosines of each element of List1．

Note：You can insert this function from the keyboard by typing arccosh（．．．）． cosh－1（squareMatrix1）\Rightarrow squareMatrix

Returns the matrix inverse hyperbolic cosine of squareMatrixl．This is not the same as calculating the inverse hyperbolic cosine of each element．For information about the calculation method，refer to $\boldsymbol{\operatorname { c o s } () .}$
squareMatrix 1 must be diagonalizable． The result always contains floating－point numbers．

In Radian angle mode and In Rectangular Complex Format：
$\cosh ^{-1}\left(\left[\begin{array}{lll}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)$
$\left[\begin{array}{cc}2.52503+1.73485 \cdot \boldsymbol{i} & -0.009241-1.4908 \star \\ 0.486969-0.725533 \cdot \boldsymbol{i} & 1.66262+0.623491 \\ -0.322354-2.08316 \cdot \boldsymbol{i} & 1.26707+1.79018 \\ \hline\end{array}\right.$

To see the entire result，press $\boldsymbol{\Delta}$ and then use 4 and to move the cursor．
$\cot ()$
$\cot ($ Expr 1$) \Rightarrow$ expression
$\cot ($ List 1$) \Rightarrow$ list
Returns the cotangent of Exprl or returns a list of the cotangents of all elements in List1．

Note：The argument is interpreted as a degree，gradian or radian angle， according to the current angle mode setting．You can use ${ }^{\circ}$ ， G ，or r to override the angle mode temporarily．

In Degree angle mode：

$\cot (45)$	1

In Gradian angle mode：

$$
\begin{array}{ll}
\hline \cot (50) & 1 \\
\hline
\end{array}
$$

In Radian angle mode：
$\cot (\{1,2.1,3\}) \quad\left\{\frac{1}{\tan (1)},-0.584848, \frac{1}{\tan (3)}\right\}$
$\cot ^{-1}($ Exprl $) \Rightarrow$ expression
cot-1(Listl) \Rightarrow list
Returns the angle whose cotangent is Exprl or returns a list containing the inverse cotangents of each element of List1.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arccot (...).

coth()

$\operatorname{coth}($ Expr 1$) \Rightarrow$ expression
$\operatorname{coth}($ List 1$) \Rightarrow$ list
Returns the hyperbolic cotangent of Exprl or returns a list of the hyperbolic cotangents of all elements of Listl.

In Degree angle mode:

$\cot ^{-1}(1)$	45.

In Gradian angle mode:

$\cot ^{-1}(1)$	50.

In Radian angle mode:

Catalogue > 国

$\operatorname{coth}(1.2)$	1.19954
$\operatorname{coth}(\{1,3.2\})$	$\left\{\frac{1}{\tanh (1)}, 1.00333\right\}$

coth-1()
coth-1(Exprl) \Rightarrow expression
coth-1 (Listl) \Rightarrow list
Returns the inverse hyperbolic cotangent of Exprl or returns a list containing the inverse hyperbolic cotangents of each element of List1.

Note: You can insert this function from the keyboard by typing arccoth (...).

Catalogue > 国

$\operatorname{coth}^{-1}(3.5)$	0.293893
$\operatorname{coth}^{-1}(\{-2,2.1,6\})$	

$$
\left.\left\{\frac{-\ln (3)}{2}, 0.518046, \frac{\ln \left(\frac{7}{5}\right)}{2}\right)\right\}
$$

$\left\{\frac{\ln (3)}{2}, 0.518046, \frac{\ln \left(\frac{7}{5}\right)}{2}\right\}$

[^1]count（Value1orList1［，Value2orList2
［，．．］］）\Rightarrow value
Returns the accumulated count of all elements in the arguments that evaluate to numeric values．

Each argument can be an expression， value，list，or matrix．You can mix data types and use arguments of various dimensions．

For a list，matrix，or range of cells，each element is evaluated to determine if it should be included in the count．

Within the Lists \＆Spreadsheet application，you can use a range of cells in place of any argument．

Empty（void）elements are ignored．For more information on empty elements， see page 255.

$\operatorname{count}(2,4,6)$	3
$\operatorname{count}(\{2,4,6\})$	3
$\operatorname{count}\left(2,\{4,6\},\left[\begin{array}{cc}8 & 10 \\ 12 & 14\end{array}\right]\right)$	7
$\operatorname{count}\left(\frac{1}{2}, 3+4 \cdot i\right.$, undef，＂hello＂，x＋5．，sign $\left.(0)\right)$	

In the last example，only $1 / 2$ and $3+4^{*} \boldsymbol{i}$ are counted．The remaining arguments，assuming x is undefined，do not evaluate to numeric values．
countif（）
countif（List，Criteria）\Rightarrow value
Returns the accumulated count of all elements in List that meet the specified Criteria．

Criteria can be：
－A value，expression，or string．For example， $\mathbf{3}$ counts only those elements in List that simplify to the value 3.
－A Boolean expression containing the symbol ？as a place holder for each element．For example，？＜5 counts only those elements in List that are less than 5.

Within the Lists \＆Spreadsheet application，you can use a range of cells in place of List．

Catalogue＞［⿴囗玉心

countIf $(\{1,3$, ＂abc＂，undef $, 3,1\}, 3)$
Counts the number of elements equal to 3 ．
countIf（\｛＂abc＂，＂def＂，＂abc＂， 3$\}, " d e f ") \quad 1$
Counts the number of elements equal to ＂def．＂
$\overline{\text { countIf }\left(\left\{x^{-2}, x^{-1}, 1, x, x^{2}\right\}, x\right)} \quad 1$

Counts the number of elements equal to x ； this example assumes the variable x is undefined．
$\operatorname{countIf}(\{1,3,5,7,9\}, ?<5) \quad 2$

Counts 1 and 3.

Empty (void) elements in the list are ignored. For more information on empty elements, see page 255.

Note: See also sumlf(), page 182, and frequency(), page 76.
$\overline{\text { countIf }\{\{1,3,5,7,9\}, 2<?<8) \quad 3}$
Counts 3,5 , and 7 .

$$
\operatorname{countIf}(\{1,3,5,7,9\}, ?<4 \text { or } ?>6\}
$$

Counts 1, 3, 7, and 9 .

cPolyRoots()

cPolyRoots(Poly,Var) \Rightarrow list
cPolyRoots(ListOfCoeffs) \Rightarrow list
The first syntax, cPolyRoots(Poly,Var), returns a list of complex roots of polynomial Poly with respect to variable Var.

Poly must be a polynomial in one variable.

The second syntax, cPolyRoots
(ListOfCoeffs), returns a list of complex roots for the coefficients in ListOfCoeffs.

Note: See also polyRoots(), page 137.
crossP()
crossP(List1, List2) \Rightarrow list
Returns the cross product of Listl and List2 as a list.

List1 and List 2 must have equal dimension, and the dimension must be either 2 or 3 .
crossP(Vector1, Vector 2$) \Rightarrow$ vector
Returns a row or column vector (depending on the arguments) that is the cross product of Vectorl and Vector 2 .

Catalogue > 国
$\operatorname{crossP}(\{a 1, b 1\},\{a 2, b 2\})$

$\{0,0, a 1 \cdot b 2-a 2 \cdot b 1\}$
$\operatorname{crossP}(\{0.1,2.2,-5\},\{1,-0.5,0\})$
$\{-2.5,-5 .,-2.25\}$

$\left.\begin{array}{l}\operatorname{crossP}\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],\left[\begin{array}{ll}4 & 5\end{array}\right]\right) \\ \operatorname{crossP}\left(\left[\begin{array}{lll}1 & 2\end{array}\right],\left[\begin{array}{ll}3 & 4\end{array}\right]\right)\end{array} \quad \begin{array}{lll}-3 & 6 & -3\end{array}\right]$

Both Vector 1 and Vector 2 must be row vectors, or both must be column vectors.
Both vectors must have equal dimension, and the dimension must be either 2 or 3 .
$\csc ()$
$\mathbf{c s c}($ Expr 1$) \Rightarrow$ expression
$\boldsymbol{\operatorname { c s c }}($ List 1$) \Rightarrow$ list
Returns the cosecant of Exprl or returns a list containing the cosecants of all elements in List1.

In Degree angle mode:
$\csc (45) \sqrt{2}$

In Gradian angle mode:

$\csc (50)$	$\sqrt{2}$

In Radian angle mode:
$\csc \left\{\left\{1, \frac{\pi}{2}, \frac{\pi}{3}\right\}\right\} \quad\left\{\frac{1}{\sin (1)}, 1, \frac{2 \cdot \sqrt{3}}{3}\right\}$
csc-1()
csc-1 (Exprl) \Rightarrow expression
csc-1 List 1$) \Rightarrow$ list
Returns the angle whose cosecant is Exprl or returns a list containing the inverse cosecants of each element of List1.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arccsc (...) .

In Degree angle mode:
$\csc ^{-1}(1)$ 90.

In Gradian angle mode:
$\csc ^{-1}(1)$
100.

In Radian angle mode:
$\csc ^{-1}(\{1,4,6\}) \quad\left\{\frac{\pi}{2}, \sin ^{-1}\left(\frac{1}{4}\right), \sin ^{-1}\left(\frac{1}{6}\right)\right\}$
$\operatorname{csch}($ Exprl $) \Rightarrow$ expression
$\boldsymbol{\operatorname { c s c h }}($ List 1$) \Rightarrow$ list
Returns the hyperbolic cosecant of Exprl or returns a list of the hyperbolic cosecants of all elements of Listl．

$\operatorname{csch}(\{1,2.1,4\})$

$$
\left\{\frac{1}{\sinh (1)}, 0.248641, \frac{1}{\sinh (4)}\right\}
$$

csch－1（）
Catalogue＞国
csch－1（Expr1）\Rightarrow expression
csch－1（Listl）\Rightarrow list
Returns the inverse hyperbolic cosecant of Exprl or returns a list containing the inverse hyperbolic cosecants of each element of List1．

Note：You can insert this function from the keyboard by typing arccsch（．．．）．
cSolve（Equation，Var）\Rightarrow Boolean expression
cSolve（Equation，Var $=$ Guess $) \Rightarrow$ Boolean expression
cSolve（Inequality，Var）\Rightarrow Boolean expression

Returns candidate complex solutions of an equation or inequality for Var．The goal is to produce candidates for all real and non－real solutions．Even if Equation is real，cSolve（）allows non－real results in Real result Complex Format．

Catalogue＞国
cSolve $\left(x^{3}=-1, x\right)$
$x=\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i$ or $x=\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i$ or $x=-1$
solve $\left(x^{3}=-1, x\right) \quad x=-1$
cSolve() temporarily sets the domain to complex during the solution even if the current domain is real. In the complex domain, fractional powers having odd denominators use the principal rather than the real branch. Consequently, solutions from solve() to equations involving such fractional powers are not necessarily a subset of those from cSolve ().
cSolve() starts with exact symbolic methods. cSolve() also uses iterative approximate complex polynomial factoring, if necessary.

Note: See also cZeros(), solve(), and zeros ().

cSolve $\left(x^{\frac{1}{3}}=-1, x\right)$	false
$\left(\frac{1}{3}\right)$	$x=-1$
solve $\left(x^{3}=-1, x\right)$	

In Display Digits mode of Fix 2:

exact(cSolve	$\left.+5 \cdot x^{3}-6 \cdot x-3=0, x\right)$
	$x \cdot\left(x^{4}+4 \cdot x^{3}+5 \cdot x^{2}-6\right)=3$
cSolve(Ans, x)	
$11+1$.	$1.11-1.07 \cdot i$ or $x=-2$

To see the entire result, press $\boldsymbol{\Delta}$ and then use
4 and to move the cursor.

cSolve(Eqn1andEqn2 [and...], VarOrGuess1, VarOrGuess 2 [, ...]) \Rightarrow Boolean expression

cSolve(SystemOfEqns, VarOrGuess1, VarOrGuess 2 [, ...]) \Rightarrow Boolean expression

Returns candidate complex solutions to the simultaneous algebraic equations, where each varOrGuess specifies a variable that you want to solve for.

Optionally, you can specify an initial guess for a variable. Each varOrGuess must have the form:
variable

- or -
variable $=$ real or non-real number
For example, x is valid and so is $\mathrm{x}=3+i$.

If all of the equations are polynomials and if you do NOT specify any initial guesses, cSolve() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all complex solutions.

Complex solutions can include both real and non-real solutions, as in the example to the right.

Simultaneous polynomial equations can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also include solution variables that do not appear in the equations. These solutions show how families of solutions might contain arbitrary constants of the form $c k$, where k is an integer suffix from 1 through 255.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list solution variables. If your initial choice exhausts memory or your patience, try rearranging the variables in the equations and/or varOrGuess list.
If you do not include any guesses and if any equation is non-polynomial in any variable but all equations are linear in all solution variables, cSolve() uses Gaussian elimination to attempt to determine all solutions.
$\operatorname{cSolve}\left(u \cdot v-u=v\right.$ and $\left.v^{2}=-u,\{u, v\}\right)$
$u=\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i}$ and $v=\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i}$ or $u=\frac{1}{2}-\frac{\sqrt{3}}{2}$,

To see the entire result, press Δ and then use 4 and to move the cursor.

$$
\begin{aligned}
& \text { cSolve }\left(u \cdot v-u=c \cdot v \text { and } v^{2}=-u,\{u, v\}\right) \\
& u=\frac{-(\sqrt{4 \cdot c-1} \cdot i+1)^{2}}{4} \text { and } v=\frac{\sqrt{4 \cdot c-1} \cdot \boldsymbol{i}+1}{2} \circ^{\prime} \\
& \text { cSolve }\left(u \cdot v-u=v \text { and } v^{2}=-u,\{u, v, w\}\right) \\
& u=\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \text { and } v=\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot \boldsymbol{i} \text { and } w=\boldsymbol{c} 43 \text { or }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{cSolve}\left(u+v=e^{w} \text { and } u-v\right. & =i,\{u, v\}) \\
\qquad u & =\frac{e^{w}+i}{2} \text { and } v=\frac{e^{w}-i}{2}
\end{aligned}
$$

If a system is neither polynomial in all of its variables nor linear in its solution variables，cSolve（）determines at most one solution using an approximate iterative method．To do so，the number of solution variables must equal the number of equations，and all other variables in the equations must simplify to numbers．

A non－real guess is often necessary to determine a non－real solution．For convergence，a guess might have to be rather close to a solution．

```
cSolve( ( z z w and w=\mp@subsup{z}{}{2},{w,z})
    w=0.494866 and z=0.703467
```

cSolve $\left(e^{z}=w\right.$ and $\left.w=z^{2},\{w, z=1+i\}\right)$
$w=0.149606+4.8919 \cdot i$ and $z=1.58805+1.5402$ ．

To see the entire result，press $\boldsymbol{\Delta}$ and then use 4 and to move the cursor．

CubicReg

Catalogue＞［⿴囗玉心
CubicReg $X, Y[,[$ Freq $][$ ，Category，Include $]]$
Computes the cubic polynomial regression $\mathrm{y}=\mathrm{a} \cdot \mathrm{x}^{3}+\mathrm{b} \cdot \mathrm{x}^{2}+\mathrm{c} \cdot \mathrm{x}+\mathrm{d}$ on lists X and Y with frequency Freq．A summary of results is stored in the stat．results variable．（See page 178．）

All the lists must have equal dimension except for Include．
X and Y are lists of independent and dependent variables．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding X and Y data point．The default value is 1 ．All elements must be integers ≥ 0 ．

Category is a list of category codes for the corresponding X and Y data．

Include is a list of one or more of the category codes． Only those data items whose category code is included in this list are included in the calculation．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements，＂page 255.

Output variable	Description
stat.RegEqn	Regression equation: $\mathrm{a} \bullet x^{3}+\mathrm{b} \bullet \times^{2}+\mathrm{c} \bullet \times \mathrm{d}$
stat.a, stat.b, stat.c, stat.d	Regression coefficients
stat.R ${ }^{2}$	Coefficient of determination
stat.Resid	Residuals from the regression
stat.XReg	List of data points in the modified X List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.YReg	List of data points in the modified Y List actually used in the regression based on restrictions of Freq, Category List, and Include Categories
stat.FreqReg	List of frequencies corresponding to stat.XReg and stat.YReg

cumulativeSum()
 cumulativeSum(List1) \Rightarrow list

Returns a list of the cumulative sums of the elements in Listl, starting at element 1.
cumulativeSum(Matrixl) \Rightarrow matrix
Returns a matrix of the cumulative sums of the elements in Matrixl. Each element is the cumulative sum of the column from top to bottom.

An empty (void) element in Listl or Matrixl produces a void element in the resulting list or matrix. For more information on empty elements, see page 255.

Cycle

$\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] \rightarrow m 1$
cumulativeSum $(m 1)$

3 \& 4

5 \& 6\end{array}\right]\)

Catalogue > 国
cumulativeSum $(\{1,2,3,4\}) \quad\{1,3,6,10\}$
-2

Cycle

Transfers control immediately to the next iteration of the current loop (For, While, or Loop).

Cycle is not allowed outside the three looping structures (For, While, or Loop).

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

Cylind

Vector Cylind
Note：You can insert this operator from
$\left[\begin{array}{lll}2 & 2 & 3\end{array}\right]$ Cylind $\quad\left[\begin{array}{lll}2 \cdot \sqrt{2} & <\frac{\pi}{4} & 3\end{array}\right]$ the computer keyboard by typing ＠＞Cylind．

Displays the row or column vector in cylindrical form $[r, \angle \theta, z]$ ．

Vector must have exactly three elements．It can be either a row or a column．

cZeros（）

Catalogue＞国
cZeros（Expr，Var）\Rightarrow list
Returns a list of candidate real and non－ real values of Var that make Expr＝0． cZeros（）does this by computing exp list（cSolve（Expr＝0，Var），Var）． Otherwise，cZeros（）is similar to zeros（）．

Define $g()=$	Func	Done
	Local temp，i	
	$0 \rightarrow$ temp	
	For $i, 1,100,1$	
	If $i=50$	
	Cycle	
	temp $+\boldsymbol{i} \rightarrow$ temp	
	EndFor	
	Return temp	
	EndFunc	

g（）
5000

Catalogue＞国
$\left.2 \cdot \sqrt{2}<\frac{\pi}{4} \quad 3\right]$

Optionally, you can specify an initial guess for a variable. Each VarOrGuess must have the form:
variable

- or -
variable $=$ real or non-real number
For example, x is valid and so is $\mathrm{x}=3+i$.
If all of the expressions are polynomials and you do NOT specify any initial guesses, cZeros() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all complex zeros.

Complex zeros can include both real and non-real zeros, as in the example to the right.

Each row of the resulting matrix represents an alternate zero, with the components ordered the same as the VarOrGuess list. To extract a row, index the matrix by [row].

Simultaneous polynomials can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also include unknown variables that do not appear in the expressions. These zeros show how families of zeros might contain arbitrary constants of the form $c k$, where k is an integer suffix from 1 through 255.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list unknowns. If your initial choice exhausts memory or your patience, try rearranging the variables in the expressions and/or VarOrGuess list.

$$
\left.\operatorname{cZeros}\left(\left\{u \cdot v-u-v, v^{2}+u\right\},\{u, v\}\right)\right)\left[\begin{array}{cc}
0 \\
\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i & \frac{1}{2}+\frac{\sqrt{3}}{2} \\
\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i & \frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i
\end{array}\right]
$$

Extract row 2:
Ans[2] $\left[\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i \frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i\right]$

$$
\operatorname{cZeros}\left(\left\{u \cdot v-u-c \cdot v^{2}, v^{2}+u\right\},\{u, v\}\right)
$$

$$
\begin{array}{r}
\operatorname{cZeros}\left(\left\{u \cdot v-u-v, v^{2}+u\right\},\{u, v, w\}\right) \\
c \operatorname{Zeroro}\left(\left\{u \cdot(v-1)-v, u+v^{2}\right\},\{u, v, w\}\right) \\
{\left[\begin{array}{lll}
v & 0 & c 4 \\
\frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i & \frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i & c 4 \\
\frac{1}{2}+\frac{\sqrt{3}}{2} \cdot i & \frac{1}{2}-\frac{\sqrt{3}}{2} \cdot i & c 4
\end{array}\right]}
\end{array}
$$

If you do not include any guesses and if any expression is non－polynomial in any variable but all expressions are linear in all unknowns，cZeros（）uses Gaussian elimination to attempt to determine all zeros．

If a system is neither polynomial in all of its variables nor linear in its unknowns， cZeros（）determines at most one zero using an approximate iterative method． To do so，the number of unknowns must equal the number of expressions，and all other variables in the expressions must simplify to numbers．

A non－real guess is often necessary to determine a non－real zero．For convergence，a guess might have to be rather close to a zero．

$$
\left.\begin{array}{rl}
\operatorname{cZeros}\left(\left\{u+v-e^{w}, u-v-i\right.\right. \\
& ,\{u, v\}) \\
& {\left[\frac{e^{w}+i}{2}\right.} \\
\frac{e^{w}-i}{2}
\end{array}\right]
$$

$$
\left\lvert\, \operatorname{cZerog}\left(\left\{e ^ { z - w , w - z ^ { 2 } \} , \{ w , z \}) } \left[\begin{array}{ll}
{[0.494866} & -0.703467]
\end{array}\right.\right.\right.\right.
$$

```
cZeros({看z-w,w-\mp@subsup{z}{}{2}},{w,z=1+i})
    [\mp@code{0.149606+4.8919\cdoti 1.58805+1.54022\cdoti]}]
```


D

dbd（）

Catalogue＞［⿴囗玉运
dbd（date1，date2）\Rightarrow value
Returns the number of days between
date 1 and date 2 using the actual－day－ count method．
date 1 and date 2 can be numbers or lists of numbers within the range of the dates on the standard calendar．If both datel and date 2 are lists，they must be the same length．
date 1 and date 2 must be between the years 1950 through 2049.

You can enter the dates in either of two formats．The decimal placement differentiates between the date formats．

MM．DDYY（format used commonly in the United States）

DDMM．YY（format use commonly in
Europe）

Expr $1>\mathrm{DD} \Rightarrow$ value
List 1 DD \Rightarrow list

Matrix 1 DD \Rightarrow matrix

Note：You can insert this operator from the computer keyboard by typing＠＞DD．

Returns the decimal equivalent of the argument expressed in degrees．The argument is a number，list，or matrix that is interpreted by the Angle mode setting in gradians，radians or degrees．

Decimal
Expression 1 Decimal \Rightarrow expression
Listl $>$ Decimal \Rightarrow expression

In Degree angle mode：

$\left(1.5^{\circ}\right) \bullet D D$	1.5°
$\left(45^{\circ} 22^{\prime} 14.3^{\prime \prime}\right) \bullet D D$	45.3706°
$\left(\left\{45^{\circ} 22^{\prime} 14.3^{\prime \prime}, 60^{\circ} 0^{\prime} 0^{\prime \prime}\right\}\right) \bullet D D$	
	$\left\{45.3706^{\circ}, 60^{\circ}\right\}$

In Gradian angle mode：
$1 \rightarrow$ DD $\frac{9}{10}$ 。

In Radian angle mode：
$(1.5) \mathrm{DD} \quad 85.9437^{\circ}$

Catalogue＞国

$\frac{1}{3} \rightarrow$ Decimal
0.333333

Matrix 1 Decimal \Rightarrow expression
Note：You can insert this operator from the computer keyboard by typing ＠＞Decimal．

Displays the argument in decimal form． This operator can be used only at the end of the entry line．

Define
Catalogue＞国要
Define Var $=$ Expression

Define Function（Param1，Param2，$\ldots)=$	Define $g(x, y)=2 \cdot x-3 \cdot y$	Done
Expression		
Defines the variable Var or the user－		
Defined function Function． define	$1 \rightarrow a: 2 \rightarrow b: g(a, b)$ -4 Define $h(x)=$ when $(x<2,2 \cdot x-3,-2 \cdot x+3)$ Done $h(-3)$ -9 $h(4)$ -5	

Parameters, such as Param1, provide place holders for passing arguments to the function. When calling a userdefined function, you must supply arguments (for example, values or variables) that correspond to the parameters. When called, the function evaluates Expression using the supplied arguments.

Var and Function cannot be the name of a system variable or built-in function or command.

Note: This form of Define is equivalent to executing the expression: expression \rightarrow Function(Param1,Param2).
Define Function(Param1, Param2, ...) = Func
Block
EndFunc
Define Program(Param1, Param2, ...) = Prgm
Block

EndPrgm

In this form, the user-defined function or programme can execute a block of multiple statements.

Block can be either a single statement or a series of statements on separate lines. Block also can include expressions and instructions (such as If, Then, Else and For).

Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.

Note: See also Define LibPriv, page 47, and Define LibPub, page 48.

Define $g(x, y)=$	Func	Done
	If $x>y$ Then	
	Return x	
	Else	
	Return y	
	EndIf	
	EndFunc	
$g(3,-7)$		3

Define $g(x, y)=$	Prgm
	If $x>y$ Then
	Disp $x, "$ greater than $", y$
	Else
	Disp $x, "$ not greater than $", y$
	EndIf
	EndPrgm

Done
3 greater than -7

Done

Define LibPriv
Catalogue > 国
Define LibPriv Var $=$ Expression

Define LibPriv Function(Param1, Param2, ...) = Expression

Define LibPriv Function(Param1, Param2, ...) = Func Block
EndFunc
Define LibPriv Program(Param1, Param2, ...) = Prgm
Block
EndPrgm
Operates the same as Define, except defines a private library variable, function, or programme. Private functions and programs do not appear in the Catalogue.

Note: See also Define, page 46, and Define LibPub, page 48.
Define LibPubDefine LibPub Var $=$ ExpressionDefine LibPub Function(Param1, Param2, ...) =Expression
Define LibPub Function(Param1, Param2, ...) = Func
Block
EndFunc
Define LibPub Program(Param1, Param2, ...) =
Prgm
Block
EndPrgm

Operates the same as Define, except defines a public library variable, function, or programme. Public functions and programs appear in the Catalogue after the library has been saved and refreshed.

Note: See also Define, page 46, and Define LibPriv, page 47.

If one or more of the variables are locked, this command displays an error message and deletes only the unlocked variables. See unLock, page 200.

DelVar Var. deletes all members of the Var. variable group (such as the statistics stat.nn results or variables created using the LibShortcut() function). The dot (.) in this form of the DelVar command limits it to deleting a variable group; the simple variable Var is not affected.

aa.a: $=45$		45
$a a . b:=5.67$		5.67
aа.c: $=78.9$		78.9
getVarInfo()	$\left[\begin{array}{ll}a a . a & \text { "NUM" } \\ a a . b & \text { "NUM" } \\ \text { aa.c } & \text { "NUM" }\end{array}\right.$	":"
DelVar a,		Done
getVarInfo()	"	NONE"

delVoid()
 delVoid(List1) \Rightarrow list

Returns a list that has the contents of Listl 1 with all empty (void) elements removed.

For more information on empty elements, see page 255.
deSolve(1stOr2ndOrderODE, Var, depVar) \Rightarrow a general solution

Returns an equation that explicitly or implicitly specifies a general solution to the 1st- or 2nd-order ordinary differential equation (ODE). In the ODE:

- Use a prime symbol (press ?!) to denote the 1st derivative of the dependent variable with respect to the independent variable.
- Use two prime symbols to denote the corresponding second derivative.

The prime symbol is used for derivatives within deSolve() only. In other cases, use d ().

The general solution of a 1st-order equation contains an arbitrary constant of the form $c k$, where k is an integer suffix from 1 through 255 . The solution of a 2 nd-order equation contains two such constants.

Apply solve() to an implicit solution if you want to try to convert it to one or more equivalent explicit solutions.

When comparing your results with textbook or manual solutions, be aware that different methods introduce arbitrary constants at different points in the calculation, which may produce different general solutions.
deSolve(1stOrderODEandinitCond, Var, depVar) \Rightarrow a particular solution

Returns a particular solution that satisfies 1 stOrderODE and initCond. This is usually easier than determining a general solution, substituting initial values, solving for the arbitrary constant, and then substituting that value into the general solution.
initCond is an equation of the form:
> depVar $($ initialIndependentValue $)=$ initialDependentValue
deSolve $\left(y^{\prime \prime}+2 \cdot y^{\prime}+y=x^{2}, x, y\right)$

$$
\begin{aligned}
& \frac{y=(c 3 \cdot x+c 4) \cdot e^{-x}+x^{2}-4 \cdot x+6}{\operatorname{right}(A n s) \rightarrow \operatorname{temp} p(c 3 \cdot x+c 4) \cdot e^{-x+x^{2}-4 \cdot x+6}} \\
& \frac{d^{2}}{d x^{2}}(\text { temp })+2 \cdot \frac{d}{d x}(\text { temp })+\text { temp }-x^{2}
\end{aligned}
$$

DelVar temp Done

$$
\text { deSolve }\left(y^{\prime}=(\cos (y))^{2} \cdot x, x, y\right) \quad \tan (y)=\frac{x^{2}}{2}+c 4
$$

solve $(A n s, y) \quad y=\tan ^{-1}\left(\frac{x^{2}+2 \cdot c 4}{2}\right)+\boldsymbol{n} 3 \cdot \pi$
$A n s \mid c 4=c-1$ and $n 3=0 \quad y=\tan ^{-1}\left(\frac{x^{2}+2 \cdot(c-1)}{2}\right)$

$\sin (y)=\left(y \cdot e^{x}+\cos (y)\right) \cdot y^{\prime} \rightarrow$ ode $\sin (y)=\left(e^{x} \cdot y+\cos (y)\right) \cdot y^{\prime}$
deSolve $($ ode and $y(0)=0, x, y) \rightarrow \operatorname{soln}$
$\frac{-\left(2 \cdot \sin (y)+y^{2}\right)}{2}=-\left(e^{x}-1\right) \cdot e^{-x} \cdot \sin (y)$
soln $\mid x=0$ and $y=0$
ode $\mid y^{\prime}=\operatorname{impDif}(\operatorname{soln}, x, y)$
DelVar ode, soln

The initialIndependentValue and initialDependentValue can be variables such as $\mathrm{x0}$ and y 0 that have no stored values. Implicit differentiation can help verify implicit solutions.

deSolve
 (
 2ndOrderODE
 andinitCondlandinitCond2, Var, depVar $) \Rightarrow$ a particular solution

Returns a particular solution that satisfies 2nd Order ODE and has a specified value of the dependent variable and its first derivative at one point.

For initCond 1 , use the form:
depVar $($ initialIndependentValue $)=$ initialDependentValue

For initCond2, use the form:
depVar $($ initialIndependentValue $)=$ initiallstDerivativeValue
deSolve
(
2ndOrderODE
andbndCondlandbndCond2, Var, dep Var $) \Rightarrow$ a particular solution

Returns a particular solution that satisfies 2ndOrderODE and has specified values at two different points.

$$
\begin{array}{r}
\text { deSolve }\left(w^{\prime \prime}-\frac{2 \cdot w^{\prime}}{x}+\left(9+\frac{2}{x^{2}}\right) \cdot w=x \cdot e^{x} \text { and } w\left(\frac{\pi}{6}\right)=0 \text { and } w\left(\frac{\pi}{3}\right)=0, x, w\right) \\
w=\frac{x \cdot e^{x}}{(\ln (e))^{2}+9}+\frac{e^{\frac{\pi}{3}} \cdot x \cdot \cos (3 \cdot x)}{(\ln (e))^{2}+9}-\frac{e^{\frac{\pi}{6}} \cdot x \cdot \sin (3 \cdot x)}{(\ln (e))^{2}+9}
\end{array}
$$

solve $\left(\frac{2 \cdot y^{\frac{3}{4}}}{3}=t, y\right)$

$$
y=\frac{3 \cdot 3^{\frac{1}{3}} \cdot 2^{\frac{2}{3}} \cdot t^{\frac{4}{3}}}{4} \text { and } t \geq 0
$$

$$
\text { deSolve }\left(y^{\prime \prime}=x \text { and } y(0)=1 \text { and } y^{\prime}(2)=3, x, y\right)
$$

$$
y=\frac{x^{3}}{6}+x+1
$$

deSolve $\left(y^{\prime \prime}=2 \cdot y^{\prime}\right.$ and $y(3)=1$ and $\left.y^{\prime}(4)=2, x, y\right)$ $y=\mathbf{e}^{2 \cdot x-8}-\mathbf{e}^{-2}+1$
det(squareMatrix[,
Tolerance $]) \Rightarrow$ expression
Returns the determinant of squareMatrix.

Optionally, any matrix element is treated as zero if its absolute value is less than Tolerance. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tolerance is ignored.

- If you use ctri enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tolerance is omitted or not used, the default tolerance is calculated as:

5E-14 $\cdot \max (\operatorname{dim}($ squareMatrix) $) \cdot$ rowNorm(squareMatrix)
$\operatorname{det}\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right\} \quad a \cdot d-b \cdot c$
$\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\right) \quad-2$
$\operatorname{det}\left(\operatorname{identity}(3)-x \cdot\left[\begin{array}{ccc}1 & -2 & 3 \\ -2 & 4 & 1 \\ -6 & -2 & 7\end{array}\right]\right)$

	$-\left(98 \cdot x^{3}-55 \cdot x^{2}+12 \cdot x-1\right)$
$\left.\begin{array}{cc}1 . \mathrm{E} 20 & 1 \\ 0 & 1\end{array}\right] \rightarrow$ mat1	$\left.\begin{array}{cc}1 . \mathrm{E} 20 & 1 \\ 0 & 1\end{array}\right]$
$\operatorname{det}($ mat1 $)$	0
$\operatorname{det}($ mat1,.1 $)$	$1 . \mathrm{E} 20$

diag()
$\operatorname{diag}($ List $) \Rightarrow$ matrix
$\operatorname{diag}($ rowMatrix $) \Rightarrow$ matrix
$\operatorname{diag}($ columnMatrix $) \Rightarrow$ matrix
Returns a matrix with the values in the argument list or matrix in its main diagonal.
diag(squareMatrix) \Rightarrow rowMatrix
Returns a row matrix containing the elements from the main diagonal of squareMatrix.
squareMatrix must be square.
$\left.\begin{array}{cc}{\left[\begin{array}{ccc}4 & 6 & 8 \\ 1 & 2 & 3 \\ 5 & 7 & 9\end{array}\right]} \\ \hline \operatorname{diag}(A n s) & {\left[\begin{array}{ccc}4 & 6 & 8 \\ 1 & 2 & 3 \\ 5 & 7 & 9\end{array}\right]} \\ \hline 4 & 2\end{array}\right]$

Returns the dimension of List.
$\operatorname{dim}($ Matrix $) \Rightarrow$ list
Returns the dimensions of matrix as a two－element list \｛rows，columns\}.
dim（String $) \Rightarrow$ integer
Returns the number of characters contained in character string String．
$\operatorname{dim}\left(\left[\begin{array}{ll}1 & -1 \\ 2 & -2 \\ 3 & 5\end{array}\right]\right\}\{3,2\}$

$\operatorname{dim}($＂Hello＂$)$	5
$\operatorname{dim}($＂Hello＂\＆＂there＂）	11

Disp
Disp exprOrString1［，exprOrString2］．．．
Displays the arguments in the Calculator history．The arguments are displayed in succession，with thin spaces as separators．

Useful mainly in programs and functions to ensure the display of intermediate calculations．

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

Catalogue＞国2

DispAt

DispAt int，expr1［，expr2 ．．．］．．．
DispAt allows you to specify the line where the specified expression or string will be displayed on the screen．

The line number can be specified as an expression．

Please note that the line number is not for the entire screen but for the area immediately following the command／programme．

Catalogue＞国

This command allows dashboard-like output from programmes where the value of an expression or from a sensor reading is updated on the same line.

DispAtand Disp can be used within the same programme.

Note: The maximum number is set to 8 since that matches a screen-full of lines on the handheld screen - as long as the lines don't have 2D maths expressions. The exact number of lines depends on the content of the displayed information.

Illustrative examples:

Define $z()=$	Output
Prgm	z()
For n,1,3	Iteration 1:
DispAt 1,"N: ",n	Line 1: $\mathrm{N}: 1$
Disp "Hello"	Line 2: Hello
EndFor	
EndPrgm	Iteration 2:
	Line 1: $\mathrm{N}: 2$
	Line 2: Hello
	Line 3: Hello

Iteration 3:
Line 1: $\mathrm{N}: 3$
Line 2: Hello
Line 3: Hello
Line 4: Hello

Define z1()=	z1()
Prgm	
For $\mathrm{n}, 1,3$	Line 1: $\mathrm{N}: 3$
DispAt 1,"N: ", n	
EndFor	Line 2: Hello
For $\mathrm{n}, 1,4$	Line 3: Hello Hello
Disp "Hello"	
EndFor	
EndPrgm 5: Hello	

Error conditions：

Error Message DispAt line number must be between 1 and 8	Description Expression evaluates the line number outside the range 1－8（inclusive）
Too few arguments	The function or command is missing one or more arguments．
No arguments	Same as current＇syntax error＇dialogue
Too many arguments	Limit argument．Same error as Disp．
Invalid data type	First argument must be a number．
Void：DispAt void	＂Hello World＂Datatype error is thrown for the void（if the callback is defined）
Conversion operator：DispAt 2＿ft＠＞＿m， ＂Hello World＂	CAS：Datatype Error is thrown（if the callback is defined） Numeric：Conversion will be evaluated and if the result is a valid argument， DispAt print the string at the result line．

DMS

Catalogue＞国

Expr $>$ DMS

List＞DMS

Matrix DMS

Note：You can insert this operator from the computer keyboard by typing ＠$>$ DMS．

Interprets the argument as an angle and displays the equivalent DMS （DDDDDDMM＇SS．ss＂）number．See ${ }^{\circ}$, ，，＂ （page 232）for DMS（degree，minutes， seconds）format．

Note：PDMS will convert from radians to degrees when used in radian mode．If the input is followed by a degree symbol ${ }^{\circ}$ ，no conversion will occur．You can use PDMS only at the end of an entry line．

In Degree angle mode：

$(45.371) \bullet$ DMS	$45^{\circ} 22^{\prime} 15.6^{\prime \prime}$
$(\{45.371,60\}) \bullet$ DMS	$\left\{45^{\circ} 22^{\prime} 15.6^{\prime \prime}, 60^{\circ}\right\}$

domain（Expr1，Var）\Rightarrow expression
Returns the domain of Exprl with respect to Var．
domain（）can be used to examine domains of functions．It is restricted to real and finite domain．

This functionality has limitations due to shortcomings of computer algebra simplification and solver algorithms．

Certain functions cannot be used as arguments for domain（），regardless of whether they appear explicitly or within user－defined variables and functions．In the following example，the expression cannot be simplified because $\int()$ is a disallowed function．
domain $\left\{\int_{1}^{x} \frac{1}{t} \mathrm{~d} t, x\right) \cdot$ domain $\left(\int_{1}^{x} \frac{1}{t} \mathrm{~d} t, x\right)$

dominantTerm（）

dominantTerm（Expr1，Var［，
Point $]) \Rightarrow$ expression
dominantTerm（Expr1，Var［，Point $]$ ）｜
Var $>$ Point \Rightarrow expression
dominantTerm（Exprl，Var［，Point $]$ ）｜
Var $<$ Point \Rightarrow expression

Catalogue＞国第
dominantTerm $(\tan (\sin (x))-\sin (\tan (x)), x)$

$\frac{\frac{x^{7}}{30}}{\text { dominantTerm }\left(\frac{1-\cos (x-1)}{(x-1)^{3}}, x, 1\right)} \frac{\frac{1}{2 \cdot(x-1)}}{}$| dominantTerm $\left(x^{-2} \cdot \tan \left(\frac{1}{3}\right)\right.$ |
| :--- |
| dominantTerm $\left(\ln \left(x^{x}-1\right) \cdot x^{-2}, x\right)$ |$\frac{\frac{1}{\frac{1}{5}(x \cdot \ln (x))}}{x^{2}}$

Returns the dominant term of a power series representation of Exprl expanded about Point. The dominant term is the one whose magnitude grows most rapidly near Var $=$ Point . The resulting power of (Var - Point) can have a negative and/or fractional exponent. The coefficient of this power can include logarithms of (Var - Point) and other functions of Var that are dominated by all powers of (Var - Point) having the same exponent sign.

Point defaults to 0. Point can be ∞ or $-\infty$, in which cases the dominant term will be the term having the largest exponent of Var rather than the smallest exponent of Var.
dominantTerm(...) returns
"dominantTerm(...)" if it is unable to determine such a representation, such as for essential singularities such as sin $(1 / z)$ at $z=0, \mathrm{e}^{-1 / \mathrm{z}}$ at $\mathrm{z}=0$, or e^{z} at $\mathrm{z}=\infty$ or $-\infty$.

If the series or one of its derivatives has a jump discontinuity at Point, the result is likely to contain sub-expressions of the form sign(...) or abs(...) for a real expansion variable or (-1)floor(...angle(...)...) for a complex expansion variable, which is one ending with "_". If you intend to use the dominant term only for values on one side of Point, then append to dominantTerm(...) the appropriate one of "| Var > Point", "| Var < Point", "| "Var \geq Point", or "Var \leq Point" to obtain a simpler result.
dominantTerm() distributes over 1stargument lists and matrices.
dominantTerm $\left(\mathrm{e}^{\frac{-1}{z}}\right.$,
dominantTerm $\left(e^{\frac{-1}{z}}\right.$,
$\operatorname{dominantTerm}\left(\left(1+\frac{1}{n}\right)^{n}, n, \infty\right) \quad e$
dominantTerm $\left(\tan ^{-1}\left(\frac{1}{x}\right), x, 0\right)$
dominantTerm $\left.\left(\tan ^{-1}\left(\frac{1}{x}\right), x\right) \right\rvert\, x>0$
dominantTerm() is useful when you want to know the simplest possible expression that is asymptotic to another expression as Var \rightarrow Point. dominantTerm() is also useful when it isn't obvious what the degree of the first non-zero term of a series will be, and you don't want to iteratively guess either interactively or by a programme loop.

Note: See also series(), page 162.

$\operatorname{dotP}()$

Catalogue > 国
dotP(List1, List2) \Rightarrow expression
Returns the "dot" product of two lists.
dotP(Vectorl, Vector 2) \Rightarrow expression
Returns the "dot" product of two vectors.

Both must be row vectors, or both must be column vectors.

$\operatorname{dotP}(\{a, b, c\},\{d, e, f\})$	$a \cdot d+b \cdot \boldsymbol{e}+c \cdot f$
$\operatorname{dot}(\{1,2\},\{5,6\})$	17
$\operatorname{dot}\left(\left[\begin{array}{lll}a & b & c\end{array}\right],\left[\begin{array}{lll}d & e & f\end{array}\right]\right)$	$a \cdot d+\boldsymbol{b} \cdot \boldsymbol{e}+c \cdot f$
$\operatorname{dot} P\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right],\left[\begin{array}{lll}4 & 5 & 6\end{array}\right]\right)$	32

E

$e^{\boldsymbol{\wedge}}()$
$e^{\boldsymbol{\wedge}}($ Exprl $) \Rightarrow$ expression
Returns \boldsymbol{e} raised to the Exprl power.
Note: See also \boldsymbol{e} exponent template, page

Note: Pressing ex to display e^{\wedge} (is
different from pressing the character E on the keyboard.

You can enter a complex number in rei θ polar form. However, use this form in Radian angle mode only; it causes a Domain error in Degree or Gradian angle mode.
$e^{\wedge}($ List 1$) \Rightarrow$ list

	$\boxed{e^{x}}$ key
e^{1}	e
$e^{1 .}$	2.71828
$e^{3^{2}}$	e^{9}

[^2]Returns e raised to the power of each element in Listl．
$e^{\wedge}($ squareMatrix $) \Rightarrow$ squareMatrix
Returns the matrix exponential of squareMatrixl．This is not the same as
$e^{\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right] \quad\left[\begin{array}{lll}782.209 & 559.617 & 456.509 \\ 680.546 & 488.795 & 396.521 \\ 524.929 & 371.222 & 307.879\end{array}\right]}$ calculating e raised to the power of each element．For information about the calculation method，refer to $\cos ()$ ．
squareMatrixl must be diagonalizable． The result always contains floating－point numbers．

eff（）

eff（nominalRate， $\mathrm{Cp} Y$ ）\Rightarrow value
Financial function that converts the nominal interest rate nominalRate to an annual effective rate，given $C p Y$ as the number of compounding periods per year．
nominalRate must be a real number， and $C p Y$ must be a real number >0 ．

Note：See also nom（），page 124.
eigVc（）
eigVc（squareMatrix）\Rightarrow matrix
Returns a matrix containing the eigenvectors for a real or complex squareMatrix，where each column in the result corresponds to an eigenvalue． Note that an eigenvector is not unique；it may be scaled by any constant factor． The eigenvectors are normalized， meaning that：
if $V=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$
then $x_{1}{ }^{2}+x_{2}{ }^{2}+\ldots+x_{n}^{2}=1$

Catalogue＞国

In Rectangular Complex Format：

$\left[\begin{array}{ccc}-1 & 2 & 5 \\ 3 & -6 & 9 \\ 2 & -5 & 7\end{array}\right]$		$\left[\begin{array}{ccc}-1 & 2 & 5 \\ 3 & -6 & 9 \\ 2 & -5 & 7\end{array}\right]$
eigVc（ $m 1$ ）		
［－0．800906	－ 0.767947	（
0.484029	$0.573804+0.052258$	－ $\boldsymbol{i} 0.5738$
0.352512	$0.262687+0.096286 \cdot$	－i 0.2626

To see the entire result，press $\boldsymbol{\triangle}$ and then use \triangle and \downarrow to move the cursor．
squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible．The squareMatrix is then reduced to upper Hessenberg form and the eigenvectors are computed via a Schur factorization．
eigVI（） Catalogue＞国远
eigVI（squareMatrix）\Rightarrow list
Returns a list of the eigenvalues of a real or complex squareMatrix．
squareMatrix is first balanced with similarity transformations until the row and column norms are as close to the same value as possible．The squareMatrix is then reduced to upper Hessenberg form and the eigenvalues are computed from the upper Hessenberg matrix．

In Rectangular complex format mode：
$\left.\begin{array}{lll}\hline-1 & 2 & 5 \\
3 & -6 & 9 \\
2 & -5 & 7\end{array}\right] \rightarrow m 1$

eigVl $(m 1)$
$\{-4.40941,2.20471+0.763006 \cdot \boldsymbol{i}, 2.20471-0$.

To see the entire result，press $\boldsymbol{\Delta}$ and then use 4 and to move the cursor．

Else See If，page 88.

Elself
If BooleanExprl Then Blockl
Elself BooleanExpr 2 Then
Block2
；
Elself BooleanExpr N Then BlockN
EndIf
！

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

Catalogue＞国
Define $g(x)=$ Func
If $x \leq-5$ Then
Return 5
ElseIf $x>-5$ and $x<0$ Then
Return－x
ElseIf $x \geq 0$ and $x \neq 10$ Then
Return x
ElseIf $x=10$ Then
Return 3
EndIf
EndFunc
Done
EndLoop See Loop, page 110.

EndPrgm
See Prgm, page 139.

EndTry
See Try, page 193.

EndWhile
 See While, page 203.

euler ()	Catalogue > 国运
euler(Expr, Var, depVar, \{Var0, VarMax\}, depVar0, VarStep [, eulerStep]) \Rightarrow matrix	Differential equation: $y^{\prime}=0.001^{*} y^{*}(100-y) \text { and } y(0)=10$
euler(SystemOfExpr, Var, ListOfDepVars, \{Var0, VarMax\}, ListOfDepVars0, VarStep [,	$\begin{aligned} & \hline \text { euler }(0.001 \cdot y \cdot(100-y), t y,\{0,100\}, 10,1) \\ & {\left[\begin{array}{ccccc} 0 . & 1 . & 2 . & 3 . & 4 . \\ 10 . & 10.9 & 11.8712 & 12.9174 & 14.042^{\prime} \end{array}\right.} \end{aligned}$
eulerStep]) \Rightarrow matrix	To see the entire result, press \triangle and then use
euler(ListOfExpr, Var, ListOfDepVars, \{Var0, VarMax\}, ListOfDepVars0, VarStep $[$, eulerStep] $) \Rightarrow$ matrix	4 and to move the cursor. Compare above result with CAS exact solution obtained using deSolve() and seqGen():

Uses the Euler method to solve the system
$\frac{d \text { depVar }}{d \text { Var }}=\operatorname{Expr}($ Var, depVar $)$
with $\operatorname{dep} \operatorname{Var}(\operatorname{Var} 0)=\operatorname{dep} \operatorname{Var} 0$ on the interval [Var0,VarMax]. Returns a matrix whose first row defines the Var output values and whose second row defines the value of the first solution component at the corresponding Var values, and so on.

Expr is the right-hand side that defines the ordinary differential equation (ODE).

SystemOfExpr is the system of righthand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs (corresponds to the order of dependent variables in ListOfDepVars).

Var is the independent variable.
ListOfDepVars is a list of dependent variables.
\{Var0, VarMax\} is a two-element list that tells the function to integrate from Var0 to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

VarStep is a nonzero number such that $\boldsymbol{\operatorname { s i g n }}($ VarStep $)=\boldsymbol{\operatorname { s i g n }}($ VarMax-Var0 $)$ and solutions are returned at Var $0+i \cdot$ VarStep for all $i=0,1,2, \ldots$ such that Var $0+i \bullet$ VarStep is in [var0,VarMax] (there may not be a solution value at VarMax).
eulerStep is a positive integer (defaults to 1) that defines the number of euler steps between output values. The actual step size used by the euler method is VarStep/eulerStep.
deSolve $\left(y^{\prime}=0.001 \cdot y \cdot(100-y)\right.$ and $\left.y(0)=10, t y\right)$
$y=\frac{100 \cdot(1.10517)^{t}}{(1.10517)^{t}+9 .}$
$\operatorname{seqGen}\left(\frac{100 \cdot \cdot(1.10517)^{t}}{(1.10517)^{t}+9 .}, t y,\{0,100\}\right)$
$\{10 ., 10.9367,11.9494,13.0423,14.218$ 个

System of equations:
$\left\{\begin{array}{l}y 1^{\prime}=-y 1+0.1 \cdot y 1 \cdot y 2 \\ y 2=3 \cdot y 2-y 1 \cdot y 2\end{array}\right.$
with $y 1(0)=2$ and $y 2(0)=5$
euler $\left\{\left\{\begin{array}{l}-y 1+0.1 \cdot y 1 \cdot y 2 \\ 3 \cdot y 2-y 1 \cdot y 2\end{array}, t,\{y 1, y 2\},\{0,5\},\{2,5\}, 1\right\}\right.$
$\left[\begin{array}{llllll}0 . & 1 . & 2 . & 3 . & 4 . & 5 .\end{array}\right.$
2. 1. 1. 3. 27. 243.
$\begin{array}{llllll}\text { 5. 10. } & 30 . & 90 . & 90 . & -2070 .\end{array}$
eval(Expr) \Rightarrow string
eval() is valid only in the TI-
Innovator ${ }^{\text {TM }}$ Hub Command argument of programming commands Get, GetStr and Send. The software evaluates expression Expr and replaces the eval() statement with the result as a character string.

The argument Expr must simplify to a real number.

Although eval() does not display its result, you can view the resulting Hub command string after executing the command by inspecting any of the following special variables.
iostr.SendAns
iostr.GetAns
iostr.GetStrAns
Note: See also Get (page 79), GetStr (page 85), and Send (page 160).

Set the blue element of the RGB LED to half intensity.

lum:=127	127
Send "SET COLOR.BLUE eval(lum)"	Done

Reset the blue element to OFF.

```
Send "SET COLOR.BLUE OFF"
eval() argument must simplify to a real number.
```

Send "SET LED eval("4") TO ON"
"Error: Invalid data type"

```

Programme to fade-in the red element
\begin{tabular}{|l|}
\hline Define fadein ()\(=\) \\
Prgm \\
For \(i, 0,255,10\) \\
Send "SET COLOR.RED eval(i)" \\
\(\quad\) Wait 0.1 \\
EndFor \\
Send "SET COLOR.RED OFF" \\
EndPrgm
\end{tabular}

Execute the programme.
\begin{tabular}{|c|c|}
\hline fadein() & Done \\
\hline \(n:=0.25\) & 0.25 \\
\hline \(m:=8\) & 8 \\
\hline \(n \cdot m\) & 2. \\
\hline \multicolumn{2}{|l|}{Send "SET COLOR.BLUE ON TIME eval(n m) "} \\
\hline iostr. SendAns & ME \(2^{\prime \prime}\) \\
\hline
\end{tabular}
exact（Exprl \([\) ，Tolerance］\() \Rightarrow\) expression
exact（Listl［，Tolerance］）\(\Rightarrow\) list exact（Matrixl［，Tolerance］）\(\Rightarrow\) matrix

Uses Exact mode arithmetic to return， when possible，the rational－number equivalent of the argument．

Tolerance specifies the tolerance for the conversion；the default is 0 （zero）．
\begin{tabular}{ll}
\hline \(\operatorname{exact}(0.25)\) & \(\frac{1}{4}\) \\
\hline
\end{tabular}
\(\operatorname{exact}(0.333333) \quad \frac{333333}{1000000}\)
\(\operatorname{exact}(0.333333,0.001) \quad \frac{1}{3}\)

\(\operatorname{exact}(\{0.2,0.33,4.125\}) \quad\left\{\frac{1}{5}, \frac{33}{100}, \frac{33}{8}\right\}\)
Exit

Exits the current For，While，or Loop block．

Exit is not allowed outside the three looping structures（For，While，or Loop）．

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

Function listing：
\begin{tabular}{llr}
\hline Define \(g()=\) & Func & Done \\
& Local temp,\(i\) & \\
& \(0 \rightarrow\) temp & \\
& For \(i, 1,100,1\) & \\
& temp \(+i \rightarrow\) temp & \\
& If temp \(>20\) Then & \\
& Exit & \\
& EndIf & \\
& EndFor & \\
& EndFunc & \\
\hline\(g()\) & & 21
\end{tabular}
\begin{tabular}{ll|}
\hline\(\frac{d}{d x}\left(e^{x}+e^{-x}\right)\) & \(2 \cdot \sinh (x)\) \\
\(2 \cdot \sinh (x) \exp\) & \(e^{x}-e^{-x}\) \\
\hline
\end{tabular}
\(\exp ()\)
\(\exp (\) Expr 1\() \Rightarrow\) expression
Returns e raised to the Exprl power.
Note: See also exponent template, page 2.

You can enter a complex number in rei \(\theta\) polar form. However, use this form in Radian angle mode only; it causes a Domain error in Degree or Gradian angle mode.
\(\exp (\) List 1\() \Rightarrow\) list
Returns e raised to the power of each element in Listl.
\(\exp (\) squareMatrixl \() \Rightarrow\) squareMatrix
Returns the matrix exponential of squareMatrixl. This is not the same as calculating \(e\) raised to the power of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrixl must be diagonalizable. The result always contains floating-point numbers.
\begin{tabular}{lr}
\hline\(e^{1}\) & \(e\) \\
\hline\(e^{1 .}\) & 2.71828 \\
\hline\(e^{3^{2}}\) & \(e^{9}\)
\end{tabular}
\[
e^{\{\{1,1 ., 0.5\}} \quad\{e, 2.71828,1.64872\}
\]
\[
e^{\left[\begin{array}{ccc}
1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1
\end{array}\right] \quad\left[\begin{array}{lll}
782.209 & 559.617 & 456.509 \\
680.546 & 488.795 & 396.521 \\
524.929 & 371.222 & 307.879
\end{array}\right]}
\]
exp list()
exp list(Expr,Var) \(\Rightarrow\) list
Examines Expr for equations that are separated by the word "or," and returns a list containing the right-hand sides of the equations of the form Var \(=\) Expr. This gives you an easy way to extract some solution values embedded in the results of the solve(), cSolve(), fMin() , and fMax() functions.

Note: \(\exp\) list() is not necessary with the zeros() and cZeros() functions because they return a list of solution values directly.

You can insert this function from the keyboard by typing exp@>list (...).

Catalogue > 国
\begin{tabular}{lr}
\hline solve \(\left(x^{2}-x-2=0, x\right)\) & \(x=-1\) or \(x=2\) \\
\hline exp list \(\left(\right.\) solve \(\left.\left(x^{2}-x-2=0, x\right), x\right)\) & \(\{-1,2\}\)
\end{tabular}
expand \((\) Expr \(1[\), Var \(]) \Rightarrow\) expression
expand(List \(1[\), Var \(]) \Rightarrow\) list
expand(Matrixl [,Var]) \(\Rightarrow\) matrix
expand(Exprl) returns Exprl expanded with respect to all its variables. The expansion is polynomial expansion for polynomials and partial fraction expansion for rational expressions.

The goal of expand() is to transform Exprl into a sum and/or difference of simple terms. In contrast, the goal of factor() is to transform Exprl into a product and/or quotient of simple factors.
expand(Expr1,Var) returns Expr1 expanded with respect to Var. Similar powers of Var are collected. The terms and their factors are sorted with Var as the main variable. There might be some incidental factoring or expansion of the collected coefficients. Compared to omitting Var, this often saves time, memory, and screen space, while making the expression more comprehensible.

Even when there is only one variable, using Var might make the denominator factorization used for partial fraction expansion more complete.

Hint: For rational expressions, propFrac() is a faster but less extreme alternative to expand().

Note: See also comDenom() for an expanded numerator over an expanded denominator.
\(\operatorname{expand}\left((x+y+1)^{2}\right)\)
\(x^{2}+2 \cdot x \cdot y+2 \cdot x+y^{2}+2 \cdot y+1\)
\(\operatorname{expand}\left(\frac{x^{2}-x+y^{2}-y}{x^{2} \cdot y^{2}-x^{2} \cdot y-x \cdot y^{2}+x \cdot y}\right)\)
\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{y-1}-\frac{1}{y}\)
expand \(\left((x+y+1)^{2}, y\right) \quad y^{2}+2 \cdot y \cdot(x+1)+(x+1)^{2}\)
expand \(\left((x+y+1)^{2}, x\right) \quad x^{2}+2 \cdot x \cdot(y+1)+(y+1)^{2}\)
expand \(\left(\frac{x^{2}-x+y^{2}-y}{x^{2} \cdot y^{2}-x^{2} \cdot y-x \cdot y^{2}+x \cdot y}, y\right)\)
\[
\frac{1}{y-1}-\frac{1}{y}+\frac{1}{x \cdot(x-1)}
\]
\[
\operatorname{expand}(A n s, x) \quad \frac{1}{x-1}-\frac{1}{x}+\frac{1}{y \cdot(y-1)}
\]
expand \(\left(\frac{x^{3}+x^{2}-2}{x^{2}-2}\right) \quad \frac{2 \cdot x}{x^{2}-2}+x+1\)
\(\operatorname{expand}(\) Ans, \(x) \quad \frac{1}{x-\sqrt{2}}+\frac{1}{x+\sqrt{2}}+x+1\)
expand（Expr1，［Var］）also distributes logarithms and fractional powers regardless of Var．For increased distribution of logarithms and fractional powers，inequality constraints might be necessary to guarantee that some factors are nonnegative．
expand（Expr1，［Var］）also distributes absolute values，sign（），and exponentials， regardless of Var．
\(\ln (2 \cdot x \cdot y)+\sqrt{2 \cdot x \cdot y} \quad \ln (2 \cdot x \cdot y)+\sqrt{2 \cdot x \cdot y}\)
expand \((\) Ans \() \quad \ln (x \cdot y)+\sqrt{2} \cdot \sqrt{x \cdot y}+\ln (2)\)
expand \((A n s) \mid y \geq 0\)
\(\frac{\ln (x)+\sqrt{2} \cdot \sqrt{x} \cdot \sqrt{y}+\ln (y)+\ln (2)}{\operatorname{sign}(x \cdot y)+|x \cdot y|+e^{2 \cdot x+y}}\)
\[
e^{2 \cdot x+y_{+}} \operatorname{sign}(x \cdot y)+|x \cdot y|
\]
\[
\operatorname{expand}(A n s)
\]
\[
\operatorname{sign}(x) \cdot \operatorname{sign}(y)+|x| \cdot|y|+\left(e^{x}\right)^{2} \cdot e^{y}
\]

Note：See also tExpand（）for trigonometric angle－sum and multiple－ angle expansion．

Catalogue＞［⿴囗玉心
\begin{tabular}{|c|c|}
\hline expr（＂1＋2＋x＾2＋x＂） & \(x^{2}+x+3\) \\
\hline expr（ \(\quad\) expand（ \(\left.\left.(1+x)^{\wedge} 2\right) "\right)\) & \(x^{2}+2 \cdot x+1\) \\
\hline \multicolumn{2}{|l|}{＂Define cube（ x ）\(=\mathrm{x} \wedge 3\)＂\(\rightarrow\) funcstr} \\
\hline \multicolumn{2}{|r|}{＂Define cube（ x ）\(=\mathrm{x}^{\wedge} 3\)＂} \\
\hline expr（funcstr） & Done \\
\hline cube（2） & \\
\hline
\end{tabular}

\section*{ExpReg}

\section*{ExpReg X，Y［，［Freq］［，Category，Include］］}

Computes the exponential regression \(\mathrm{y}=\mathrm{a} \cdot(\mathrm{b})^{\mathrm{x}}\) on lists \(X\) and \(Y\) with frequency Freq．A summary of results is stored in the stat．results variable．（See page 178．）

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes．
Only those data items whose category code is
included in this list are included in the calculation．
For information on the effect of empty elements in a list，see＂Empty（Void）Elements，＂page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．RegEqn & Regression equation： \(\mathrm{a} \bullet(\mathrm{b})^{\mathrm{x}}\) \\
\hline stat．a，stat．b & Regression coefficients \\
\hline stat．r\({ }^{2}\) & Coefficient of linear determination for transformed data \\
\hline stat．r & Correlation coefficient for transformed data（x，In（y）） \\
\hline stat．Resid & Residuals associated with the exponential model \\
\hline stat．ResidTrans & Residuals associated with linear fit of transformed data \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified X List actually used in the regression \\
based on restrictions of Freq，Category List，and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression \\
based on restrictions of Freq，Category List，and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}

\section*{F}
factor（）
factor（Exprl［，Var］）\(\Rightarrow\) expression
factor（List \(1[, V a r]) \Rightarrow\) list
factor（Matrix \([\)［，Var］\() \Rightarrow\) matrix
factor（Exprl）returns Exprl factored with respect to all of its variables over a common denominator．

Exprl is factored as much as possible toward linear rational factors without introducing new non－real subexpressions．This alternative is appropriate if you want factorization with respect to more than one variable．

Catalogue＞国
\begin{tabular}{lr}
\hline factor \(\left(a^{3} \cdot x^{2}-a \cdot x^{2}-a^{3}+a\right)\) \\
& \(a \cdot(a-1) \cdot(a+1) \cdot(x-1) \cdot(x+1)\) \\
\hline factor \(\left(x^{2}+1\right)\) & \(x^{2}+1\) \\
\hline factor \(\left(x^{2}-4\right)\) & \((x-2) \cdot(x+2)\) \\
\hline factor \(\left(x^{2}-3\right)\) & \(x^{2}-3\) \\
factor \(\left(x^{2}-a\right)\) & \(x^{2}-a\)
\end{tabular}
factor(Expr1,Var) returns Expr1
factored with respect to variable Var.
Exprl is factored as much as possible toward real factors that are linear in Var, even if it introduces irrational constants or subexpressions that are irrational in other variables.

The factors and their terms are sorted with Var as the main variable. Similar powers of Var are collected in each factor. Include Var if factorization is needed with respect to only that variable and you are willing to accept irrational expressions in any other variables to increase factorization with respect to Var. There might be some incidental factoring with respect to other variables.

For the Auto setting of the Auto or Approximate mode, including Var permits approximation with floatingpoint coefficients where irrational coefficients cannot be explicitly expressed concisely in terms of the builtin functions. Even when there is only one variable, including Var might yield more complete factorization.

Note: See also comDenom() for a fast way to achieve partial factoring when factor() is not fast enough or if it exhausts memory.

Note: See also cFactor() for factoring all the way to complex coefficients in pursuit of linear factors.
factor(rationalNumber) returns the rational number factored into primes. For composite numbers, the computing time grows exponentially with the number of digits in the second-largest factor. For example, factoring a 30 -digit integer could take more than a day, and factoring a 100-digit number could take more than a century.
\(\left.\begin{array}{l}\text { factor }\left(a^{3} \cdot x^{2}-a \cdot x^{2}-a^{3}+a, x\right) \\ \begin{array}{r}\text { factor }\left(x^{2}-3, x\right) \\ \text { factor }\left(x^{2}-a, x\right)\end{array} \\ \hline\end{array} a^{2}-1\right) \cdot(x-1) \cdot(x+1)\)
\((x+\sqrt{3}) \cdot(x-\sqrt{3})\)
\((x+\sqrt{a}) \cdot(x-\sqrt{a})\)
factor \(\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3\right)\)
\(\frac{x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3}{\text { factor }\left(x^{5}+4 \cdot x^{4}+5 \cdot x^{3}-6 \cdot x-3, x\right)}\)
\((x-0.964673) \cdot(x+0.611649) \cdot(x+2.12543) \cdot\left(x^{\prime}\right.\)
\begin{tabular}{lr}
\hline factor(152417172689) & \(123457 \cdot 1234577\) \\
\hline isPrime \((152417172689)\) & false \\
\hline
\end{tabular}

To stop a calculation manually，
－Handheld：Hold down the \(\left\{\begin{aligned} \text { on key }\end{aligned}\right.\) and press enter repeatedly．
－Windows \({ }^{\circledR}\) ：Hold down the \(\mathbf{F 1 2}\) key and press Enter repeatedly．
－Macintosh \({ }^{\circledR}\) ：Hold down the F5 key and press Enter repeatedly．
－iPad \({ }^{\circledR}\) ：The app displays a prompt．You can continue waiting or cancel．

If you merely want to determine if a number is prime，use isPrime（）instead．It is much faster，particularly if rationalNumber is not prime and if the second－largest factor has more than five digits．

\section*{FCdf（）}

Catalogue＞国
FCdf
（lowBound，upBound，dfNumer，dfDenom）\(\Rightarrow\) number if lowBound and upBound are numbers，list if lowBound and upBound are lists

\section*{FCdf}
（lowBound，upBound，dfNumer，dfDenom）\(\Rightarrow\) number if lowBound and upBound are numbers，list if lowBound and upBound are lists

Computes the F distribution probability between lowBound and upBound for the specified dfNumer （degrees of freedom）and \(d f\) Denom．

For \(\mathrm{P}(X \leq\) upBound \()\) ，set lowBound \(=0\) ．

Fill Expr，matrixVar \(\Rightarrow\) matrix
Replaces each element in variable matrixVar with Expr．
matrixVar must already exist．
\begin{tabular}{lr}
{\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right] \rightarrow\) amatrix } & {\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]\)} \\
\hline Fill 1．01，amatrix & Done \\
\hline amatrix & {\(\left[\begin{array}{ll}1.01 & 1.01 \\
1.01 & 1.01\end{array}\right]\)}
\end{tabular}

Fill Expr，listVar \(\Rightarrow\) list
Replaces each element in variable listVar with Expr．
\(\{1,2,3,4,5\} \rightarrow\) alist \(\quad\{1,2,3,4,5\}\)
\begin{tabular}{lr} 
Fill 1．01，alist & Done \\
\hline alist & \(\{1.01,1.01,1.01,1.01,1.01\}\)
\end{tabular}
listVar must already exist．

FiveNumSummary
FiveNumSummary \(X[\) ，［Freq \(][\) ，Category，Include \(]]\)
Provides an abbreviated version of the 1－variable statistics on list \(X\) ．A summary of results is stored in the stat．results variable（page 178）．
\(X\) represents a list containing the data．
Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．

Category is a list of numeric category codes for the corresponding \(X\) data．

Include is a list of one or more of the category codes． Only those data items whose category code is included in this list are included in the calculation．

An empty（void）element in any of the lists \(X\), Freq， or Category results in a void for the corresponding element of all those lists．For more information on empty elements，see page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．MinX & Minimum of \(x\) values． \\
\hline stat．\(Q_{1} \mathrm{X}\) & 1st Quartile of x. \\
\hline stat．Median \(X\) & Median of x. \\
\hline stat．\(Q_{3} \mathrm{X}\) & 3rd Quartile of x. \\
\hline stat．MaxX & Maximum of X values． \\
\hline
\end{tabular}
\begin{tabular}{llc} 
floor () & Catalogue \(>\) 国 \((2)\) \\
floor \((\) Expr 1\() \Rightarrow\) integer & floor \((-2.14)\) & -3. \\
\hline
\end{tabular}

Returns the greatest integer that is \(\leq\) the argument. This function is identical to int ().

The argument can be a real or a complex number.
floor(List1) \(\Rightarrow\) list
floor(Matrixl) \(\Rightarrow\) matrix
Returns a list or matrix of the floor of each element.

Note: See also ceiling() and int().
\(\left.\left.\begin{array}{lr}\text { floor }\left(\left\{\frac{3}{2}, 0,-5.3\right.\right.\end{array}\right\}\right)\{1,0,-6\).
fMax()
\(\mathrm{fMax}(\) Expr, Var \() \Rightarrow\) Boolean expression
fMax(Expr, Var,lowBound)
fMax(Expr, Var,lowBound,upBound)
fMax(Expr, Var) | lowBound \(\leq\) Var supBound

Returns a Boolean expression specifying candidate values of Var that maximise Expr or locate its least upper bound.
You can use the constraint ("|") operator to restrict the solution interval and/or specify other constraints.

For the Approximate setting of the Auto or Approximate mode, fMax() iteratively searches for one approximate local maximum. This is often faster, particularly if you use the " \(\mid\) " operator to constrain the search to a relatively small interval that contains exactly one local maximum.

Note: See also fMin() and \(\max ()\).

Catalogue > 国
\begin{tabular}{lr}
\hline \(\mathrm{fMax}\left(1-(x-a)^{2}-(x-b)^{2}, x\right)\) & \(x=\frac{a+b}{2}\) \\
\hline \(\mathrm{fMax}\left(.5 \cdot x^{3}-x-2, x\right)\) & \(x=\infty\) \\
\hline
\end{tabular}
\(\mathrm{fMin}(\) Expr, Var\() \Rightarrow\) Boolean expression
\(\mathbf{f M i n}(\) Expr, Var,lowBound \()\)
fMin(Expr, Var,lowBound,upBound)
fMin(Expr, Var) | lowBound \(\leq\) Var supBound

Returns a Boolean expression specifying candidate values of Var that minimise Expr or locate its greatest lower bound.

You can use the constraint ("|") operator to restrict the solution interval and/or specify other constraints.

For the Approximate setting of the Auto or Approximate mode, fMin() iteratively searches for one approximate local minimum. This is often faster, particularly if you use the " \(\mid\) " operator to constrain the search to a relatively small interval that contains exactly one local minimum.

Note: See also fMax() and \(\min ()\).

For
For Var, Low, High [, Step]
Block
EndFor
Executes the statements in Block iteratively for each value of Var, from Low to High, in increments of Step.

Var must not be a system variable.
Step can be positive or negative. The default value is 1 .

Block can be either a single statement or a series of statements separated with the ":" character.
\begin{tabular}{lr}
\(\mathrm{fMin}\left(1-(x-a)^{2}-(x-b)^{2}, x\right)\) & \(x=-\infty\) or \(x=\infty\) \\
\(\mathrm{fMin}\left(0.5 \cdot x^{3}-x-2, x\right)_{\mid x \geq 1}\) & \(x=1\).
\end{tabular} -

Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.

\section*{format()}

Catalogue > 婜
format(Expr[, formatString] \(\Rightarrow\) string
Returns Expr as a character string based on the format template.

Expr must simplify to a number.
formatString is a string and must be in the form: "F[n]", "S[n]", "E[n]", "G[n][c]", where [] indicate optional portions.
\(\mathrm{F}[\mathrm{n}]\) : Fixed format. n is the number of digits to display after the decimal point.
\(\mathrm{S}[\mathrm{n}]\) : Scientific format. n is the number of digits to display after the decimal point.
\(\mathrm{E}[\mathrm{n}]\) : Engineering format. n is the number of digits after the first significant digit. The exponent is adjusted to a multiple of three, and the decimal point is moved to the right by zero, one, or two digits.
\(\mathrm{G}[\mathrm{n}][\mathrm{c}]\) : Same as fixed format but also separates digits to the left of the radix into groups of three. c specifies the group separator character and defaults to a comma. If c is a period, the radix will be shown as a comma.
[Rc]: Any of the above specifiers may be suffixed with the Rc radix flag, where \(c\) is a single character that specifies what to substitute for the radix point.
\begin{tabular}{lr}
\hline format(1.234567,"f3") & \(" 1.235 "\) \\
\hline format \((1.234567, " \mathrm{~s} 2 ")\) & \(" 1.23 \mathrm{E} 0 "\) \\
\hline format \((1.234567, " \mathrm{e} 3 ")\) & \(" 1.235 \mathrm{e} 0 "\) \\
\hline format \((1.234567, " \mathrm{~g} 3 ")\) & \(" 1.235 "\) \\
\hline format \((1234.567, " \mathrm{~g} 3 ")\) & \(" 1,234.567 "\) \\
\hline format \((1.234567, " \mathrm{~g} 3, \mathrm{r}: ")\) & \(" 1.235 "\) \\
\hline
\end{tabular}

\section*{fPart（Matrixl）\(\Rightarrow\) matrix}

Returns the fractional part of the argument．

For a list or matrix，returns the fractional parts of the elements．

The argument can be a real or a complex number．
FPdf（） Catalogue＞国

FPdf（ \(X V\) Val，dfNumer， dfDenom \() \Rightarrow\) number if \(X V a l\) is a number，list if \(X V a l\) is a list

Computes the F distribution probability at XVal for the specified \(d f\) Numer（degrees of freedom）and dfDenom．
freqTablellist（）

\section*{freqTablellist}
（List1，freqIntegerList \() \Rightarrow\) list
Returns a list containing the elements from Listl expanded according to the frequencies in freqIntegerList．This function can be used for building a frequency table for the Data \＆Statistics application．

Listl can be any valid list．
freqIntegerList must have the same dimension as Listl and must contain non－negative integer elements only． Each element specifies the number of times the corresponding Listl element will be repeated in the result list．A value of zero excludes the corresponding List1 element．

Note：You can insert this function from the computer keyboard by typing freqTable＠＞list（．．．）．

Empty（void）elements are ignored．For more information on empty elements， see page 255.

Catalogue＞国远
\begin{tabular}{r}
\hline freqTable list \((\{1,2,3,4\},\{1,4,3,1\})\) \\
freqTable list \((\{1,2,3,4\},\{1,4,0,1\})\) \\
\(\{1,2,2,2,2,4\}\) \\
\hline
\end{tabular}

\section*{frequency（List1，binsList）\(\Rightarrow\) list}

Returns a list containing counts of the elements in Listl．The counts are based on ranges（bins）that you define in binsList．

If binsList is \(\{b(1), b(2), \ldots, b(n)\}\) ，the specified ranges are \(\{? \leq b(1), b(1)<? \leq b\) \((2), \ldots, b(n-1)<? \leq b(n), b(n)>?\}\) ．The resulting list is one element longer than binsList．

Each element of the result corresponds to the number of elements from Listl that are in the range of that bin． Expressed in terms of the countlf（） function，the result is \(\{\) countlf（list，\(? \leq b\) （1）），countIf（list，\(b(1)<? \leq b(2)), \ldots\) ，countlf （list，\(b(n-1)<? \leq b(n))\) ，countlf（list，\(b(n)>\) ？）\(\}\) ．

Elements of Listl that cannot be＂placed in a bin＂are ignored．Empty（void） elements are also ignored．For more information on empty elements，see page 255.

Within the Lists \＆Spreadsheet application，you can use a range of cells in place of both arguments．

Note：See also countlf（），page 35.
\begin{tabular}{l}
\hline datalist：\(=\{1,2, e, 3, \pi, 4,5,6, "\) hello＂＂， 7\(\}\) \\
\(\{1,2,2.71828,3,3.14159,4,5,6\), ＂hello＂＂ 7\(\}\) \\
frequency \((\) datalist,\(\{2.5,4.5\}) \quad\{2,4,3\}\) \\
\hline
\end{tabular}

Explanation of result：
2 elements from Datalist are \(\leq 2.5\)
4 elements from Datalist are \(>2.5\) and \(\leq 4.5\)
3 elements from Datalist are＞4．5
The element＂hello＂is a string and cannot be placed in any of the defined bins．

FTest＿2Samp
FTest＿2Samp Listl，List2［，Freq1［，Freq2［，Hypoth］］］
FTest＿2Samp List1，List2［，Freq1［，Freq2［，Hypoth］］］
（Data list input）
FTest＿2Samp sx1，n1，sx2，n2［，Hypoth］
FTest＿2Samp sx1，n1，sx2，n2［，Hypoth］
（Summary stats input）
Performs a two－sample F test．A summary of results is stored in the stat．results variable（page 178）．

For \(\mathrm{H}_{\mathrm{a}}\) ：\(\sigma 1>\sigma 2\) ，set Hypoth＞0
For \(\mathrm{H}_{\mathrm{a}}: \sigma 1 \neq \sigma 2\)（default），set Hypoth \(=0\)
For \(\mathrm{H}_{\mathrm{a}}\) ：\(\sigma 1<\sigma 2\) ，set Hypoth＜0
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．F & Calculated F statistic for the data sequence \\
\hline stat．PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat．dfNumer & numerator degrees of freedom \(=\mathrm{n} 1-1\) \\
\hline stat．dfDenom & denominator degrees of freedom \(=\mathrm{n} 2-1\) \\
\hline stat．sx1，stat．sx2 & Sample standard deviations of the data sequences in List 1 and List 2 \\
\hline stat．x1＿bar & Sample means of the data sequences in List 1 and List 2 \\
stat．x2＿bar & \\
\hline stat．n1，stat．n2 & Size of the samples \\
\hline
\end{tabular}

\section*{Func}

Catalogue＞国会

\section*{Func}

Block
EndFunc
Template for creating a user－defined function．

Block can be a single statement，a series of statements separated with the＂：＂ character，or a series of statements on separate lines．The function can use the Return instruction to return a specific result．

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

Define a piecewise function：
\begin{tabular}{rlr}
\hline Define \(g(x)=\) & Func & Done \\
& If \(x<0\) Then & \\
& Return 3－cos \((x)\) & \\
& Else & \\
& Return 3－x & \\
& EndIf & \\
& EndFunc &
\end{tabular}

Result of graphing \(\mathrm{g}(\mathrm{x})\)


Returns the highest common factor of the two arguments．The gad of two fractions is the gad of their numerators divided by the Icm of their denominators．

In Auto or Approximate mode，the gcd of fractional floating－point numbers is 1．0．
\(\operatorname{gcd}(\) List 1, List 2\() \Rightarrow\) list
\(\overline{\operatorname{gcd}(\{12,14,16\},\{9,7,5\}}\} \quad\{3,7,1\}\)

Returns the highest common factors of the corresponding elements in Listl and List2．
\(\operatorname{gcd}(\) Matrix1，Matrix2）\(\Rightarrow\) matrix
Returns the highest common factors of
\(\operatorname{gcd}\left(\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right],\left[\begin{array}{cc}4 & 8 \\ 12 & 16\end{array}\right]\right) \quad\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right]\) the corresponding elements in
Matrixl and Matrix2．

\section*{geomCdf（）}

Catalogue＞国
geomCdf（p，lowBound，upBound \() \Rightarrow\) number if lowBound and upBound are numbers，list if lowBound and upBound are lists
geomCdf（p，upBound \()\) for \(\mathrm{P}(1 \leq \mathrm{X} \leq\) upBound \() \Rightarrow\) number if upBound is a number，list if upBound is a list

Computes a cumulative geometric probability from lowBound to upBound with the specified probability of success \(p\) ．

For \(\mathrm{P}(\mathrm{X} \leq\) upBound \()\) ，set lowBound \(=1\) ．
geomPdf \((p, X V a l) \Rightarrow\) number if \(X V a l\) is a number，list if \(X V a l\) is a list

Computes a probability at \(X V a l\) ，the number of the trial on which the first success occurs，for the discrete geometric distribution with the specified probability of success \(p\) ．

Get[promptString,]var[, statusVar]
Get[promptString,] func(arg1, ...argn) [, statusVar]

Programming command: Retrieves a value from a connected TI-
Innovator \({ }^{\text {TM }}\) Hub and assigns the value to variable var.

The value must be requested:
- In advance, through a Send "READ ..." command.
- or -
- By embedding a "READ ..." request as the optional promptString argument. This method lets you use a single command to request the value and retrieve it.

Implicit simplification takes place. For example, a received string of " 123 " is interpreted as a numeric value. To preserve the string, use GetStr instead of Get.

If you include the optional argument statusVar, it is assigned a value based on the success of the operation. A value of zero means that no data was received.
In the second syntax, the func() argument allows a programme to store the received string as a function definition. This syntax operates as if the programme executed the command:

Define func \((\arg 1, \ldots \operatorname{argn})=\) received string

The programme can then use the defined function func ().

Note: You can use the Get command within a user-defined programme but not within a function.

Example: Request the current value of the hub's built-in light-level sensor. Use Get to retrieve the value and assign it to variable lightval.
\begin{tabular}{|lr|}
\hline Send "READ BRIGHTNESS" & Done \\
\hline Get lightval & Done \\
\hline lightval & 0.347922 \\
\hline
\end{tabular}

Embed the READ request within the Get command.
Get "READ BRIGHTNESS",lightval Done
lightval
0.378441

Note: See also GetStr, page 85 and Send, page 160.

\section*{getDenom()}

Catalogue > 国
getDenom(Expr1) \(\Rightarrow\) expression
Transforms the argument into an expression having a reduced common denominator, and then returns its denominator.
\[
\begin{array}{lr}
\hline \text { getDenom }\left(\frac{x+2}{y-3}\right) & y-3 \\
\hline \text { getDenom }\left(\frac{2}{7}\right) & 7 \\
\hline \text { getDenom }\left(\frac{1}{x}+\frac{y^{2}+y}{y^{2}}\right) & x \cdot y
\end{array}
\]

\section*{getKey()}
getKey([0|1]) \(\Rightarrow\) returnString
Description:getKey() - allows a TIBasic programme to get keyboard input - handheld, desktop and emulator on desktop.

\section*{Example:}
- keypressed := getKey() will return a key or an empty string if no key has been pressed. This call will return immediately.
- keypressed := getKey(1) will wait till a key is pressed. This call will pause execution of the programme till a key is pressed.

Catalogue > 国


Example:


Handling of key presses:
\begin{tabular}{l|l|l}
\hline \begin{tabular}{c} 
Handheld Device/Emulator \\
Key
\end{tabular} & \multicolumn{1}{c|}{ Desktop } & \multicolumn{1}{c}{ Return Value } \\
Esc & Esc & "esc" \\
\hline Touchpad - Top click & \(\mathrm{n} / \mathrm{a}\) & "up" \\
\hline On & \(\mathrm{n} / \mathrm{a}\) & "home" \\
\hline & & \\
\hline Scratchapps & \(\mathrm{n} / \mathrm{a}\) & "scratchpad" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Handheld Device/Emulator Key \\
Touchpad - Left click
\end{tabular} & Desktop n/a & Return Value "left" \\
\hline Touchpad - Centre click & n/a & "centre" \\
\hline Touchpad - Right click & n/a & "right" \\
\hline Doc & n/a & "doc" \\
\hline Tab & Tab & "tab" \\
\hline Touchpad - Bottom click & Down Arrow & "down" \\
\hline Menu & n/a & "menu" \\
\hline & & \\
\hline Ctrl & Ctrl & no return \\
\hline Shift & Shift & no return \\
\hline Var & n/a & "var" \\
\hline Del & n/a & "del" \\
\hline & & \\
\hline = & \(=\) & "=" \\
\hline trig & n/a & "trig" \\
\hline 0 to 9 & 0-9 & "0" ... "9" \\
\hline Templates & n/a & "template" \\
\hline Catalogue & n/a & "cat" \\
\hline & & \\
\hline \(\wedge\) & \(\wedge\) & "^" \\
\hline \(\mathrm{X}^{\wedge} 2\) & n/a & "square" \\
\hline / (division key) & / & "/" \\
\hline * (multiply key) & * & "*" \\
\hline \(e^{\wedge} x\) & n/a & "exp" \\
\hline \(10^{\wedge} x\) & n/a & "10power" \\
\hline + & + & "+" \\
\hline - & - & "-" \\
\hline & & \\
\hline 1 & 1 & "(" \\
\hline 1 & \()\) & ")" \\
\hline . & . & "." \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Handheld Device/Emulator Kеу \\
(-)
\end{tabular} & \begin{tabular}{l}
Desktop \\
n/a
\end{tabular} & Return Value "-" (negate sign) \\
\hline Enter & Enter & "enter" \\
\hline ee & n/a & "E" (scientific notation E) \\
\hline a-z & a-z & \[
\begin{aligned}
& \text { alpha = letter pressed (lower } \\
& \text { case) } \\
& \text { ("a" - "z") }
\end{aligned}
\] \\
\hline shift a-z & shift a-z & \[
\begin{aligned}
& \text { alpha = letter pressed } \\
& \text { "A" - "Z" }
\end{aligned}
\] \\
\hline & & Note: ctrl-shift works to lock caps \\
\hline ?! & n/a & "?!" \\
\hline pi & n/a & "pi" \\
\hline Flag & n/a & no return \\
\hline , & , & "," \\
\hline Return & n/a & "return" \\
\hline Space & Space & " " (space) \\
\hline Inaccessible & Special Character Keys like @,!,^, etc. & The character is returned \\
\hline n/a & Function Keys & No returned character \\
\hline n/a & Special desktop control keys & No returned character \\
\hline Inaccessible & Other desktop keys that are not available on the calculator while getkey() is waiting for a keystroke. (\{, \},;,, : ....) & Same character you get in Notes (not in a maths box) \\
\hline
\end{tabular}

Note: It is important to note that the presence of getKey() in a programme changes how certain events are handled by the system. Some of these are described below.
Terminate programme and Handle event - Exactly as if the user were to break out of programme by pressing the ON key
"Support" below means - System works as expected - programme continues to run.
\begin{tabular}{|c|c|c|}
\hline Event & Device & \begin{tabular}{l}
Desktop－TI－Nspire \({ }^{\text {TM }}\) \\
Student Software
\end{tabular} \\
\hline Quick Poll & Terminate programme， handle event & Same as the handheld（TI－ Nspire \({ }^{\text {TM }}\) Student Software， TI－Nspire \({ }^{\text {TM }}\) Navigator \({ }^{\text {TM }}\) NC Teacher Software－only） \\
\hline \begin{tabular}{l}
Remote file mgmt \\
（Incl．sending＇Exit Press 2 Test＇file from another handheld or desktop－ handheld）
\end{tabular} & Terminate programme， handle event & \begin{tabular}{l}
Same as the handheld． \\
（TI－Nspire \({ }^{\text {TM }}\) Student \\
Software，TI－Nspire \({ }^{\text {TM }}\) \\
Navigator \({ }^{\text {TM }}\) NC Teacher \\
Software－only）
\end{tabular} \\
\hline End Class & Terminate programme， handle event & \begin{tabular}{l}
Support \\
（TI－Nspire \({ }^{\text {TM }}\) Student \\
Software，TI－Nspire \({ }^{\text {TM }}\) \\
Navigator \({ }^{\text {TM }}\) NC Teacher \\
Software－only）
\end{tabular} \\
\hline Event & Device & Desktop－TI－Nspire \({ }^{\text {TM }}\) All Versions \\
\hline TI－Innovator \({ }^{\text {TM }}\) Hub connect／disconnect & Support－Can successfully issue commands to the TI－ Innovator \({ }^{\text {rM }}\) Hub．After you exit the programme the TI－ Innovator \({ }^{\text {TM }}\) Hub is still working with the handheld． & Same as the handheld \\
\hline
\end{tabular}

\section*{getLangInfo（）}

Catalogue＞［⿴囗玉心
getLangInfo（）\(\Rightarrow\) string
Returns a string that corresponds to the short name of the currently active language．You can，for example，use it in a programme or function to determine the current language．

English＝＂en＂
Danish＝＂da＂
German＝＂de＂
Finnish＝＂fi＂
French \(=\)＂fr＂
Italian＝＂it＂
Dutch＝＂nl＂
Belgian Dutch＝＂nl＿BE＂
Norwegian＝＂no＂
Portuguese＝＂pt＂
Spanish＝＂es＂
Swedish＝＂sv＂
getLockInfo（）

\section*{Catalogue＞国}
getLockInfo（Var）\(\Rightarrow\) value
Returns the current locked／unlocked state of variable Var．
value \(=0\) ：Var is unlocked or does not exist．
value＝1：Var is locked and cannot be modified or deleted．

See Lock，page 107，and unLock，page 200.
\begin{tabular}{ll}
\hline\(a:=65\) & 65 \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline Lock \(a\) & Done \\
\hline getLockInfo \((a)\) & 1 \\
\hline\(a:=75\) & ＂Error：Variable is locked．＂ \\
\hline DelVar \(a\) & ＂Error：Variable is locked．＂ \\
\hline Unlock \(a\) & Done \\
\hline\(a:=75\) & 75 \\
\hline DeIVar \(a\) & Done \\
\hline
\end{tabular}
getMode（）
getMode（ModeNameInteger）\(\Rightarrow\) value
getMode \((\mathbf{0}) \Rightarrow\) list
getMode（ModeNameInteger）returns a value representing the current setting of the ModeNameInteger mode．

\section*{Catalog＞国第}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{getMode（0）} \\
\hline \multicolumn{2}{|l|}{\(\{1,7,2,1,3,1,4,1,5,1,6,1,7,1,8,1\}\)} \\
\hline getMode（1） & 7 \\
\hline getMode（8） & \\
\hline
\end{tabular}
getMode（0）returns a list containing number pairs．Each pair consists of a mode integer and a setting integer．
For a listing of the modes and their settings，refer to the table below．

If you save the settings with getMode（0）
\(\rightarrow v a r\) ，you can use setMode（var）in a function or programme to temporarily restore the settings within the execution of the function or programme only．See setMode（），page 163.
\begin{tabular}{lll}
\hline Mode Name & \begin{tabular}{l} 
Mode \\
Integer
\end{tabular} & Setting Integers \\
\hline Display Digits & 1 & \begin{tabular}{l} 
1＝Float，2＝Float1，3＝Float2，4＝Float3，5＝Float4， \\
6＝Float5，7＝Float6，8＝Float7，9＝Float8，10＝Float9， \\
11＝Float10，12＝Float11，13＝Float12，14＝Fix0，15＝Fix1， \\
16＝Fix2，17＝Fix3，18＝Fix4，19＝Fix5，20＝Fix6，21＝Fix7， \\
\(\mathbf{2 2 = F i x 8 , ~ 2 3 = F i x 9 , ~ 2 4 = F i x 1 0 , ~ 2 5 = F i x 1 1 , ~ 2 6 = F i x 1 2 ~}\)
\end{tabular} \\
\hline Angle & 2 & 1＝Radian，2＝Degree，3＝Gradian \\
\hline \begin{tabular}{lll} 
Exponential \\
Format
\end{tabular} & 3 & 1＝Normal，2＝Scientific，3＝Engineering \\
\hline \begin{tabular}{l} 
Real or \\
Complex
\end{tabular} & 4 & 1＝Real，2＝Rectangular，3＝Polar
\end{tabular}
Auto or 5 1＝Auto，2＝Approximate，3＝Exact

Approx．
\begin{tabular}{lll}
\hline Vector Format & 6 & 1＝Rectangular，2＝Cylindrical， \(\mathbf{3}=\) Spherical \\
\hline Base & 7 & \(\mathbf{1 = D e c i m a l , ~ 2 = H e x , ~ 3 = B i n a r y ~}\) \\
\hline Unit system & 8 & \(\mathbf{1}=\) SI，2＝Eng／US \\
\hline
\end{tabular}
getNum（）
Catalogue＞国运
getNum \((\) Expr 1）\(\Rightarrow\) expression
Transforms the argument into an expression having a reduced common denominator，and then returns its numerator．
\begin{tabular}{lr}
\hline getNum \(\left(\frac{x+2}{y-3}\right)\) & \(x+2\) \\
\hline getNum \(\left(\frac{2}{7}\right)\) & 2 \\
\hline getNum \(\left(\frac{1}{x}+\frac{1}{y}\right)\) & \(x+y\) \\
\hline
\end{tabular}

\section*{GetStr}

GetStr［promptString，］var［，statusVar］
GetStr［promptString，］func（arg1，．．．argn）
［，statusVar］

Programming command: Operates identically to the Get command, except that the retrieved value is always interpreted as a string. By contrast, the Get command interprets the response as an expression unless it is enclosed in quotation marks ("").

Note: See also Get, page 79 and Send, page 160.
getType()
getType(var) \(\Rightarrow\) string
Returns a string that indicates the data type of variable var.

If \(v a r\) has not been defined, returns the string "NONE".

Catalogue > 国
\begin{tabular}{lr|}
\hline\(\{1,2,3\} \rightarrow\) temp & \(\{1,2,3\}\) \\
\hline getType (temp \()\) & "LIST" \\
\(3 \cdot \boldsymbol{i} \rightarrow\) temp & \(3 \cdot \boldsymbol{i}\) \\
\hline getType \((\) temp \()\) & "EXPR" \\
\hline DelVar temp & Done \\
\hline getType(temp) & "NONE" \\
\hline
\end{tabular}
matrix of information for all library
\begin{tabular}{lr}
\hline getVarInfo() & "NONE" \\
\hline Define \(x=5\) & Done \\
\hline Lock \(x\) & Done \\
\hline Define LibPriv \(y=\{1,2,3\}\) & Done \\
\hline Define LibPub \(z(x)=3 \cdot x^{2}-x\) & Done \\
\hline getVarInfo() \(\quad\left[\begin{array}{llrr}x & \text { "NUM" } \\
y & \text { "LIST" } & \text { "LibPriv " " } & 1 \\
z & \text { "FUNC" } & \text { "LibPub " } & 0\end{array}\right]\) \\
\hline getVarInfo(tmp3) & "Error: Argument must be a string" \\
\hline getVarInfo("tmp3") & \\
\hline volcyl2 & "NONE" \\
\hline
\end{tabular} objects defined in library LibNameString. LibNameString must be a string (text enclosed in quotation marks) or a string variable.

If the library LibNameString does not exist, an error occurs.

Note the example to the left，in which the result of getVarinfo（）is assigned to variable \(v s\) ．Attempting to display row 2 or row 3 of vs returns an＂Invalid list or matrix＂error because at least one of elements in those rows（variable \(b\) ，for example）revaluates to a matrix．

This error could also occur when using Ans to reevaluate a getVarInfo（）result．

The system gives the above error because the current version of the software does not support a generalised matrix structure where an element of a matrix can be either a matrix or a list．
\begin{tabular}{|c|c|}
\hline \(a:=1\) & 1 \\
\hline \(b:=\left[\begin{array}{ll}1 & 2\end{array}\right]\) & \(\left[\begin{array}{ll}1 & 2\end{array}\right]\) \\
\hline \(c:=\left[\begin{array}{lll}1 & 3 & 7\end{array}\right]\) & \(\left[\begin{array}{lll}1 & 3 & 7\end{array}\right]\) \\
\hline \(v s:=\) getVarInfo（） &  \\
\hline \(v s[1]\) &  \\
\hline \(v s[1,1]\) & 1 \\
\hline \(v s[2]\) & ＂Error：Invalid list or matrix＂ \\
\hline \(v s[2,1]\) & \(\left[\begin{array}{ll}1 & 2\end{array}\right]\) \\
\hline
\end{tabular}

\section*{Goto}

\section*{Goto labelName}

Transfers control to the label labelName．
labelName must be defined in the same function using a Lbl instruction．

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

Catalogue＞［⿴囗玉心
\begin{tabular}{|c|c|}
\hline Define \(g()=\) Func & Done \\
\hline Local temp，\(i\) & \\
\hline \(0 \rightarrow\) temp & \\
\hline \(1 \rightarrow i\) & \\
\hline Lbl top & \\
\hline temp \(+i \rightarrow\) temp & \\
\hline If \(i<10\) Then & \\
\hline \(i+1 \rightarrow i\) & \\
\hline Goto top & \\
\hline EndIf & \\
\hline Return temp & \\
\hline EndFunc & \\
\hline \(g()\) & 55 \\
\hline
\end{tabular}

\section*{Catalogue＞国远}

In Degree angle mode：
\((1.5) \quad \mathrm{Grad} \quad(1.66667)^{9}\)

In Radian angle mode：
\((1.5) \quad(95.493)^{9}\)
identity（）Catalogue＞国运
identity（Integer）\(\Rightarrow\) matrix
Returns the identity matrix with a dimension of Integer．
identity（4）\(\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\)

Integer must be a positive integer．

If
Catalogue＞国

If BooleanExpr
Statement
If BooleanExpr Then
Block
Endlf
If BooleanExpr evaluates to true， executes the single statement Statement or the block of statements Block before continuing execution．

If BooleanExpr evaluates to false， continues execution without executing the statement or block of statements．

Block can be either a single statement or a sequence of statements separated with the＂：＂character．

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．
```

If BooleanExpr Then
Blockl
Else
Block2
Endlf

```

If BooleanExpr evaluates to true， executes Block1 and then skips Block2．

If BooleanExpr evaluates to false，skips Blockl but executes Block2．
\begin{tabular}{llr}
\hline Define \(g(x)=\) & Func & Done \\
& If \(x<0\) Then & \\
& Return \(x^{2}\) & \\
& EndIf & \\
& EndFunc & \\
\hline\(g(-2)\) & & 4
\end{tabular}
\begin{tabular}{llr}
\hline Define \(g(x)=\) & Func & Done \\
& If \(x<0\) Then & \\
& Return \(-x\) & \\
& Else & \\
& Return \(x\) & \\
& EndIf & \\
& EndFunc & \\
\hline\(g(12)\) & & 12 \\
\hline\(g(-12)\) & & 12 \\
\hline
\end{tabular}

Block1 and Block2 can be a single statement．

\section*{If BooleanExprl Then Blockl \\ Elself BooleanExpr2 Then Block2 \\ ： \\ Elself BooleanExprN Then BlockN \\ Endlf}

Allows for branching．If BooleanExpr 1 evaluates to true，executes Blockl．If BooleanExprl evaluates to false， evaluates BooleanExpr2，and so on．
\begin{tabular}{ll}
\hline Define \(g(x)=\) & Func \\
& If \(x<-5\) Then \\
& Return 5 \\
& ElseIf \(x>-5\) and \(x<0\) Then \\
& Return \(-x\) \\
& ElseIf \(x \geq 0\) and \(x \neq 10\) Then \\
& Return \(x\) \\
& ElseIf \(x=10\) Then \\
& Return 3 \\
& EndIf \\
& EndFunc \\
& \\
\hline\(g(-4)\) & Done \\
\hline\(g(10)\) & 4 \\
\hline
\end{tabular}
        Catalogue > 国
\(\operatorname{ifFn}(\{1,2,3\}<2.5,\{5,6,7\},\{8,9,10\})\)
    \(\{5,6,10\}\)

Test value of \(\mathbf{1}\) is less than 2.5 ，so its corresponding

Value＿If＿True element of 5 is copied to the result list．

Test value of \(\mathbf{2}\) is less than 2.5 ，so its corresponding

Value＿If＿True element of 6 is copied to the result list．

Test value of \(\mathbf{3}\) is not less than 2．5，so its corresponding Value＿If＿False element of 10 is copied to the result list．
ifFn \((\{1,2,3\}<2.5,4,\{8,9,10\}) \quad\{4,4,10\}\)

Value＿If＿true is a single value and corresponds to any selected position．

Catalogue＞国
\(\operatorname{ifFn}(\{1,2,3\}<2.5,\{5,6,7\},\{8,9,10\})\)
\(\{5,6,10\}\) result list．
－If the second，third，or fourth argument of the ifFn（）function is a

Evaluates the boolean expression
BooleanExpr（or each element from
BooleanExpr ）and produces a result based on the following rules：
－BooleanExpr can test a single value，a list，or a matrix．
－If an element of BooleanExpr evaluates to true，returns the corresponding element from Value＿ If＿true．
－If an element of BooleanExpr evaluates to false，returns the corresponding element from Value＿ If＿false．If you omit Value＿If＿false， returns undef．
－If an element of BooleanExpr is neither true nor false，returns the corresponding element Value＿If＿ unknown．If you omit Value＿If＿ unknown，returns undef．
single expression, the Boolean test is applied to every position in BooleanExpr.

Note: If the simplified BooleanExpr statement involves a list or matrix, all other list or matrix arguments must have the same dimension(s), and the result will have the same dimension(s).
\begin{tabular}{|c|c|c|}
\hline imag() & & Catalogue > [1] \\
\hline \(\operatorname{imag}(\) Expr \()=\) expression & imag ( \(1+2 \cdot i\) ) & 2 \\
\hline Returns the imaginary part of the & \(\operatorname{imag}(z)\) & 0 \\
\hline argument. & \(\operatorname{imag}(x+i \cdot y)\) & \(y\) \\
\hline
\end{tabular}

Note: All undefined variables are treated as real variables. See also real(), page 147
\(\operatorname{imag}(\) List 1\() \Rightarrow\) list
Returns a list of the imaginary parts of the elements.
imag(Matrixl) \(\Rightarrow\) matrix
Returns a matrix of the imaginary parts of the elements.
ifFn \((\{1,2,3\}<2.5,\{5,6,7\}) \quad\{5,6\), undef \(\}\)
Value_If_false is not specified. Undef is used.
\[
\begin{array}{r}
\hline \text { ifFn }(\{2, " \mathrm{a} "\}<2.5,\{6,7\},\{9,10\}, \text { "err" }) \\
\{6, " \text { "err" }\} \\
\hline
\end{array}
\]

One element selected from Value_If_true. One element selected from Value_If_ unknown.
\(\operatorname{imag}(\{-3,4-i, i\}) \quad\{0,-1,1\}\)
\(\operatorname{imag}\left(\left[\begin{array}{cc}a & b \\ i \cdot c & i \cdot d\end{array}\right]\right\} \quad\left[\begin{array}{ll}0 & 0 \\ c & d\end{array}\right]\)

\section*{impDif()}

Catalogue > 国
impDif(Equation, Var, dependVar
\([, O r d]) \Rightarrow\) expression
where the order Ord defaults to 1.
Computes the implicit derivative for equations in which one variable is defined implicitly in terms of another.
inString（）
inString（srcString，subString \([\), Start \(]) \Rightarrow\)
integer

Returns the character position in string srcString at which the first occurrence of string subString begins．

Start，if included，specifies the character position within srcString where the search begins．Default＝ 1 （the first character of srcString）．

If \(\operatorname{src}\) String does not contain subString or Start is＞the length of srcString， returns zero．
inString（srcString，subString \([\), Start \(]) \Rightarrow\)
inString（＂Hello there＂，＂the＂） 7
inString（＂ABCEFG＂，＂D＂）0
returns zero．
\begin{tabular}{|c|c|c|}
\hline int（） & \multicolumn{2}{|r|}{Catalogue＞国运} \\
\hline \(\operatorname{int}(\) Expr \() \Rightarrow\) integer & int（－2．5） & 3. \\
\hline \(\operatorname{int}\)（List1）\(\Rightarrow\) list & int（［［－1．234 0000.37\(])\) & \(\left[\begin{array}{lll}-2 . & 0 & 0\end{array}\right]\) \\
\hline
\end{tabular}
\(\operatorname{int}(\) Matrix 1\() \Rightarrow\) matrix
Returns the greatest integer that is less than or equal to the argument．This function is identical to floor（）．

The argument can be a real or a complex number．

For a list or matrix，returns the greatest integer of each of the elements．

Catalogue＞国
intDiv（Number 1, Number 2 ）\(\Rightarrow\) integer
intDiv（List1，List2）\(\Rightarrow\) list
intDiv（Matrix1，Matrix2）\(\Rightarrow\) matrix
Returns the signed integer part of （Number \(1 \div\) Number 2 ）．

For lists and matrices，returns the signed integer part of
（argument \(1 \div\) argument 2 ）for each element pair．

\section*{interpolate（）}

Catalogue＞国
interpolate \((x\) Value，\(x\) List，\(y\) List， \(y\) PrimeList \() \Rightarrow\) list

This function does the following：
Given \(x\) List，\(y\) List \(=\mathbf{f}(x\) List \()\) ，and \(y\) PrimeList \(=\mathrm{f}^{\prime}(x\) List）for some unknown function \(\mathbf{f}\) ，a cubic interpolant is used to approximate the function \(\mathbf{f}\) at \(x\) Value．It is assumed that \(x L i s t\) is a list of monotonically increasing or decreasing numbers，but this function may return a value even when it is not．This function walks through \(x\) List looking for an interval［ \(x\) List \([\mathrm{i}], x \operatorname{List}[\mathrm{i}+1]]\) that contains \(x\) Value．If it finds such an interval，it returns an interpolated value for \(f\) （xValue）；otherwise，it returns undef．
\(x\) List，\(y\) List，and \(y\) PrimeList must be of equal dimension \(\geq 2\) and contain expressions that simplify to numbers．
\(x\) Value can be an undefined variable，a number，or a list of numbers．

Differential equation：
\(y^{\prime}=-3 \cdot y+6 \bullet t+5\) and \(y(0)=5\)
\begin{tabular}{l}
\hline\(r k .=\mathrm{rk} 23(-3 \cdot y+6 \cdot t+5, t \cdot y,\{0,10\}, 5,1)\) \\
{\(\left[\begin{array}{cccccc}0 . & 1 . & 2 . & 3 . & 4 . & \\
5 . & 3.19499 & 5.00394 & 6.99957 & 9.00593 & 1 \text { 1 }\end{array}\right.\)}
\end{tabular}

To see the entire result，press \(\boldsymbol{\Delta}\) and then use 4 and to move the cursor．

Use the interpolate（）function to calculate the function values for the xvaluelist：
xvaluelist \(:=\) seq \((i, i, 0,10,0.5)\)
\(\{0,0.5,1 ., 1.5,2 ., 2.5,3 ., 3.5,4 ., 4.5,5 ., 5.5,6 ., 6.5\), ，
\(x\) list \(:=\) mat list \((r \kappa[1]\) ）
\(\frac{\{0 ., 1 ., 2 ., 3 ., 4 ., 5 ., 6 ., 7 ., 8 ., 9 ., 10 .\}}{\left.y_{l i s t}:=\text { mat list } t r k[2]\right\}}\)
\｛5．，3．19499，5．00394，6．99957，9．00593，10．997e
\(y\) primelist \(:=-3 \cdot y+6 \cdot t+5 \mid y=y\) list and \(t=x\) list
\(\left\{-10 ., 1.41503,1.98819,2.00129,1.98221,2.006^{*}\right.\)
interpolate（xvaluelist，xlist，ylist，yprimelist） \(\left\{5.2 .67062,3.19499,4.02782,5.00394,6.0001{ }^{1}\right.\)

\section*{invChi2（Area，df）}

Computes the Inverse cumulative \(\chi^{2}\)（chi－square） probability function specified by degree of freedom， \(d f\) for a given Area under the curve．
\(\operatorname{invF}() \quad\) Catalogue \(>\) 国
\(\operatorname{invF}(\) Area，dfNumer，dfDenom \()\)
\(\operatorname{invF}(\) Area，dfNumer，dfDenom \()\)
computes the Inverse cumulative F distribution function specified by \(d f\) Numer and \(d f\) Denom for a given Area under the curve．

\section*{invBinom（）}

\section*{Catalogue＞国远}

\section*{invBinom}
（CumulativeProb，NumTrials，Prob， OutputForm）\(\Rightarrow\) scalar or matrix

Given the number of trials（NumTrials） and the probability of success of each trial（Prob），this function returns the minimum number of successes，\(k\) ，such that the cumulative probability of \(k\) successes is greater than or equal to the given cumulative probability
（CumulativeProb）．
OutputForm＝0，displays result as a scalar（default）．

OutputForm＝1，displays result as a matrix．

Example：Mary and Kevin are playing a dice game．Mary has to guess the maximum number of times 6 shows up in 30 rolls．If the number 6 shows up that many times or less， Mary wins．Furthermore，the smaller the number that she guesses，the greater her winnings．What is the smallest number Mary can guess if she wants the probability of winning to be greater than \(77 \%\) ？
\(\left.\left.\begin{array}{|l|}\hline \operatorname{invBinom}\left(0.77,30, \frac{1}{6}\right.\end{array}\right) \quad 6\right]\)

\section*{invBinomN（）}
invBinomN（CumulativeProb，Prob， NumSuccess，OutputForm）\(\Rightarrow\) scalar or matrix

Given the probability of success of each trial（Prob），and the number of successes（NumSuccess），this function returns the minimum number of trials， \(N\) ，such that the cumulative probability of \(x\) successes is less than or equal to the given cumulative probability （CumulativeProb）．

OutputForm＝0，displays result as a scalar（default）．

OutputForm＝1，displays result as a matrix．

\section*{Catalogue＞国远}

Example：Monique is practising goal shots for netball．She knows from experience that her chance of making any one shot is \(70 \%\) ．She plans to practise until she scores 50 goals． How many shots must she attempt to ensure that the probability of making at least 50 goals is more than 0.99 ？
\begin{tabular}{|lr|}
\hline \(\operatorname{invBinomN}(0.01,0.7,49)\) & 86 \\
\(\operatorname{invBinomN}(0.01,0.7,49,1)\) & \\
& {\(\left[\begin{array}{cc|}85 & 0.010451 \\
86 & 0.00709\end{array}\right]\)} \\
\hline
\end{tabular}

Computes the inverse cumulative normal distribution
function for a given Area under the normal
distribution curve specified by \(\mu\) and \(\sigma\) ．
\begin{tabular}{ll} 
invt（ \()\) & Catalogue \(>\) 国 \\
invt \((\) Area,\(d f)\)
\end{tabular}

Computes the inverse cumulative student－t probability function specified by degree of freedom， \(d f\) for a given Area under the curve．
\begin{tabular}{|c|c|c|}
\hline iPart（） & \multicolumn{2}{|r|}{Catalogue＞国 \({ }_{\text {2 }}\)} \\
\hline iPart（Number）\(\Rightarrow\) integer & iPart（－1．234） & 1. \\
\hline \[
\begin{aligned}
& \mathrm{iPart}(\text { Listl }) \Rightarrow \text { list } \\
& \text { iPart } \text { (Matrix }) \Rightarrow \text { matrix }
\end{aligned}
\] & \(\operatorname{iPart}\left(\left\{\frac{3}{2},-2.3,7.003\right\}\right)\) & \(\{1,-2 ., 7\). \\
\hline
\end{tabular}

Returns the integer part of the argument．

For lists and matrices，returns the integer part of each element．

The argument can be a real or a complex number．
irr（）
irr（CF0，CFList \([\) ，CFFreq \(]\) ）\(\Rightarrow\) value
Financial function that calculates internal rate of return of an investment．
\(C F 0\) is the initial cash flow at time 0 ；it must be a real number．

CFList is a list of cash flow amounts after the initial cash flow CFO．

CFFreq is an optional list in which each element specifies the frequency of occurrence for a grouped（consecutive） cash flow amount，which is the corresponding element of CFList．The default is 1 ；if you enter values，they must be positive integers \(<10,000\) ．

Note: See also mirr(), page 116.


Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.
isVoid()
isVoid(Var) \(\Rightarrow\) Boolean constant expression
isVoid(Expr) \(\Rightarrow\) Boolean constant expression
isVoid(List) \(\Rightarrow\) list of Boolean constant expressions

Returns true or false to indicate if the argument is a void data type.

For more information on void elements, see page 255.

Lbl labelName
Defines a label with the name labelName within a function．

You can use a Goto labelName instruction to transfer control to the instruction immediately following the label．
labelName must meet the same naming requirements as a variable name．

Note for entering the example：For instructions on entering multi－line
\begin{tabular}{llr}
\hline Define \(g()=\) & Func & Done \\
& Local temp，\(i\) & \\
& \(0 \rightarrow\) temp & \\
& \(1 \rightarrow i\) & \\
& Lbl top & \\
& temp \(+i \rightarrow\) temp & \\
& If \(i<10\) Then & \\
& \(i+1 \rightarrow i\) \\
& Goto top & \\
& EndIf & \\
& Return temp & \\
& EndFunc & \\
\hline\(g()\) & & \\
\hline
\end{tabular} programme and function definitions， refer to the Calculator section of your product guidebook．
\begin{tabular}{|c|c|c|}
\hline Icm（） & \multicolumn{2}{|r|}{Catalogue＞国} \\
\hline \(\mathbf{I c m}(\) Number 1, Number 2 ）\(\Rightarrow\) expression & \(\underline{\operatorname{lcm}(6,9)}\) & 18 \\
\hline \(\mathbf{~} \mathbf{c m}(\) List 1, List 2\() \Rightarrow\) list & \(\operatorname{lcm}\left(\left\{\frac{1}{3},-14,16\right\},\left\{\frac{2}{15}, 7,5\right\}\right)\) & \(\left.\frac{2}{3}, 14,80\right\}\) \\
\hline
\end{tabular}
\(\operatorname{Icm}(\) Matrix 1, Matrix 2\() \Rightarrow\) matrix
Returns the least common multiple of the two arguments．The Icm of two fractions is the Icm of their numerators divided by the gcd of their denominators． The lcm of fractional floating－point numbers is their product．

For two lists or matrices，returns the least common multiples of the corresponding elements．

Catalogue＞国
leff（＂Hello＂，2）＂He＂

Returns the leftmost Num characters contained in character string sourceString．

If you omit Num，returns all of sourceString．
\(\operatorname{left}(\) List \(1[, N u m]) \Rightarrow l i s t\)
\(\operatorname{leff}(\{1,3,-2,4\}, 3\} \quad\{1,3,-2\}\)

Returns the leftmost Num elements contained in Listl．

If you omit Num，returns all of Listl．
left（Comparison）\(\Rightarrow\) expression
Returns the left－hand side of an equation or inequality．

\section*{libShortcut（）}

\section*{Catalogue＞国会}
libShortcut（LibNameString， ShortcutNameString［， LibPrivFlag］）\(\Rightarrow\) list of variables

Creates a variable group in the current problem that contains references to all the objects in the specified library document libNameString．Also adds the group members to the Variables menu． You can then refer to each object using its ShortcutNameString．

Set LibPrivFlag＝0 to exclude private library objects（default）

Set LibPrivFlag＝1 to include private library objects

To copy a variable group，see CopyVar， page 29.

To delete a variable group，see DelVar， page 49.

This example assumes a properly stored and refreshed library document named linalg2 that contains objects defined as clearmat， gauss 1 and gauss 2 ．

limit（Expr1，Var，Point
［，Direction］）\(\Rightarrow\) expression
limit（List1，Var，Point［，
Direction］）\(\Rightarrow\) list
limit（Matrix1，Var，Point［， Direction］\(\Rightarrow\) matrix

Returns the limit requested．
Note：See also Limit template，page 6.
Direction：negative＝from left， positive＝from right，otherwise＝both．（If omitted，Direction defaults to both．）

Limits at positive \(\infty\) and at negative \(\infty\) are always converted to one－sided limits from the finite side．

Depending on the circumstances，limit（） returns itself or undef when it cannot determine a unique limit．This does not necessarily mean that a unique limit does not exist．undef means that the result is either an unknown number with finite or infinite magnitude，or it is the entire set of such numbers．
limit（）uses methods such as L＇Hopital＇s rule，so there are unique limits that it cannot determine．If Exprl contains undefined variables other than Var，you might have to constrain them to obtain a more concise result．

Limits can be very sensitive to rounding error．When possible，avoid the Approximate setting of the Auto or Approximate mode and approximate numbers when computing limits． Otherwise，limits that should be zero or have infinite magnitude probably will not，and limits that should have finite non－zero magnitude might not．
\(\overline{\lim (2 \cdot x+3)} \quad 13\)
\(x \rightarrow 5\)
\(\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)\)
\(\lim _{x \rightarrow 0}\left(\frac{\sin (x)}{x}\right) \quad 1\)
\(\begin{array}{ll}\lim _{h \rightarrow 0}\left(\frac{\sin (x+h)-\sin (x)}{h}\right) & \cos (x) \\ \lim _{n \rightarrow \infty}\left(\left(1+\frac{1}{n}\right)^{n}\right) & e\end{array}\)

LinRegBx
Catalogue＞国远
LinRegBx X，Y［，［Freq］［，Category，Include］］

Computes the linear regressiony \(=\mathrm{a}+\mathrm{b} \cdot\) xon lists \(X\) and \(Y\) with frequency Freq．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes．
Only those data items whose category code is included in this list are included in the calculation．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat．RegEqn & Regression Equation： \(\mathrm{a}+\mathrm{b} \cdot \mathrm{x}\) \\
\hline stat．a，stat．b & Regression coefficients \\
\hline stat．r \({ }^{2}\) & Coefficient of determination \\
\hline stat．r & Correlation coefficient \\
\hline stat．Resid & Residuals from the regression \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified X List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified \(Y\) List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}

\section*{LinRegMx}

Catalogue＞国远
LinRegMx \(X, Y[,[\) Freq \(][\) ，Category，Include \(]]\)

Computes the linear regression \(\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{b}\) on lists \(X\) and \(Y\) with frequency Freq．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes． Only those data items whose category code is included in this list are included in the calculation．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat．RegEqn & Regression Equation： \(\mathrm{y}=\mathrm{m} \cdot \mathrm{x}+\mathrm{b}\) \\
\hline stat．m，stat．b & Regression coefficients \\
\hline stat． \(\mathrm{r}^{2}\) & Coefficient of determination \\
\hline stat．r & Correlation coefficient \\
\hline stat．Resid & Residuals from the regression \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified X List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified \(Y\) List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}

\section*{LinRegtIntervals}

Catalogue＞国远
LinRegtIntervals \(X, Y[, F[, 0[, C L e v]]]\)
For Slope．Computes a level C confidence interval for the slope．

LinRegtIntervals \(X, Y[, F[, 1, X v a l[, C L e v]]]\)
For Response. Computes a predicted \(y\)-value, a level C prediction interval for a single observation and a level C confidence interval for the mean response.

A summary of results is stored in the stat.results variable (page 178).

All the lists must have equal dimension.
\(X\) and \(Y\) are lists of independent and dependent variables.
\(F\) is an optional list of frequency values. Each element in \(F\) specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point. The default value is 1 . All elements must be integers \(\geq 0\).

For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.RegEqn & Regression Equation: \(\mathrm{a}+\mathrm{b} \cdot \mathrm{x}\) \\
\hline stat.a, stat.b & Regression coefficients \\
\hline stat.df & Degrees of freedom \\
\hline stat. \(\mathrm{r}^{2}\) & Coefficient of determination \\
\hline stat.r & Correlation coefficient \\
\hline stat.Resid & Residuals from the regression \\
\hline
\end{tabular}

For Slope type only
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline [stat.CLower, stat.CUpper] & Confidence interval for the slope \\
\hline stat.ME & Confidence interval margin of error \\
\hline stat.SESlope & Standard error of slope \\
\hline stat.s & Standard error about the line \\
\hline
\end{tabular}

For Response type only
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline [stat.CLower, stat.CUpper] & Confidence interval for the mean response \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.ME & Confidence interval margin of error \\
\hline stat.SE & Standard error of mean response \\
\hline [stat.LowerPred, & Prediction interval for a single observation \\
stat.UpperPred] & Prediction interval margin of error \\
\hline stat.MEPred & Standard error for prediction \\
\hline stat.SEPred & \(\mathrm{a}+\mathrm{b} \cdot \mathrm{XVal}\) \\
\hline stat. \(\hat{\mathbf{y}}\) & \\
\hline
\end{tabular}

\section*{LinRegtTest}

Catalogue > 国異
LinRegtTest \(X, Y[\), Freq[,Hypoth \(]]\)
Computes a linear regression on the \(X\) and \(Y\) lists and a \(t\) test on the value of slope \(\beta\) and the correlation coefficient \(\rho\) for the equation \(y=\alpha+\beta x\). It tests the null hypothesis \(\mathrm{H}_{0}: \beta=0\) (equivalently, \(\rho=0\) ) against one of three alternative hypotheses.

All the lists must have equal dimension.
\(X\) and \(Y\) are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point. The default value is 1 . All elements must be integers \(\geq 0\).

Hypoth is an optional value specifying one of three alternative hypotheses against which the null hypothesis ( \(\mathrm{H}_{0}: \beta=\rho=0\) ) will be tested.

For \(H_{a}: \beta \neq 0\) and \(\rho \neq 0\) (default), set Hypoth=0
For \(H_{a}: \beta<0\) and \(\rho<0\), set Hypoth \(<0\)
For \(\mathrm{H}_{\mathrm{a}}: \beta>0\) and \(\rho>0\), set Hypoth \(>0\)
A summary of results is stored in the stat.results variable (page 178).

For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.RegEqn & Regression equation: \(\mathrm{a}+\mathrm{b} \cdot \mathrm{x}\) \\
\hline stat.t & \(t\)-Statistic for significance test \\
\hline stat.PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat.df & Degrees of freedom \\
\hline stat.a, stat.b & Regression coefficients \\
\hline stat.s & Standard error about the line \\
\hline stat.SESlope & Standard error of slope \\
\hline stat.r & Coefficient of determination \\
\hline stat.r & Correlation coefficient \\
\hline stat.Resid & Residuals from the regression \\
\hline
\end{tabular}

\section*{linSolve()}
linSolve( SystemOfLinearEqns, Var1, Var2, ...) \(\Rightarrow\) list
linSolve(LinearEqn1 and LinearEqn2 and ..., Var1, Var2, ...) \(\Rightarrow\) list
linSolve(\{LinearEqn1, LinearEqn2, ...\},
Var1, Var2, ...) \(\Rightarrow\) list
linSolve(SystemOfLinearEqns, \{Var1, Var2, ...\}) \(\Rightarrow\) list
linSolve(LinearEqn1 and LinearEqn2 and ..., \(\{\) Var1, Var2, ...\}) \(\Rightarrow\) list
linSolve(\{LinearEqn1, LinearEgn2, ...\}, \(\{\) Var1, Var2, ...\}) \(\Rightarrow\) list

Returns a list of solutions for the variables Var1, Var2, ...

The first argument must evaluate to a system of linear equations or a single linear equation. Otherwise, an argument error occurs.

For example, evaluating linSolve( \(\mathbf{x}=1\) and \(\mathbf{x}=\mathbf{2 , x}\) ) produces an "Argument Error" result.

Catalogue > 国
linSolve \(\left(\left\{\begin{array}{l}2 \cdot x+4 \cdot y=3 \\ 5 \cdot x-3 \cdot y=7\end{array},\{x, y\}\right) \quad\left\{\frac{37}{26}, \frac{1}{26}\right\}\right.\)
linSolve \(\left(\left\{\begin{array}{l}2 \cdot x=3 \\ 5 \cdot x-3 \cdot y=7\end{array},\{x, y\}\right\}\right.\)
linSolve \(\left\{\left(\begin{array}{l}\left\{\begin{array}{l}\text { apple }+4 \cdot \text { pear }=23 \\ 5 \cdot \text { apple-pear }=17\end{array},\{\text { apple,pear }\}\right.\end{array}\right\}\right.\)
\(\frac{\text { linSolve }\left\{\begin{array}{l}\left\{\frac{13}{3}, \frac{14}{3}\right\} \\ \text { apple } \cdot 4+\frac{\text { pear }}{3}=14 \\ \text {-apple }+ \text { pear }=6\end{array},\{\text { apple,pear }\}\right\}}{\left\{\frac{36}{13}, \frac{114}{13}\right\}}\)
\(\Delta \operatorname{List}(\{20,30,45,70\}) \quad\{10,15,25\}\)

Note：You can insert this function from the keyboard by typing deltaList （．．．）．

Returns a list containing the differences between consecutive elements in Listl． Each element of Listl is subtracted from the next element of Listl．The resulting list is always one element shorter than the original List1．
\begin{tabular}{|c|c|c|}
\hline list＞mat（） & \multicolumn{2}{|r|}{Catalogue＞国} \\
\hline list＞mat（List［， & list＞mat \((\{1,2,3\})\) & \(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\) \\
\hline elementsPerRow］）\(\Rightarrow\) matrix & list \(\rightarrow\) mat \((\{1,2,3,4,5\}, 2)\) & \(\begin{array}{ll}1 & 2\end{array}\) \\
\hline Returns a matrix filled row－by－row with the elements from List． & & \(\left[\begin{array}{ll}3 & 4 \\ 5 & 0\end{array}\right]\) \\
\hline
\end{tabular}
elementsPerRow，if included，specifies the number of elements per row．Default is the number of elements in List（one row）．

If List does not fill the resulting matrix， zeroes are added．

Note：You can insert this function from the computer keyboard by typing list＠＞mat（．．．）．


Note：You can insert this operator from the computer keyboard by typing \(@>1 n\) ．
\begin{tabular}{lcr}
\(\ln ()\) & & \(\operatorname{ctr1} e^{\text {ex }}\) keys \\
\((\) Expr 1\() \Rightarrow\) expression & 0.693147 \\
\hline
\end{tabular}
\(\ln (\) List 1\() \Rightarrow\) list

Returns the natural logarithm of the argument.

For a list, returns the natural logarithms of the elements.

\section*{\(\ln (\) squareMatrix 1\() \Rightarrow\) squareMatrix}

Returns the matrix natural logarithm of squareMatrixl. This is not the same as calculating the natural logarithm of each element. For information about the calculation method, refer to \(\cos ()\) on. squareMatrixl must be diagonalisable. The result always contains floating-point numbers.

If complex format mode is Real:
\(\ln (\{-3,1.2,5\})\)
"Error: Non-real calculation"

If complex format mode is Rectangular:
\[
\ln (\{-3,1.2,5\}) \quad\{\ln (3)+\pi \cdot i, 0.182322, \ln (5)\}
\]

In Radian angle mode and Rectangular complex format:
\(\left.\ln \left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)\)
\(\left[\begin{array}{cc}1.83145+1.73485 \cdot \boldsymbol{i} & 0.009193-1.49086 \\ 0.448761-0.725533 \cdot \boldsymbol{i} & 1.06491+0.623491 \\ -0.266891-2.08316 \cdot \boldsymbol{i} & 1.12436+1.79018 \cdot\end{array}\right.\)

To see the entire result, press \(\boldsymbol{\Delta}\) and then use 4 and to move the cursor.

LnReg
LnReg X, Y[, [Freq] [, Category, Include]]
Computes the logarithmic regression \(\mathrm{y}=\mathrm{a}+\mathrm{b} \cdot \ln (\mathrm{x})\) on lists \(X\) and \(Y\) with frequency Freq. A summary of results is stored in the stat.results variable (page 178).

All the lists must have equal dimension except for Include.
\(X\) and \(Y\) are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point. The default value is 1 . All elements must be integers \(\geq 0\).

Category is a list of category codes for the corresponding \(X\) and \(Y\) data.

\section*{LnReg}

Include is a list of one or more of the category codes．
Only those data items whose category code is
included in this list are included in the calculation．
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．RegEqn & Regression equation： \(\mathrm{a}+\mathrm{b} \cdot \ln (\mathrm{x})\) \\
\hline stat．a，stat．b & Regression coefficients \\
\hline stat．r\({ }^{2}\) & Coefficient of linear determination for transformed data \\
\hline stat．r & Correlation coefficient for transformed data（In（x），y） \\
\hline stat．Resid & Residuals associated with the logarithmic model \\
\hline stat．ResidTrans & Residuals associated with linear fit of transformed data \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified X List actually used in the regression \\
based on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression \\
based on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}

\section*{Local}

Local Var1［，Var2］［，Var3］．．．
Declares the specified vars as local variables．Those variables exist only during evaluation of a function and are deleted when the function finishes execution．

Note：Local variables save memory because they only exist temporarily． Also，they do not disturb any existing global variable values．Local variables must be used for For loops and for temporarily saving values in a multi－line function since modifications on global variables are not allowed in a function．

\section*{Catalogue＞国运}

Define rollcount（）＝Func
Local \(i\)
\(1 \rightarrow i\)
Loop
If randInt（ 1,6 ）\(=\) randInt \((1,6)\)
Goto end
\(i+1 \rightarrow i\)
EndLoop
Lbl end
Return \(i\)
EndFunc
\begin{tabular}{lr} 
& Done \\
\hline rollcount（） & 16 \\
\hline rollcount \()\) & 3
\end{tabular}

\section*{Note for entering the example：For} instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

\section*{Lock}

LockVar1［，Var2］［，Var3］．．．
LockVar．
Locks the specified variables or variable group．Locked variables cannot be modified or deleted．

You cannot lock or unlock the system variable Ans，and you cannot lock the system variable groups stat．or tvm．

Note：The Lock command clears the Undo／Redo history when applied to unlocked variables．

See unLock，page 200，andgetLockInfo（）， page 84 ．
\(\log ()\)
\(\log (\) Expr \(1[, E x p r 2]) \Rightarrow\) expression
\(\log (\) List \(1[, E x p r 2]) \Rightarrow\) list
Returns the base－Expr 2 logarithm of the
first argument．

Note：See also Log template，page 2.
For a list，returns the base－Expr2 logarithm of the elements．

If the second argument is omitted， 10 is used as the base．

Catalogue＞国
\begin{tabular}{lr}
\hline\(a:=65\) & 65 \\
\hline Lock \(a\) & Done \\
\hline getLockInfo \((a)\) & 1 \\
\hline\(a:=75\) & ＂Error：Variable is locked．＂ \\
\hline DelVar \(a\) & ＂Error：Variable is locked．＂ \\
\hline Unlock \(a\) & Done \\
\hline\(a:=75\) & 75 \\
\hline DeIVar \(a\) & Done \\
\hline
\end{tabular}
\[
\begin{aligned}
& \log (\{-3,1.2,5\}) \\
& \left\{\log _{10}(3)+1.36438 \cdot i, 0.079181, \log { }_{10}(5)\right\} \\
& \hline
\end{aligned}
\]

In Radian angle mode and Rectangular complex format:
\begin{tabular}{|c|c|}
\hline \(\log 10\left(\left[\begin{array}{lcc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)\) & \\
\hline [0.795387+0.753438•i & 0.003993-0.6474 \\
\hline 0.194895-0.315095•i & \(0.462485+0.2707\) \\
\hline -0.115909-0.904706•i & \(0.488304+0.7774\) \\
\hline
\end{tabular}

To see the entire result, press \(\boldsymbol{\Delta}\) and then use \(\measuredangle\) and to move the cursor.

If the base argument is omitted, 10 is used as base.
\(\log (\) squareMatrix 1
\([\), Expr \(]) \Rightarrow\) squareMatrix
Returns the matrix base-Expr logarithm of squareMatrixl. This is not the same as calculating the base-Expr logarithm of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrixl must be diagonalisable. The result always contains floating-point numbers.

Catalogue \(>\) [a]


Note: You can insert this operator from the computer keyboard by typing @>logbase (...).

\section*{Logistic}

Catalogue > 国2
Logistic \(X, Y[,[\) Freq \(][\), Category, Include \(]]\)
Computes the logistic regressiony \(=(c /(1+a \cdot e-b x))\) on lists \(X\) and \(Y\) with frequency Freq. A summary of results is stored in the stat.results variable (page 178).

All the lists must have equal dimension except for Include.
\(X\) and \(Y\) are lists of independent and dependent variables.

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes．
Only those data items whose category code is
included in this list are included in the calculation．
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat．RegEqn & Regression equation：c／（1＋a \(\left.\cdot \mathrm{e}^{-\mathrm{bx}}\right)\) \\
\hline \begin{tabular}{l} 
stat．a，stat．b， \\
stat．c
\end{tabular} & Regression coefficients \\
\hline stat．Resid & Residuals from the regression \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified \(X\) List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}

\section*{LogisticD}

LogisticD X，Y［ ，［Iterations］，［Freq］［，Category， Include］］

Computes the logistic regression \(y=(c /(1+a \cdot e-b x)+d)\) on lists \(X\) and \(Y\) with frequency Freq，using a specified number of Iterations．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values. Each
element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point. The default value is 1 . All elements must be integers \(\geq 0\).

Category is a list of category codes for the corresponding \(X\) and \(Y\) data.

Include is a list of one or more of the category codes.
Only those data items whose category code is
included in this list are included in the calculation.
For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat.RegEqn & Regression equation: \(\left.c /\left(1+\mathrm{a} \cdot \mathrm{e}^{-\mathrm{bx}}\right)+\mathrm{d}\right)\) \\
\hline \begin{tabular}{l} 
stat.a, stat.b, \\
stat.c, stat.d
\end{tabular} & Regression coefficients \\
\hline stat.Resid & Residuals from the regression \\
\hline stat.XReg & \begin{tabular}{l} 
List of data points in the modified \(X\) List actually used in the regression based \\
on restrictions of Freq, Category List and Include Categories
\end{tabular} \\
\hline stat.YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression based \\
on restrictions of Freq, Category List and Include Categories
\end{tabular} \\
\hline stat.FreqReg & List of frequencies corresponding to stat.XReg and stat.YReg \\
\hline
\end{tabular}

\section*{Loop}

Catalogue > 国

Loop

\section*{Block}

\section*{EndLoop}

Repeatedly executes the statements in Block. Note that the loop will be executed endlessly, unless a Goto or Exit instruction is executed within Block.

Block is a sequence of statements separated with the ":" character.
Define rollcount ()=Func

Local \(i\)
\(1 \rightarrow i\)
Loop
If randInt \((1,6)=\) randInt \((1,6)\)
Goto end
\(i+1 \rightarrow i\)
EndLoop
Lbl end
Return \(i\)
EndFunc
Done
rollcount () 16
rollcount() 3

\section*{Note for entering the example：For} instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．

\section*{LU}

Catalogue＞国
LU Matrix，lMatrix，uMatrix，pMatrix ［，Tol］

Calculates the Doolittle LU（lower－upper） decomposition of a real or complex matrix．The lower triangular matrix is stored in lMatrix，the upper triangular matrix in uMatrix and the permutation matrix（which describes the row swaps done during the calculation）in pMatrix．
lMatrix \(\cdot\) uMatrix \(=p\) Matrix \(\cdot\) matrix
Optionally，any matrix element is treated as zero if its absolute value is less than Tol．This tolerance is used only if the matrix has floating－point entries and does not contain any symbolic variables that have not been assigned a value． Otherwise，\(T o l\) is ignored．
－If you use ctri enter or set the Auto or Approximate mode to Approximate， computations are done using floating－ point arithmetic．
－If Tol is omitted or not used，the default tolerance is calculated as： 5E－14 •max（dim（Matrix））•rowNorm （Matrix）

The LU factorization algorithm uses partial pivoting with row interchanges．
\begin{tabular}{l}
\begin{tabular}{lll}
{\(\left[\begin{array}{ccc}6 & 12 & 18 \\
5 & 14 & 31 \\
3 & 8 & 18\end{array}\right] \rightarrow m 1\)} \\
\hline LU m1，lower，upper，perm & {\(\left[\begin{array}{ccc}6 & 12 & 18 \\
5 & 14 & 31 \\
3 & 8 & 18\end{array}\right]\)} \\
\hline lower & {\(\left[\begin{array}{lll}1 & 0 & 0 \\
\frac{5}{6} & 1 & 0 \\
\frac{1}{2} & \frac{1}{2} & 1\end{array}\right]\)} \\
\hline upper & {\(\left[\begin{array}{lll}6 & 12 & 18 \\
0 & 4 & 16 \\
0 & 0 & 1\end{array}\right]\)} \\
\hline
\end{tabular} \\
\hline\(\left[\begin{array}{lll}1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1\end{array}\right]\)
\end{tabular}
\(\left[\begin{array}{cc}{\left[\begin{array}{cc}m & n \\ o & p\end{array}\right] \rightarrow m 1} & {\left[\begin{array}{cc}m & n \\ o & p\end{array}\right]} \\ \hline \text { LU m1，lower，upper，perm } & {\left[\begin{array}{cc}1 & 0 \\ \frac{m}{o} & 1\end{array}\right]} \\ \hline \text { upper } & {\left[\begin{array}{cc}o & p \\ 0 & n-\frac{m \cdot p}{o}\end{array}\right]} \\ \hline \text { perm } & {\left[\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right]}\end{array}\right.\)
mat list（）
Catalogue＞国
mat list（Matrix）\(\Rightarrow\) list
Returns a list filled with the elements in Matrix．The elements are copied from Matrix row by row．

Note：You can insert this function from the computer keyboard by typing mat＠＞list（．．．）．
\begin{tabular}{lr}
\hline mat list \(\left(\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)\) & \(\{1,2,3\}\) \\
\hline\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right] \rightarrow m 1\) & {\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right]\)} \\
\hline mat list \((m 1)\) & \(\{1,2,3,4,5,6\}\) \\
\hline
\end{tabular}
\(\max ()\)
\(\max (\) Expr1，Expr2）\(\Rightarrow\) expression
\(\max (\) List 1, List 2 ）\(\Rightarrow\) list
\(\max (\) Matrix 1, Matrix 2\() \Rightarrow\) matrix
Returns the maximum of the two arguments．If the arguments are two lists or matrices，returns a list or matrix containing the maximum value of each pair of corresponding elements．
\(\max (\) List \() \Rightarrow\) expression
Returns the maximum element in list．
\(\boldsymbol{\operatorname { m a x }}(\) Matrixl \() \Rightarrow\) matrix
Returns a row vector containing the maximum element of each column in Matrixl．

Empty（void）elements are ignored．For more information on empty elements， see page 255.

Note：See also \(\mathrm{f} \operatorname{Max}()\) and \(\min ()\) ．
\(\max (\{0,1,-7,1.3,0.5\}) \quad 1.3\)
\begin{tabular}{l}
\(\max \left(\left[\begin{array}{ccc}1 & -3 & 7 \\
-4 & 0 & 0.3\end{array}\right]\right) \quad\left[\begin{array}{lll}1 & 0 & 7\end{array}\right]\) \\
\hline
\end{tabular}

\section*{mean（）}

Catalogue＞国
mean \((\) List \([\) ，freqList \(]) \Rightarrow\) expression
Returns the mean of the elements in List．

\section*{Catalogue＞国}
\begin{tabular}{lr}
\hline max \((2.3,1.4)\) & 2.3 \\
\hline \(\max (\{1,2\},\{-4,3\})\) & \(\{1,3\}\)
\end{tabular}

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.
mean(Matrix l[, freqMatrix]) \(\Rightarrow\) matrix
Returns a row vector of the means of all the columns in Matrixl.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrix1.

Empty (void) elements are ignored. For more information on empty elements, see page 255.

\section*{median()}
median(List \([\), freqList \(]) \Rightarrow\) expression
Returns the median of the elements in List.

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.
median(Matrixl \([\), freqMatrix] \() \Rightarrow\) matrix
Returns a row vector containing the medians of the columns in Matrixl.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl.

In Rectangular vector format:
\begin{tabular}{|c|c|}
\hline mean \(\left\{\left[\begin{array}{cc}0.2 & 0 \\ -1 & 3 \\ 0.4 & -0.5\end{array}\right]\right\}\) & \(\left[\begin{array}{lll}-0.133333 & 0.833333\end{array}\right]\) \\
\hline \(\operatorname{mean}\left\{\left[\begin{array}{cc}\frac{1}{5} & 0 \\ -1 & 3 \\ \frac{2}{5} & \frac{-1}{2}\end{array}\right]\right\}\) & \(\left[\begin{array}{ll}\frac{-2}{15} & \frac{5}{6}\end{array}\right]\) \\
\hline \(\operatorname{mean}\left(\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right],\left[\begin{array}{ll}5 & 3 \\ 4 & 1 \\ 6 & 2\end{array}\right]\right)\) & \(\left[\begin{array}{ll}\frac{47}{15} & \frac{11}{3}\end{array}\right]\) \\
\hline
\end{tabular}

\section*{Notes:}
- All entries in the list or matrix must simplify to numbers.
- Empty (void) elements in the list or matrix are ignored. For more information on empty elements, see page 255.
\begin{tabular}{c} 
median \(\left.\left[\begin{array}{cc}0.2 & 0 \\
1 & -0.3 \\
0.4 & -0.5\end{array}\right]\right) \quad\left[\begin{array}{ll}0.4 & -0.3\end{array}\right]\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline median \((\{0.2,0,1,-0.3,0.4\})\) & 0.2 \\
\hline
\end{tabular}

\section*{Catalogue > 国}

\section*{MedMed \(X, Y\)［，Freq］［，Category，Include］］}

Computes the median－median liney \(=(\mathrm{m} \cdot \mathrm{x}+\mathrm{b})\) on lists
\(X\) and \(Y\) with frequency Freq．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes．
Only those data items whose category code is included in this list are included in the calculation．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat．RegEqn & Median－median line equation： \(\mathrm{m} \cdot \mathrm{x}+\mathrm{b}\) \\
\hline stat．m，stat．b & Model coefficients \\
\hline stat．Resid & Residuals from the median－median line \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified \(X\) List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}
mid（）
mid（sourceString，Start［，
Count \(] \Rightarrow\) string

Catalogue＞国
\begin{tabular}{lr}
\hline mid（＂Hello there＂，2） & ＂ello there＂ \\
\hline mid（＂Hello there＂，7，3） & ＂the＂ \\
\hline mid（＂Hello there＂，1，5） & ＂Hello＂ \\
\hline mid（＂Hello there＂，1，0） & ＂ \(\bar{\prime} "\) \\
\hline
\end{tabular}

Returns Count characters from character string sourceString, beginning with character number Start.

If Count is omitted or is greater than the dimension of sourceString, returns all characters from sourceString, beginning with character number Start.

Count must be \(\geq 0\). If Count \(=0\), returns an empty string.
mid(sourceList, Start [, Count]) \(\Rightarrow\) list
Returns Count elements from sourceList, beginning with element number Start.

If Count is omitted or is greater than the dimension of sourceList, returns all elements from sourceList, beginning with element number Start.

Count must be \(\geq 0\). If Count \(=0\), returns an empty list.
mid(sourceStringList, Start[, Count \(] \Rightarrow\) list

Returns Count strings from the list of strings sourceStringList, beginning with element number Start.
\begin{tabular}{lc}
\hline \(\operatorname{mid}(\{9,8,7,6\}, 3)\) & \(\{7,6\}\) \\
\hline \(\operatorname{mid}(\{9,8,7,6\}, 2,2\}\) & \(\{8,7\}\) \\
\hline \(\operatorname{mid}(\{9,8,7,6\}, 1,2\}\) & \(\{9,8\}\) \\
\hline \(\operatorname{mid}(\{9,8,7,6\}, 1,0\}\) & \(\{1\}\) \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\hline \operatorname{mid}(\{" A ", " B ", " C ", " D "\}, 2,2\} \\
& \{" B ", " C "\} \\
&
\end{array}
\]

\section*{\(\min ()\)}
\(\min (\) Expr1, Expr2) \(\Rightarrow\) expression
\(\min (\) List1, List 2\() \Rightarrow\) list
\(\min\) (Matrix1, Matrix2) \(\Rightarrow\) matrix
Returns the minimum of the two arguments. If the arguments are two lists or matrices, returns a list or matrix containing the minimum value of each pair of corresponding elements.
\(\min (\) List \() \Rightarrow\) expression
\(\min (\{0,1,-7,1.3,0.5\})\)
\(-7\)
Returns the minimum element of List.
\(\min (\) Matrixl \() \Rightarrow\) matrix
Returns a row vector containing the minimum element of each column in Matrixl.

Note: See also fMin() and max().
mirr()

\section*{mirr}
(financeRate,reinvestRate,CF0,CFList [,CFFreq])

Financial function that returns the modified internal rate of return of an investment.
financeRate is the interest rate that you pay on the cash flow amounts.
reinvestRate is the interest rate at which the cash flows are reinvested.
\(C F 0\) is the initial cash flow at time 0 ; it must be a real number.

CFList is a list of cash flow amounts after the initial cash flow CFO.

CFFreq is an optional list in which each element specifies the frequency of occurrence for a grouped (consecutive) cash flow amount, which is the corresponding element of CFList. The default is 1 ; if you enter values, they must be positive integers < 10,000.

Note: See also irr(), page 94.
\begin{tabular}{l}
\hline list \(1:=\{6000,-8000,2000,-3000\}\) \\
\multicolumn{1}{|c}{\(6000,-8000,2000,-3000\)} \\
\hline list \(2:=\{2,2,2,1\}\) \\
\hline mirr( \(4.65,12,5000\), list 1, list 2\()\) \\
\hline
\end{tabular}
Catalogue > 国
\(\left.\begin{array}{c}\min \left(\left[\begin{array}{ccc}1 & -3 & 7 \\ -4 & 0 & 0.3\end{array}\right]\right.\end{array}\right] \quad\left[\begin{array}{lll}-4 & -3 & 0.3\end{array}\right]\)

Returns the first argument modulo the second argument as defined by the identities：
\(\bmod (x, 0)=x\)
\(\bmod (x, y)=x-y\) floor \((x / y)\)
When the second argument is non－zero， the result is periodic in that argument． The result is either zero or has the same sign as the second argument．

If the arguments are two lists or two matrices，returns a list or matrix containing the modulo of each pair of corresponding elements．

Note：See also remain（），page 150

mRowAdd（）
Catalogue＞［⿴囗玉心
mRowAdd（Expr，Matrix1，Index1， Index2）\(\Rightarrow\) matrix

Returns a copy of Matrixl with each element in row Index 2 of Matrix 1
\(\left.\begin{array}{l}\text { mRowAdd }\left(-3,\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], 1,2\right) \\ \text { mRowAdd }\left(n,\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], 1,2\right.\end{array}\right) \quad\left[\begin{array}{cc}a & b \\ 0 & -2\end{array}\right]\), replaced with：

Expr \(\cdot\) row Index \(1+\) row Index 2
Index 2

\section*{MultReg}

MultReg \(Y, X 1[, X 2[, X 3, \ldots[, X 10]]]\)
Calculates multiple linear regression of list \(Y\) on lists \(X 1, X 2, \ldots, X 10\) ．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension．
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．RegEqn & Regression Equation： \(\mathrm{b} 0+\mathrm{b} 1 \cdot \times 1+\mathrm{b} 2 \cdot \mathrm{x} 2+\ldots\) \\
\hline stat．b0，stat．b1，．．． & Regression coefficients \\
\hline stat．R \({ }^{2}\) & Coefficient of multiple determination \\
\hline stat．\(\hat{\mathrm{y}}\) List & \(\hat{\mathrm{y}}\) List \(=\mathrm{b} 0+\mathrm{b} 1 \cdot \times 1+\ldots\) \\
\hline stat．Resid & Residuals from the regression \\
\hline
\end{tabular}

\section*{MultRegintervals}

\section*{Catalogue＞国}

MultRegIntervals \(Y, X 1[, X 2[, X 3, \ldots[, X 10]]], X V a l\) List
［，CLevel］
Computes a predicted y －value，a level C prediction interval for a single observation，and a level \(C\) confidence interval for the mean response．

A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension．
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．RegEqn & Regression Equation： \(\mathrm{b} 0+\mathrm{b} 1 \cdot \mathrm{x} 1+\mathrm{b} 2 \cdot \mathrm{x} 2+\ldots\) \\
\hline stat．\(\hat{\mathbf{y}}\) & A point estimate：\(\hat{\mathbf{y}} \mathrm{=} \mathrm{~b} 0+\mathrm{b} 1 \cdot \mathrm{xl}+\ldots\) for XValList \\
\hline stat．dfError & Error degrees of freedom \\
\hline stat．CLower，stat．CUpper & Confidence interval for a mean response \\
\hline stat．ME & Confidence interval margin of error \\
\hline stat．SE & Standard error of mean response \\
\hline stat．LowerPred， \\
stat．UpperrPred & Prediction interval for a single observation \\
\hline stat．MEPred & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.SEPred & Standard error for prediction \\
\hline stat.bList & List of regression coefficients, \(\{\mathrm{b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \ldots\}\) \\
\hline stat.Resid & Residuals from the regression \\
\hline
\end{tabular}

\section*{MultRegTests}

Catalogue > 国
MultRegTests \(Y, X 1[, X 2[, X 3, \ldots[, X 10]]]\)
Multiple linear regression test computes a multiple linear regression on the given data and provides the global \(F\) test statistic and \(t\) test statistics for the coefficients.

A summary of results is stored in the stat.results variable (page 178).
For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.

Outputs
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat.RegEqn & Regression Equation: b0+b1 \(\cdot \times 1+\mathrm{b} 2 \cdot \times 2+\ldots\) \\
\hline stat.F & Global \(F\) test statistic \\
\hline stat.PVal & P-value associated with global \(F\) statistic \\
\hline stat.R2 & Coefficient of multiple determination \\
\hline stat.AdjR \({ }^{2}\) & Adjusted coefficient of multiple determination \\
\hline stat.s & Standard deviation of the error \\
\hline stat.DW & Durbin-Watson statistic; used to determine whether first-order auto \\
correlation is present in the model \\
\hline stat.dfReg & Regression degrees of freedom \\
\hline stat.SSReg & Regression sum of squares \\
\hline stat.MSReg & Regression mean square \\
\hline stat.dfError & Error degrees of freedom \\
\hline stat.SSError & Error sum of squares \\
\hline stat.MSError & Error mean square \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat.bList & \{b0,b1,...\} List of coefficients \\
\hline stat.tList & List of t statistics, one for each coefficient in the bList \\
\hline stat.PList & List P-values for each t statistic \\
\hline stat.SEList & List of standard errors for coefficients in bList \\
\hline stat. List & hesist = b0+b1 \(\cdot x 1+\ldots\) \\
\hline stat.Resid & \begin{tabular}{l} 
Standardized residuals; obtained by dividing a residual by its standard \\
deviation
\end{tabular} \\
\hline stat.sResid & \begin{tabular}{l} 
Cook's distance; measure of the influence of an observation based on the \\
residual and leverage
\end{tabular} \\
\hline stat.CookDist & \begin{tabular}{l} 
Measure of how far the values of the independent variable are from their \\
mean values
\end{tabular} \\
\hline stat.Leverage & \\
\hline
\end{tabular}

\section*{\(N\)}
nand
ctri) keys
BooleanExpr1nandBooleanExpr2 returns Boolean expression

\section*{BooleanList 1 nandBooleanList 2 returns \\ Boolean list}

BooleanMatrixInandBooleanMatrix2 returns Boolean matrix

Returns the negation of a logical and operation on the two arguments.
Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
Integer 1 nandInteger \(2 \Rightarrow\) integer
\begin{tabular}{lr}
\hline 3 and 4 & 0 \\
\hline 3 nand 4 & -1 \\
\hline\(\{1,2,3\}\) and \(\{3,2,1\}\) & \(\{1,2,1\}\) \\
\hline\(\{1,2,3\}\) nand \(\{3,2,1\}\) & \(\{-2,-3,-2\}\) \\
\hline
\end{tabular}

Compares two real integers bit-by-bit using a nand operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 0 if both bits are 1; otherwise, the result is 1 . The returned value represents the bit results, and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).
\begin{tabular}{|c|c|c|}
\hline nCr() & \multicolumn{2}{|r|}{Catalogue > [1]} \\
\hline \(\mathrm{nCr}(\) Expr 1, Expr 2\() \Rightarrow\) expression & \(\overline{\mathrm{nCr}}(\underline{z}, 3)\) & \(z \cdot(z-2) \cdot(z-1)\) \\
\hline \multirow[t]{5}{*}{For integer Exprl and Expr 2 with Expr1 \(\geq \operatorname{Expr} 2 \geq 0, \mathrm{nCr}()\) is the number of combinations of Exprl things taken Expr2 at a time. (This is also known as a binomial coefficient.) Both arguments can be integers or symbolic expressions.} & & 6 \\
\hline & Ans \(\mid \boldsymbol{z}=5\) & 10 \\
\hline & \(\mathrm{nCr}(z, c)\) & \(z!\) \\
\hline & & \(\overline{c!\cdot(z-c)!}\) \\
\hline & \[
\frac{A n s}{{ }_{\mathrm{nPr}(z, c)}}
\] & \(\frac{1}{c!}\) \\
\hline \multicolumn{3}{|l|}{\(\mathrm{nCr}(E x p r, \mathbf{0}) \Rightarrow \mathbf{1}\)} \\
\hline \multicolumn{3}{|l|}{\(\mathrm{nCr}(\) Expr, negInteger \() \Rightarrow \mathbf{0}\)} \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
& \mathrm{nCr}(\text { Expr }, \text { posInteger }) \Rightarrow \text { Expr } \\
& (\text { Expr-1)... }
\end{aligned}
\]} \\
\hline \multicolumn{3}{|l|}{(Expr-posInteger \(\mathbf{+ 1}\) )/ posInteger!} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\mathrm{nCr}(\text { Expr }, \text { nonInteger }) \Rightarrow \text { expression!/ } \\
((\text { Expr-nonInteger })!\cdot \text { nonInteger! })
\end{array}
\]}} \\
\hline & & \\
\hline \(\mathrm{nCr}(\) List 1, List 2\() \Rightarrow\) list & \(\mathrm{nCr}(\{5,4,3\},\{2,4,2\})\) & \{10,1,3\} \\
\hline \multicolumn{3}{|l|}{Returns a list of combinations based on the corresponding element pairs in the two lists. The arguments must be the same size list.} \\
\hline nCr (Matrix1, Matrix 2\() \Rightarrow\) matrix & \(\mathrm{nCr}\left(\left[\begin{array}{ll}6 & 5 \\ 4 & 3\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]\right)\) & \(\left[\begin{array}{cc}15 & 10 \\ 6 & 3\end{array}\right]\) \\
\hline
\end{tabular}

Returns a matrix of combinations based on the corresponding element pairs in the two matrices．The arguments must be the same size matrix．
\begin{tabular}{lll} 
nDerivative () & & Catalogue \(>\) 国 \\
nDerivative \((\) Expr 1, Var \(=\) Value
\end{tabular}

Returns the numerical derivative calculated using auto differentiation methods．

When Value is specified，it overrides any prior variable assignment or any current ＂｜＂substitution for the variable．

Order of the derivative must be \(\mathbf{1}\) or \(\mathbf{2}\) ．
\begin{tabular}{|c|c|c|}
\hline newList（） & \multicolumn{2}{|r|}{Catalogue＞国运} \\
\hline newList（ （umElements）\(\Rightarrow\) list & newList（4） & \(\{0,0,0,0\}\) \\
\hline
\end{tabular}

Returns a list with a dimension of numElements．Each element is zero．
\begin{tabular}{lcc} 
newMat（） & Catalogue \(>\) 国 \(]_{2}^{2}\) \\
newMat（ numRows， \\
numColumns \() \Rightarrow\) matrix
\end{tabular}\(\quad\) newMat \((2,3) \quad\left[\begin{array}{lll}0 & 0 & 0 \\
0 & 0 & 0\end{array}\right]\)

Returns a matrix of zeroes with the dimension numRows by numColumns．
nfMax（）
nfMax \((\) Expr，Var \() \Rightarrow\) value
nfMax \((\) Expr，Var，lowBound \() \Rightarrow\) value
\(\operatorname{nfMax}(\) Expr，Var，lowBound，
upBound \() \Rightarrow\) value

Catalogue＞国
\begin{tabular}{ll}
\(\operatorname{nfMax}\left(-x^{2}-2 \cdot x-1, x\right)\) & -1. \\
\(\operatorname{nfMax}\left(0.5 \cdot x^{3}-x-2, x,-5,5\right)\) & 5. \\
\hline
\end{tabular}
nfMax（Expr，Var）｜lowBound \(\leq\) Var
\(\leq\) upBound \(\Rightarrow\) value
Returns a candidate numerical value of variable Var where the local maximum of Expr occurs．

If you supply lowBound and upBound， the function looks in the closed interval ［lowBound，upBound］for the local maximum．

Note：See also fMax() and d() ．
\begin{tabular}{|c|c|c|}
\hline nfMin（） & \multicolumn{2}{|r|}{Catalogue＞国运} \\
\hline \(\mathrm{nfMin}(\) Expr, Var \() \Rightarrow\) value & \(n \mathrm{MMin}\left(x^{2}+2 \cdot x+5, x\right)\) & －1． \\
\hline \begin{tabular}{l}
nfMin（Expr，Var，lowBound \() \Rightarrow\) value \\
nfMin（Expr，Var，lowBound， upBound）\(\Rightarrow\) value
\end{tabular} & \[
\operatorname{nfMin}\left(0.5 \cdot x^{3}-x-2, x,-5,5\right)
\] & －5． \\
\hline nfMin（Expr，Var）｜lowBound \(\leq\) Var \(\leq\) upBound \(\Rightarrow\) value & & \\
\hline
\end{tabular}

Returns a candidate numerical value of variable Var where the local minimum of Expr occurs．

If you supply lowBound and upBound， the function looks in the closed interval ［lowBound，upBound］for the local minimum．

Note：See also fMin（）and d（）．
\begin{tabular}{|c|c|c|}
\hline nInt（） & \multicolumn{2}{|r|}{Catalogue＞［1］} \\
\hline nlnt（Expr1，Var，Lower， Upper）\(\Rightarrow\) expression & \[
\operatorname{nInt}\left(e^{-x^{2}}, x,-1,1\right)
\] & 1.49365 \\
\hline
\end{tabular}

If the integrand Exprl contains no variable other than Var, and if Lower and Upper are constants, positive \(\infty\), or negative \(\infty\), then nint() returns an approximation of \(\int(\) Expr 1, Var, Lower, Upper). This approximation is a weighted average of some sample values of the integrand in the interval Lower<Var<Upper.

The goal is six significant digits. The adaptive algorithm terminates when it seems likely that the goal has been achieved, or when it seems unlikely that additional samples will yield a worthwhile improvement.

A warning is displayed ("Questionable accuracy") when it seems that the goal has not been achieved.

Nest nInt() to do multiple numeric integration. Integration limits can depend on integration variables outside them.

Note: See also \(\int(\) ), page 225.

\section*{nom()}
nom(effectiveRate, \(\mathrm{Cp} Y\) ) \(\Rightarrow\) value
Financial function that converts the annual effective interest rate effectiveRate to a nominal rate, given \(C p Y\) as the number of compounding periods per year.
effectiveRate must be a real number, and \(C p Y\) must be a real number \(>0\).

Note: See also eff(), page 59.


Catalogue > 国
nom( \(5.90398,12)\)
5.75
nor
\begin{tabular}{l} 
BooleanExpr1 norBooleanExpr2 return \\
Boolean expression
\end{tabular}
\begin{tabular}{l} 
BooleanList 1 norBooleanList 2 returns \\
Boolean list
\end{tabular}

\section*{BooleanMatrix1norBooleanMatrix2 returns Boolean matrix}

Returns the negation of a logical or operation on the two arguments. Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Integer 1 norInteger \(2 \Rightarrow\) integer
Compares two real integers bit-by-bit using a nor operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if both bits are 1; otherwise, the result is 0 . The returned value represents the bit results and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).
\begin{tabular}{lr}
\hline 3 or 4 & 7 \\
\hline 3 nor 4 & -8 \\
\hline\(\{1,2,3\}\) or \(\{3,2,1\}\) & \(\{3,2,3\}\) \\
\hline\(\{1,2,3\}\) nor \(\{3,2,1\}\) & \(\{-4,-3,-4\}\) \\
\hline
\end{tabular}
norm()
norm(Matrix) \(\Rightarrow\) expression
norm(Vector \() \Rightarrow\) expression

Returns the Frobenius norm.

Catalogue > 国
\begin{tabular}{lr}
\hline \(\operatorname{norm}\left(\left[\begin{array}{ll}a & b \\
c & d\end{array}\right]\right.\) \\
\hline \(\operatorname{norm}\left(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]\right.\) \\
\hline norm \(\left(\left[\begin{array}{ll}1 & 2\end{array}\right]\right)\) & \(\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}\) \\
\hline \(\operatorname{norm}\left(\left[\begin{array}{l}1 \\
2\end{array}\right]\right)\) & \(\sqrt{30}\) \\
\hline
\end{tabular}
normalLine
（Expr1，Var，Point）\(\Rightarrow\) expression

\section*{normalline}
（Expr1，Var \(=\) Point \() \Rightarrow\) expression
Returns the normal line to the curve represented by Exprl at the point specified in Var \(=\) Point．
\begin{tabular}{lr} 
normalLine \(\left(x^{2}, x, 1\right)\) & \(\frac{3}{2}-\frac{x}{2}\) \\
\hline normalLine \(\left((x-3)^{2}-4, x, 3\right)\) & \(x=3\) \\
\hline normalLine \(\left(\frac{1}{3}, x\right)\) & 0 \\
\hline normalLine \((\sqrt{|x|}, x=0)\) & undef \\
\hline
\end{tabular}

Make sure that the independent variable is not defined．For example，If \(f 1(x):=5\) and \(\mathrm{x}:=3\) ，then normalLine \((\mathrm{f} 1(\mathrm{x}), \mathrm{x}, 2)\) returns＂false．＂

\section*{normCdf（）}
normCdf（lowBound，upBound \([, \mu[, \sigma]]) \Rightarrow\) number if lowBound and upBound are numbers，list if lowBound and upBound are lists

Computes the normal distribution probability between lowBound and upBound for the specified \(\mu\) （default＝0）and \(\sigma\)（default＝1）．

For \(\mathrm{P}(\mathrm{X} \leq\) upBound \()\) ，set lowBound \(=-\infty\) ．

\section*{normPdf（）}

Catalogue＞国合
normPdf \((X \operatorname{Val}[, \mu[, \sigma]]) \Rightarrow\) number if \(X V a l\) is a number， list if \(X V a l\) is a list

Computes the probability density function for the normal distribution at a specified \(X V a l\) value for the specified \(\mu\) and \(\sigma\) ．
\begin{tabular}{|c|c|c|}
\hline not & \multicolumn{2}{|r|}{Catalogue＞国］} \\
\hline not BooleanExpr \(\Rightarrow\) Boolean expression & not（2 \(2 \geq 3\) ） & true \\
\hline Returns true，false，or a simplified form & not（ \(x<2\) ） & \(x \geq 2\) \\
\hline of the argument． & not not innocent & innocent \\
\hline not Integer \(1 \Rightarrow\) integer & \multicolumn{2}{|l|}{In Hex base mode：} \\
\hline
\end{tabular}

Returns the one's complement of a real integer. Internally, Integerl is converted to a signed, 64-bit binary number. The value of each bit is flipped ( 0 becomes 1 and vice versa) for the one's complement. Results are displayed according to the Base mode.

You can enter the integer in any number base. For a binary or hexadecimal entry, you must use the Ob or Oh prefix, respectively. Without a prefix, the integer is treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see \(>\) Base2, page 17.
not 0h7AC36 0hFFFFFFFFFFF853C9

In Bin base mode:

0b100101 Base10 37
not 0b100101
0b111111111111111111111111111111111,
not 0b100101 Base10 -38
To see the entire result, press \(\boldsymbol{\Delta}\) and then use
4 and to move the cursor.
Note: A binary entry can have up to 64 digits (not counting the Ob prefix). A hexadecimal entry can have up to 16 digits.
\begin{tabular}{|c|}
\hline \(n \operatorname{Pr}()\) \\
\hline \(\mathrm{nPr}(\) Expr 1, Expr 2\() \Rightarrow\) expression \\
\hline For integer Exprl and Expr2 with Expr1 \(\geq\) Expr \(2 \geq 0, \mathrm{nPr}()\) is the number of permutations of Exprl things taken Expr2 at a time. Both arguments can be integers or symbolic expressions. \\
\hline \(\mathrm{nPr}(\) Expr, \(\mathbf{0}) \Rightarrow \mathbf{1}\) \\
\hline \[
\begin{aligned}
& \mathrm{nPr}(\text { Expr }, \text { negInteger }) \Rightarrow \mathbf{1} /((\text { Expr }+\mathbf{1}) \cdot \\
& (\text { Expr } \mathbf{+ 2}) \ldots \\
& \quad(\text { expression-negInteger }))
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{nPr}(\text { Expr }, \text { posInteger }) \Rightarrow \text { Expr } \\
& (\text { Expr-1)... } \\
& \quad(\text { Expr-posInteger } \mathbf{+ 1})
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \mathrm{nPr}(\text { Expr, nonInteger }) \Rightarrow \text { Expr }!/ \\
& (\text { Expr }- \text { nonInteger })! \\
& \mathrm{nPr}(\text { List } 1, \text { List } 2) \Rightarrow \text { list }
\end{aligned}
\] \\
\hline
\end{tabular}

Catalogue > 国
\begin{tabular}{lr}
\hline \(\mathrm{nPr}(z, 3)\) & \(z \cdot(z-2) \cdot(z-1)\) \\
\hline\(A n s(z=5\) & 60 \\
\hline \(\mathrm{nPr}(z,-3)\) & \(\frac{1}{(z+1) \cdot(z+2) \cdot(z+3)}\) \\
\hline \(\mathrm{nPr}(z, c)\) & \(\frac{z!}{(z-c)!}\) \\
\hline
\end{tabular}

Ans \(\cdot \operatorname{nPr}(z-c,-c)\)
1
\(\overline{\operatorname{nPr}(\{5,4,3\},\{2,4,2\}) \quad\{20,24,6\}}\)

Returns a list of permutations based on the corresponding element pairs in the two lists．The arguments must be the same size list．

\section*{nPr（Matrix1，Matrix2）\(\Rightarrow\) matrix}

Returns a matrix of permutations based
\(\operatorname{nPr}\left[\left[\begin{array}{ll}6 & 5 \\ 4 & 3\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]\right\} \quad\left[\begin{array}{cc}30 & 20 \\ 12 & 6\end{array}\right]\) on the corresponding element pairs in the two matrices．The arguments must be the same size matrix．
npv（）
npv（InterestRate，CFO，CFList
［，CFFreq］）
Financial function that calculates net present value；the sum of the present values for the cash inflows and outflows． A positive result for npv indicates a profitable investment．

InterestRate is the rate by which to discount the cash flows（the cost of money）over one period．
\(C F 0\) is the initial cash flow at time 0 ；it must be a real number．

CFList is a list of cash flow amounts after the initial cash flow \(C F 0\) ．

CFFreq is a list in which each element specifies the frequency of occurrence for a grouped（consecutive）cash flow amount，which is the corresponding element of CFList．The default is 1 ；if you enter values，they must be positive integers＜10，000．

Catalogue＞国2
list1：\(=\{6000,-8000,2000,-3000\}\)
\begin{tabular}{lr} 
& \(\{6000,-8000,2000,-3000\}\) \\
\hline list \(2:=\{2,2,2,1\}\) & \(\{2,2,2,1\}\) \\
\hline \(\operatorname{npv}(10,5000\), list 1, list 2\()\) & 4769.91
\end{tabular}

Catalogue＞国2
\begin{tabular}{lr}
\hline nSolve \(\left(x^{2}+5 \cdot x-25=9, x\right)\) & 3.84429 \\
\hline nSolve \(\left(x^{2}=4, x=-1\right)\) & -2. \\
\hline nSolve \(\left(x^{2}=4, x=1\right)\) & 2. \\
\hline
\end{tabular}
nSolve（Equation，Var
［＝Guess］，lowBound，upBound）
\(\Rightarrow\) number or error＿string
nSolve（Equation，Var［＝Guess］）｜
lowBound \(\leq\) Var \(\leq\) upBound \(\Rightarrow\) number or error＿string

Iteratively searches for one approximate real numeric solution to Equation for its one variable．Specify the variable as：
variable
－or－
variable \(=\) real number
For example， x is valid and so is \(\mathrm{x}=3\) ．
nSolve（）is often much faster than solve（） or zeroes（），particularly if the＂ \(\mid\)＂ operator is used to constrain the search to a small interval containing exactly one simple solution．
nSolve（）attempts to determine either one point where the residual is zero or two relatively close points where the residual has opposite signs and the magnitude of the residual is not excessive．If it cannot achieve this using a modest number of sample points，it returns the string＂no solution found．＂

Note：See also cSolve（），cZeroes（），solve（） and zeroes（）．

Note：If there are multiple solutions，you can use a guess to help find a particular solution．
\(\begin{array}{ll}\text { nSolve }\left(x^{2}+5 \cdot x-25=9, x\right) \mid x<0 & -8.84429 \\ \text { nSolve } \left.\left(\frac{(1+r)^{24}-1}{r}=26, r\right) \right\rvert\, r>0 \text { and } r<0.25\end{array}\)
0.006886
\(n \operatorname{Solve}\left(x^{2}=-1, x\right) \quad\)＂No solution found＂

\section*{0}

OneVar
OneVar［1，］X［，［Freq］［，Category，Include \(]]\)
OneVar［n，\(] X 1, X 2[X 3[, \ldots[, X 20]]]\)
Calculates 1－variable statistics on up to 20 lists．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension except for Include．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of numeric category codes for the corresponding \(X\) values．

Include is a list of one or more of the category codes． Only those data items whose category code is included in this list are included in the calculation．

An empty（void）element in any of the lists \(X\) ，Freq or Category results in a void for the corresponding element of all those lists．An empty element in any of the lists \(X 1\) through \(X 20\) results in a void for the corresponding element of all those lists．For more information on empty elements，see page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat． \(\bar{x}\) & Mean of \(x\) values \\
\hline stat．\(\Sigma x\) & Sum of \(x\) values \\
\hline stat．\(\Sigma x^{2}\) & Sum of \(x^{2}\) values \\
\hline stat．s \(x\) & Sample standard deviation of \(x\) \\
\hline stat．\(x\) & Population standard deviation of \(x\) \\
\hline stat．n & Number of data points \\
\hline stat．Min \(X\) & Minimum of \(x\) values \\
\hline stat．\(Q_{1} X\) & Median of \(x\) \\
\hline stat．Median \(X\) & 3rd Quartile of \(x\) \\
\hline stat．\(Q_{3} X\) & Maximum of \(x\) values \(x\) \\
\hline stat．MaxX & Sum of squares of deviations from the mean of \(x\) \\
\hline stat．SSX & \\
\hline
\end{tabular}
or
Catalogue＞国
BooleanExprlorBooleanExpr2 returns
\(x \geq 3\) or \(x \geq 4\)
\(x \geq 3\)
Boolean expression
BooleanListlorBooleanList2 returns
Boolean list

\section*{BooleanMatrix1orBooleanMatrix2 returns Boolean matrix}

Returns true or false or a simplified form of the original entry.

Returns true if either or both expressions simplify to true. Returns false only if both expressions evaluate to false.

Note: See xor.
Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.

\section*{Integer 1 or Integer \(2 \Rightarrow\) integer}

Compares two real integers bit-by-bit using an or operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if either bit is 1 ; the result is 0 only if both bits are 0 . The returned value represents the bit results and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see \(>\) Base2, page 17.

Note: See xor.
\begin{tabular}{llr}
\hline Define \(g(x)=\) & Func & Done \\
& If \(x \leq 0\) or \(x \geq 5\) & \\
& Goto end & \\
& Return \(x \cdot 3\) & \\
& Lbl end & \\
& EndFunc & \\
\hline\(g(3)\) & & 9 \\
\hline\(g(0)\) & A function did not return \(a\) value
\end{tabular}

In Hex base mode:
0h7AC36 or 0h3D5F
0h7BD7F

Important: Zero, not the letter O.

In Bin base mode:
0b100101 or 0b100
0b100101

Note: A binary entry can have up to 64 digits (not counting the Ob prefix). A hexadecimal entry can have up to 16 digits.
ord（String）\(\Rightarrow\) integer
\(\operatorname{ord}(\) List 1\() \Rightarrow\) list
Returns the numeric code of the first character in character string String，or a list of the first characters of each list element．

\section*{P}

\section*{\(\mathrm{P} P \mathrm{Rx}()\)}
\begin{tabular}{lr}
\hline ord（＂hello＂） & 104 \\
\hline \(\operatorname{char}(104)\) & ＂h＂ \\
\hline \(\operatorname{ord}(\) char \((24))\) & 24 \\
\hline \(\operatorname{ord}(\{\)＂alpha＂，＂beta＂\(\})\) & \(\{97,98\}\) \\
\hline
\end{tabular}
\(\mathbf{P} \mathbf{R} \mathbf{x}(\) EExpr，, Expr \()=\) expression
\(\mathbf{P} \vee \mathbf{R x}(r\) List，, List \() \Rightarrow\) list
P＞Rx（rMatrix，\(\theta\) Matrix）\(\Rightarrow\) matrix
Returns the equivalent \(x\)－coordinate of the \((r, \theta)\) pair．

Note：The \(\theta\) argument is interpreted as either a degree，gradian or radian angle， according to the current angle mode．If the argument is an expression，you can use \({ }^{\circ}, \mathrm{G}\) or \({ }^{r}\) to override the angle mode setting temporarily．

Note：You can insert this function from the computer keyboard by typing \(\mathrm{P} @>\mathrm{Rx}\) （．．．）．

In Radian angle mode：
\(\frac{\mathrm{P}>\operatorname{Rx}(r, \theta)}{\mathrm{P}>\mathrm{Rx}\left(4,60^{\circ}\right)}\)
\(\mathrm{P}>\mathrm{Rx}\left(\{-3,10,1.3\},\left\{\frac{\pi}{3}, \frac{-\pi}{4}, 0\right\}\right) \cos (\theta) \cdot r\)
\(\left\{\frac{-3}{2}, 5 \cdot \sqrt{2}, 1.3\right\}\)

\section*{P＞Ry（）}

Catalogue＞国运
In Radian angle mode：


Note：You can insert this function from the computer keyboard by typing P＠＞Ry （．．．）．

\section*{PassErr}

Catalogue＞国远

\section*{PassErr}

Passes an error to the next level．
If system variable errCode is zero，PassErr does not do anything．

The Else clause of the Try．．．Else．．．EndTry block should use CIrErr or PassErr．If the error is to be processed or ignored，use ClrErr．If what to do with the error is not known，use PassErr to send it to the next error handler．If there are no more pending Try．．．Else．．．EndTry error handlers，the error dialogue box will be displayed as normal．

Note：See also ClrErr，page 25，and Try，page 193.
Note for entering the example：For instructions on entering multi－line programme and function definitions，refer to the Calculator section of your product guidebook．

For an example of PassErr，See Example 2 under the Try command，page 193.
\begin{tabular}{|c|c|c|}
\hline piecewise（） & \multicolumn{2}{|r|}{Catalogue＞石} \\
\hline \begin{tabular}{l}
piecewise（Expr1［，Cond1［，Expr2［， \\
Cond2［，．．．］］］］）
\end{tabular} & Define \(p(x)=\left\{\begin{array}{lr}x, & x>0 \\ \text { undef，} x \leq 0\end{array}\right.\) & Done \\
\hline Returns definitions for a piecewise & \(p(1)\) & 1 \\
\hline function in the form of a list．You can & \(p(-1)\) & undef \\
\hline
\end{tabular} also create piecewise definitions by using a template．

Note：See also Piecewise template，page
2.
poissCdf（ \(\lambda\) ，lowBound，upBound \() \Rightarrow\) number if lowBound and upBound are numbers，list if lowBound and upBound are lists
poissCdf（ \(\lambda\), upBound \()\) for \(\mathrm{P}(0 \leq \mathrm{X} \leq\) upBound \() \Rightarrow\) number
if upBound is a number，list if upBound is a list
Computes a cumulative probability for the discrete
Poisson distribution with specified mean \(\lambda\) ．
For \(\mathrm{P}(\mathrm{X} \leq\) upBound \()\) ，set lowBound \(=0\)

\section*{poissPdf（）}
poissPdf \((\lambda, X V a l) \Rightarrow\) number if \(X V a l\) is a number，list if
\(X V a l\) is a list
Computes a probability for the discrete Poisson distribution with the specified mean \(\lambda\) ．

\section*{PPolar}

Catalogue＞国至

\section*{Vector Polar}

Note：You can insert this operator from the computer keyboard by typing ＠＞Polar．

Displays vector in polar form \([\mathrm{r} \angle \theta\) ］．The vector must be of dimension 2 and can be a row or a column．

Note：\(>\) Polar is a display－format instruction，not a conversion function． You can use it only at the end of an entry line，and it does not update ans．

Note：See also \(\boldsymbol{\nabla R e c t}\) ，page 147.
complexValue Polar
Displays complexVector in polar form．
－Degree angle mode returns（ \(\mathrm{r} \angle \theta\) ）．
－Radian angle mode returns rei \(\theta\) ．
complexValue can have any complex form．However，an rei \(\theta\) entry causes an error in Degree angle mode．

Note：You must use the parentheses for an（ \(\mathrm{r} \angle \theta\) ）polar entry．

In Radian angle mode：
\begin{tabular}{lr}
\hline\((3+4 \cdot i)>\) Polar & \(e^{i \cdot\left(\frac{\pi}{2}-\tan ^{-1}\left(\frac{3}{4}\right)\right)} \cdot 5\) \\
\(\left(\left(4 \angle \frac{\pi}{3}\right)\right)>\) Polar & \(e^{\frac{i \cdot \pi}{3}} \cdot 4\) \\
\hline
\end{tabular}

In Gradian angle mode：
\[
(4 \cdot i) \text { Polar }
\]

In Degree angle mode：
\((3+4 \cdot i)>\) Polar \(\quad\left(5<90-\tan ^{-1}\left(\frac{3}{4}\right)\right)\)

\section*{polyCoeffs（）}
polyCoeffs（Poly \([\), Var \(]) \Rightarrow\) list
Returns a list of the coefficients of polynomial Poly with respect to variable Var．

Poly must be a polynomial expression in Var．We recommend that you do not omit Var unless Poly is an expression in a single variable．
polyDegree（）
polyDegree（Poly \([\), Var \(]\) ）\(\Rightarrow\) value
Returns the degree of polynomial expression Poly with respect to variable Var．If you omit Var，the polyDegree（） function selects a default from the variables contained in the polynomial Poly．

Poly must be a polynomial expression in Var．We recommend that you do not omit Var unless Poly is an expression in a single variable．

Catalogue＞国
polyCoeffs \(\left(4 \cdot x^{2}-3 \cdot x+2, x\right) \quad\{4,-3,2\}\)
\[
\text { polyCoefis }\left((x-1)^{2} \cdot(x+2)^{3}\right)
\]
\(\{1,4,1,-10,-4,8\}\)
Expands the polynomial and selects \(x\) for the omitted Var．
\begin{tabular}{lr}
\hline polyCoeffs \(\left((x+y+z)^{2}, x\right)\) & \\
& \(\left\{1,2 \cdot(y+z),(y+z)^{2}\right\}\) \\
\hline polyCoeffs \(\left((x+y+z)^{2}, y\right)\) & \\
& \(\left\{1,2 \cdot(x+z),(x+z)^{2}\right\}\) \\
\hline polyCoeffs \(\left((x+y+z)^{2}, z\right)\) & \\
& \(\left\{1,2 \cdot(x+y),(x+y)^{2}\right\}\) \\
\hline
\end{tabular}
\begin{tabular}{lr} 
& Catalogue \(>\) 国 2 \(_{2}\) \\
\hline polyDegree \((5)\) & 0 \\
\hline polyDegree \((\ln (2)+\pi, x)\) & 0 \\
\hline
\end{tabular}

Constant polynomials
\begin{tabular}{ll}
\hline polyDegree \(\left(4 \cdot x^{2}-3 \cdot x+2, x\right)\) & 2 \\
\hline polyDegree \(\left((x-1)^{2} \cdot(x+2)^{3}\right)\) & 5 \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline polyDegree \(\left(\left(x+y^{2}+z^{3}\right)^{2}, x\right)\) & 2 \\
\hline polyDegree \(\left(\left(x+y^{2}+z^{3}\right)^{2}, y\right)\) & 4 \\
\hline
\end{tabular}
polyDegree \(\left((x-1)^{10000}, x\right) \quad 10000\)

The degree can be extracted even though the coefficients cannot．This is because the degree can be extracted without expanding the polynomial．
polyEval（）
polyEval（List1，Expr1）\(\Rightarrow\) expression
polyEval（List1，List2）\(\Rightarrow\) expression
Interprets the first argument as the coefficient of a descending－degree polynomial and returns the polynomial evaluated for the value of the second argument．

Catalogue＞国
\begin{tabular}{lr}
\hline \(\operatorname{polyEval}\{\{a, b, c\}, x\}\) & \(a \cdot x^{2}+b \cdot x+c\) \\
\hline \(\operatorname{polyEval}(\{1,2,3,4\}, 2\}\) & 26 \\
\hline \(\operatorname{polyEval}\{\{1,2,3,4\},\{2,-7\}\}\) & \(\{26,-262\}\)
\end{tabular}
polyGcd（）
polyGcd（Expr1，Expr2）\(\Rightarrow\) expression
Returns highest common factor of the two arguments．

Exprl and Expr2 must be polynomial expressions．

List，matrix and Boolean arguments are not allowed．
\begin{tabular}{lr}
\hline polyGcd \((100,30)\) & 10 \\
\hline \(\operatorname{polyGcd}\left(x^{2}-1, x-1\right)\) & \(x-1\) \\
\hline \(\operatorname{polyGcd}\left(x^{3}-6 \cdot x^{2}+11 \cdot x-6, x^{2}-6 \cdot x+8\right)\) &
\end{tabular}

\section*{polyQuotient（）}
polyQuotient（Poly1，Poly2
\([, V a r]) \Rightarrow\) expression
Returns the quotient of polynomial Poly1 divided by polynomial Poly2 with respect to the specified variable Var．

Poly1 and Poly2 must be polynomial expressions in Var．We recommend that you do not omit Var unless Polyl and Poly2 are expressions in the same single variable．

Catalogue \(>\) 国
\begin{tabular}{lr}
\hline polyQuotient \((x-1, x-3)\) & 1 \\
\hline polyQuotient \(\left(x-1, x^{2}-1\right)\) & 0 \\
\hline polyQuotient \(\left(x^{2}-1, x-1\right)\) & \(x+1\) \\
\hline polyQuotient \(\left(x^{3}-6 \cdot x^{2}+11 \cdot x-6, x^{2}-6 \cdot x+8\right)\)
\end{tabular}
\(x\)
\begin{tabular}{lr}
\hline \begin{tabular}{lr} 
polyQuotient \(((x-y) \cdot(y-z), x+y+z, x)\) & \(y-z\) \\
polyQuotient \(((x-y) \cdot(y-z), x+y+z, y)\) & \\
& \(2 \cdot x-y+2 \cdot z\) \\
\hline polyQuotient \(((x-y) \cdot(y-z), x+y+z, z)\) & \(-(x-y)\)
\end{tabular} \\
\hline
\end{tabular}

\section*{polyRemainder（）}

Catalogue＞国

\section*{polyRemainder（Poly1，Poly2}
\([, V a r]) \Rightarrow\) expression
Returns the remainder of polynomial Polyl divided by polynomial Poly2 with respect to the specified variable Var．

Poly1 and Poly2 must be polynomial expressions in Var．We recommend that you do not omit Var unless Polyl and Poly2 are expressions in the same single variable．
\begin{tabular}{lr}
\hline polyRemainder \((x-1, x-3)\) & 2 \\
\hline polyRemainder \(\left(x-1, x^{2}-1\right)\) & \(x-1\) \\
\hline polyRemainder \(\left(x^{2}-1, x-1\right)\) & 0 \\
\hline
\end{tabular}
polyRemainder \(((x-y) \cdot(y-z), x+y+z, x)\)
\(-(y-z) \cdot(2 \cdot y+z)\)
polyRemainder \((\langle x-y) \cdot(y-z), x+y+z, y)\)
\(-2 \cdot x^{2}-5 \cdot x \cdot z-2 \cdot z^{2}\)
polyRemainder \(((x-y) \cdot(y-z), x+y+z, z)\)
\((x-y) \cdot(x+2 \cdot y)\)

\section*{polyRoots（）}
polyRoots（Poly，Var）\(\Rightarrow\) list
polyRoots（ListOfCoeffs）\(\Rightarrow\) list
The first syntax，polyRoots（Poly，Var）， returns a list of real roots of polynomial Poly with respect to variable Var．If no real roots exist，returns an empty list：\｛ \}.

Poly must be a polynomial in one variable．

The second syntax，polyRoots （ListOfCoeffs），returns a list of real roots for the coefficients in ListOfCoeffs．

Note：See also cPolyRoots（），page 36.

\section*{Catalogue＞国远}

\(\underline{\text { polyRoots }(\{1,2,1\}) \quad\{-1,-1\}}\)

\section*{PowerReg \(X, Y\) [, Freq] [, Category, Include ]]}

Computes the power regressiony \(=\left(\mathrm{a} \cdot(\mathrm{x})^{\mathrm{b}}\right)\) on lists \(X\) and \(Y\) with frequency Freq. A summary of results is stored in the stat.results variable (page 178).

All the lists must have equal dimension except for Include.
\(X\) and \(Y\) are lists of independent and dependent variables.

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point. The default value is 1 . All elements must be integers \(\geq 0\).

Category is a list of category codes for the corresponding \(X\) and \(Y\) data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.RegEqn & Regression equation: a •(x) \({ }^{\text {b }}\) \\
\hline stat.a, stat.b & Regression coefficients \\
\hline stat.r \({ }^{2}\) & Coefficient of linear determination for transformed data \\
\hline stat.r & Correlation coefficient for transformed data (In(x), In(y)) \\
\hline stat.Resid & Residuals associated with the power model \\
\hline stat.ResidTrans & Residuals associated with linear fit of transformed data \\
\hline stat.XReg & \begin{tabular}{l} 
List of data points in the modified X List actually used in the regression \\
based on restrictions of Freq, Category List and Include Categories
\end{tabular} \\
\hline stat.YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression \\
based on restrictions of Freq, Category List and Include Categories
\end{tabular} \\
\hline stat.FreqReg & List of frequencies corresponding to stat.XReg and stat.YReg \\
\hline
\end{tabular}

\section*{Prgm}

Block
EndPrgm
Template for creating a user－defined programme．Must be used with the Define，Define LibPub or Define LibPriv command．

Block can be a single statement，a series of statements separated with the＂：＂ character or a series of statements on separate lines．

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook． See \(\Pi()\) ，page 227.

Product（PI） See П（），page 227.
\begin{tabular}{|c|c|c|}
\hline product（） & \multicolumn{2}{|r|}{Catalogue＞国］} \\
\hline product（List［，Start［， & product（ \(\{1,2,3,4\})\) & 24 \\
\hline End］］）\(\Rightarrow\) expression & \(\operatorname{product}(\{2, x, y\})\) & \(2 \cdot x \cdot y\) \\
\hline Returns the product of the elements & product \((\{4,5,8,9\}, 2,3)\) & 40 \\
\hline
\end{tabular}

Calculate GCD and display intermediate results．
 Stand End are optional．They specify a range of elements．
product(Matrix l[, Start[, End] ]) \(\Rightarrow\) matrix

Returns a row vector containing the products of the elements in the columns of Matrix1. Start and end are optional. They specify a range of rows.

Empty (void) elements are ignored. For more information on empty elements, see page 255 .
propFrac()
propFrac(Exprl[, Var]) \(\Rightarrow\) expression
propFrac(rational_number) returns rational_number as the sum of an integer and a fraction having the same sign and a greater denominator magnitude than numerator magnitude.
propFrac(rational_expression,Var) returns the sum of proper ratios and a polynomial with respect to Var. The degree of Var in the denominator exceeds the degree of \(V a r\) in the numerator in each proper ratio. Similar powers of Var are collected. The terms and their factors are sorted with Var as the main variable.

If Var is omitted, a proper fraction expansion is done with respect to the most main variable. The coefficients of the polynomial part are then made proper with respect to their most main variable first and so on.

For rational expressions, propFrac() is a faster but less extreme alternative to expand().
You can use the propFrac() function to represent mixed fractions and demonstrate addition and subtraction of mixed fractions.
\(\left.\begin{array}{l}\text { product }\left(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\right. \\ \text { product }\left(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], 1,2\right.\end{array}\right] \quad\left[\begin{array}{lll}28 & 80 & 162\end{array}\right]\)
\(\square\)

Catalogue > 国
\begin{tabular}{lr}
\hline \(\operatorname{propFrac}\left(\frac{4}{3}\right)\) & \(1+\frac{1}{3}\) \\
\hline \(\operatorname{propFrac}\left(\frac{-4}{3}\right)\) & \(-1-\frac{1}{3}\) \\
\hline
\end{tabular}
\(\operatorname{propFrac}\left(\frac{x^{2}+x+1}{x+1}+\frac{y^{2}+y+1}{y+1}, x\right)\)
\(\frac{\frac{1}{x+1}+x+\frac{y^{2}+y+1}{y+1}}{\operatorname{propFrac}(A n s)} \frac{1}{x+1}+x+\frac{1}{y+1}+y\),
\begin{tabular}{lr}
\hline \(\operatorname{propFrac}\left(\frac{11}{7}\right)\) & \(1+\frac{4}{7}\) \\
\hline \(\operatorname{propFrac}\left(3+\frac{1}{11}+5+\frac{3}{4}\right)\) & \(8+\frac{37}{44}\) \\
\hline \(\operatorname{propFrac}\left(3+\frac{1}{11}-\left(5+\frac{3}{4}\right)\right)\) & \(-2-\frac{29}{44}\) \\
\hline
\end{tabular}

QR Matrix, qMatrix, rMatrix[, Tol]
Calculates the Householder QR factorization of a real or complex matrix. The resulting Q and R matrices are stored to the specified Matrix. The Q matrix is unitary. The \(R\) matrix is upper triangular.

Optionally, any matrix element is treated as zero if its absolute value is less than Tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tol is ignored.
- If you use ctri enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tol is omitted or not used, the default tolerance is calculated as: 5E-14 •max(dim(Matrix)) •rowNorm (Matrix)

The QR factorization is computed numerically using Householder transformations. The symbolic solution is computed using Gram-Schmidt. The columns in qMatName are the orthonormal basis vectors that span the space defined by matrix.

The floating-point number (9.) in m 1 causes results to be calculated in floating-point form.
\begin{tabular}{l}
\begin{tabular}{lll}
\hline\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 .\end{array}\right] \rightarrow m 1\) & & {\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 .\end{array}\right]\)} \\
\hline QR m1,qm,rm & {\(\left[\begin{array}{lll}0.123091 & 0.904534 & 0.408248 \\
0.492366 & 0.301511 & -0.816497 \\
0.86164 & -0.301511 & 0.408248\end{array}\right]\)} \\
\hline\(r m\) & {\(\left[\begin{array}{ccc}8.12404 & 9.60114 & 11.0782 \\
0 . & 0.904534 & 1.80907 \\
0 . & 0 . & 0 .\end{array}\right]\)} \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Computes the quadratic polynomial regressiony \(=\) a \(\cdot x^{2}+\mathrm{b} \cdot \mathrm{x}+\mathrm{con}\) lists \(X\) and \(Y\) with frequency Freq．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes． Only those data items whose category code is included in this list are included in the calculation．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat．RegEqn & Regression equation： \(\mathrm{a} \cdot \mathrm{x}^{2}+\mathrm{b} \cdot \mathrm{x}+\mathrm{c}\) \\
\hline \begin{tabular}{l} 
stat．a，stat．b， \\
stat．c
\end{tabular} & Regression coefficients \\
\hline stat．R \({ }^{2}\) & Coefficient of determination \\
\hline stat．Resid & Residuals from the regression \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified \(X\) List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression based \\
on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}

\section*{QuartReg}

Catalogue＞国
QuartReg X，\(Y\)［，Freq］［，Category，Include］］

Computes the quartic polynomial regressiony \(=\) \(\mathrm{a} \cdot \mathrm{x}^{4}+\mathrm{b} \cdot \mathrm{x}^{3}+\mathrm{c} \cdot \mathrm{x}^{2}+\mathrm{d} \cdot \mathrm{x}+\mathrm{eon}\) lists \(X\) and \(Y\) with frequency Freq．A summary of results is stored in the stat．results variable（page 178）．

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values．Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point．The default value is 1 ．All elements must be integers \(\geq 0\) ．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes． Only those data items whose category code is included in this list are included in the calculation．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．RegEqn & Regression equation： \(\mathrm{a} \cdot \mathrm{x}^{4}+\mathrm{b} \cdot \mathrm{x}^{3}+\mathrm{c} \cdot \mathrm{x}^{2}+\mathrm{d} \cdot \mathrm{x}+\mathrm{e}\) \\
\hline \begin{tabular}{l} 
stat．a，stat．b， \\
stat．c，stat．d， \\
stat．e
\end{tabular} & Regression coefficients \\
\hline stat．R \({ }^{2}\) & Coefficient of determination \\
\hline stat．Resid & Residuals from the regression \\
\hline stat．XReg & \begin{tabular}{l} 
List of data points in the modified \(X\) List actually used in the regression \\
based on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression \\
based on restrictions of Freq，Category List and Include Categories
\end{tabular} \\
\hline stat．FreqReg & List of frequencies corresponding to stat．XReg and stat．YReg \\
\hline
\end{tabular}

\section*{R}
\(\mathbf{R} \boldsymbol{P} \theta(x\) List,\(y\) List \() \Rightarrow\) list
\(\mathbf{R} \boldsymbol{P} \theta(x\) Matrix, \(y\) Matrix \() \Rightarrow\) matrix
Returns the equivalent \(\theta\)-coordinate of the
\((x, y)\) pair arguments.
Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the computer keyboard by typing R@>Ptheta (...).

\section*{Rad}

Expr \(1>\) Rad \(\Rightarrow\) expression
Converts the argument to radian angle measure.

Note: You can insert this operator from the computer keyboard by typing \(@>\) Rad.
\(\mathbf{R}>\operatorname{Pr}()\)
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Expr,\(y\) Expr \() \Rightarrow\) expression
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) List,\(y\) List \() \Rightarrow\) list
\(\mathbf{R}>\operatorname{Pr}(x\) Matrix, \(y\) Matrix \() \Rightarrow\) matrix
\(\mathbf{R}>\operatorname{Pr}()\)
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Expr,\(y\) Expr \() \Rightarrow\) expression
\(\mathbf{R}>\operatorname{Pr}(x\) List, \(y\) List \() \Rightarrow\) list
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Matrix, \(y\) Matrix \() \Rightarrow\) matrix
Returns the equivalent r -coordinate of
the \((x, y)\) pair arguments.
Note: You can insert this function from
the computer keyboard by typing \(\mathrm{R} @ \mathbf{P r}\)
(...).
\(\mathbf{R}>\operatorname{Pr}()\)
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Expr,\(y\) Expr \() \Rightarrow\) expression
\(\mathbf{R}>\operatorname{Pr}(x\) List, \(y\) List \() \Rightarrow\) list
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Matrix, \(y\) Matrix \() \Rightarrow\) matrix
Returns the equivalent r -coordinate of
the \((x, y)\) pair arguments.
Note: You can insert this function from
the computer keyboard by typing \(\mathrm{R} @ \mathbf{P r}\)
(...).
\(\mathbf{R}>\operatorname{Pr}()\)
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Expr,\(y\) Expr \() \Rightarrow\) expression
\(\mathbf{R}>\operatorname{Pr}(x\) List, \(y\) List \() \Rightarrow\) list
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Matrix, \(y\) Matrix \() \Rightarrow\) matrix
Returns the equivalent r -coordinate of
the \((x, y)\) pair arguments.
Note: You can insert this function from
the computer keyboard by typing \(\mathrm{R} @ \mathbf{P r}\)
(...).
\(\mathbf{R}>\operatorname{Pr}()\)
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Expr,\(y\) Expr \() \Rightarrow\) expression
\(\mathbf{R}>\operatorname{Pr}(x\) List, \(y\) List \() \Rightarrow\) list
\(\mathbf{R} \triangleright \operatorname{Pr}(x\) Matrix, \(y\) Matrix \() \Rightarrow\) matrix
Returns the equivalent r -coordinate of
the \((x, y)\) pair arguments.
Note: You can insert this function from
the computer keyboard by typing \(\mathrm{R} @ \mathbf{P r}\)
(...).

\(\overline{\mathrm{R}} \mathrm{P} \theta(x, y) \quad 90 \cdot \operatorname{sign}(y)-\tan ^{-1}\left(\frac{x}{y}\right)\)

In Gradian angle mode:
\(\mathrm{R} \downarrow \mathrm{P} \theta(x, y) \quad 100 \cdot \operatorname{sign}(y)-\tan ^{-1}\left(\frac{x}{y}\right)\)

In Radian angle mode:
\begin{tabular}{ll}
\(\mathrm{R} \triangleright \mathrm{P} \theta(3,2)\) & \(\tan ^{-1}\left(\frac{2}{3}\right)\) \\
\hline
\end{tabular}
\(R \vee P \theta\left(\left[\begin{array}{lll}3 & -4 & 2\end{array}\right],\left[\begin{array}{lll}0 & \frac{\pi}{4} & 1.5\end{array}\right]\right)\)
\[
\left[\begin{array}{ll}
0 & \tan ^{-1}\left(\frac{16}{\pi}\right)+\frac{\pi}{2} \\
0.643501
\end{array}\right]
\]

In Radian angle mode:
\begin{tabular}{lr}
\hline \(\mathrm{R} \bullet \mathrm{Pr}(3,2)\) & \(\sqrt{13}\) \\
\hline \(\mathrm{R} \bullet \operatorname{Pr}(x, y)\) & \(\sqrt{x^{2}+y^{2}}\) \\
\hline
\end{tabular}
\(\operatorname{R} \bullet\left(\left[\begin{array}{lll}3 & -4 & 2\end{array}\right],\left[\begin{array}{lll}0 & \frac{\pi}{4} & 1.5\end{array}\right]\right)\)
\[
\left[\begin{array}{ll}
3 & \frac{\sqrt{\pi^{2}+256}}{4} \\
2.5
\end{array}\right]
\]
\(\left[\begin{array}{ll}3 & \frac{\sqrt{\pi^{2}+256}}{4} \\ 2.5\end{array}\right]\)

Catalogue > 国
rand（）\(\Rightarrow\) expression
rand（\＃Trials）\(\Rightarrow\) list
rand（）returns a random value between 0 and 1.

Set the random－number seed．
\begin{tabular}{lr}
\hline RandSeed 1147 & Done \\
\hline rand \((2)\) & \(\{0.158206,0.717917\}\) \\
\hline
\end{tabular}
rand（\＃Trials）returns a list containing \＃Trials random values between 0 and 1.
\begin{tabular}{l|lr|}
\hline rand \(\operatorname{Bin}()\) & Catalogue \(>\) 国 2 2 \\
\hline rand \(\operatorname{Bin}(n, p) \Rightarrow\) expression \\
randBin \((n, p, \#\) Trials \() \Rightarrow\) list & \(\operatorname{randBin}(80,0.5)\) & 42 \\
randBin \((n, p)\) returns a random real & randBin \((80,0.5,3)\) & \(\{41,32,39\}\) \\
\hline
\end{tabular}
number from a specified Binomial distribution．
randBin（ \(n, p, \#\) Trials）returns a list containing \＃Trials random real numbers from a specified Binomial distribution．
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{randlnt（）} & \multirow[t]{2}{*}{Catalogue＞国运} \\
\hline randInt （ & randInt \((3,10)\) & 5 & \\
\hline \begin{tabular}{l}
lowBound，upBound） \\
\(\Rightarrow\) expression \\
randInt
\end{tabular} & randInt（ \(3,10,4\) ） & \｛9，7，5，8\} & \\
\hline （lowBound，upBound ，\＃Trials）\(\Rightarrow\) list & & & \\
\hline \multicolumn{4}{|l|}{randInt} \\
\hline lowBound，upBound） returns a random integer within the range specified by lowBound and upBound integer bounds． & & & \\
\hline randlnt & & & \\
\hline （lowBound，upBound ，\＃Trials）returns a & & & \\
\hline list containing & & & \\
\hline \＃Trials random & & & \\
\hline integers within the specified range． & & & \\
\hline
\end{tabular}
randMat（numRows，numColumns）\(\Rightarrow\) matrix

Returns a matrix of integers between－9 and 9 of the specified dimension．

Both arguments must simplify to integers．
\begin{tabular}{l|r}
\hline RandSeed 1147 & \multicolumn{3}{r}{ Done } \\
\hline randMat（3，3） & {\(\left[\begin{array}{ccc}8 & -3 & 6 \\
-2 & 3 & -6 \\
0 & 4 & -6\end{array}\right]\)} \\
\hline
\end{tabular}

Note：The values in this matrix will change each time you press enter．

randNorm（）

Catalogue＞国
randNorm \((\mu, \sigma) \Rightarrow\) expression
randNorm \((\mu, \sigma, \#\) Trials \() \Rightarrow\) list
randNorm \((\mu, \sigma)\) returns a decimal number from the specified normal distribution．It could be any real number but will be heavily concentrated in the interval \([\mu-3 \cdot \sigma, \mu+3 \cdot \sigma\) ］．
randNorm（ \(\mu, \sigma\) ，\＃Trials）returns a list containing \＃Trials decimal numbers from the specified normal distribution．

\section*{randPoly（）}

Catalogue＞国
randPoly（Var，Order）\(\Rightarrow\) expression
Returns a polynomial in Var of the
\begin{tabular}{lr}
\hline RandSeed 1147 & Done \\
\hline randPoly \((x, 5)\) & \(-2 \cdot x^{5}+3 \cdot x^{4}-6 \cdot x^{3}+4 \cdot x-6\)
\end{tabular} specified Order．The coefficients are random integers in the range -9 through 9．The leading coefficient will not be zero．

Order must be 0－99．

\section*{randSamp（） \\ randSamp（List，\＃Trials［，noRepl］）\(\Rightarrow\) list}

Returns a list containing a random sample of \＃Trials trials from List with an option for sample replacement （noRepl＝0），or no sample replacement （noRepl＝1）．The default is with sample replacement．

Catalogue＞国
\begin{tabular}{ll}
\hline Define list \(3=\{1,2,3,4,5\}\) & Done \\
Define list \(4=\) randSamp \((\) list 3,6\()\) & Done
\end{tabular}
list \(4 \quad\{2,3,4,3,1,2\}\)

\section*{RandSeed Number}

If Number \(=0\) ，sets the seeds to the factory defaults for the random－number generator．If Number \(\neq 0\) ，it is used to generate two seeds，which are stored in system variables seed1 and seed2．
\begin{tabular}{lr}
\hline RandSeed 1147 & Done \\
\hline rand () & 0.158206 \\
\hline
\end{tabular}
real（）
real \((\) Exprl \() \Rightarrow\) expression
Returns the real part of the argument．
Note：All undefined variables are treated as real variables．See also imag（），page 90.
real（List1）\(\Rightarrow\) list
Returns the real parts of all elements．
real（Matrixl）\(\Rightarrow\) matrix
Returns the real parts of all elements．
\(\operatorname{real}(\{a+i \cdot b, 3, i\}) \quad\{a, 3,0\}\)
\(\operatorname{real}\left(\left[\begin{array}{cc}a+i \cdot b & 3 \\ c & i\end{array}\right]\right) \quad\left[\begin{array}{ll}a & 3 \\ c & 0\end{array}\right]\)

Catalogue＞国
\(\left(\left[3<\frac{\pi}{4}<\frac{\pi}{6}\right]\right)>\operatorname{Rect}\)
\[
\left[\begin{array}{lll}
\frac{3 \cdot \sqrt{2}}{4} & \frac{3 \cdot \sqrt{2}}{4} & \frac{3 \cdot \sqrt{3}}{2}
\end{array}\right]
\]
\(\left[\begin{array}{lll}a & \angle b & \angle c\end{array}\right]\)
\([a \cdot \cos (b) \cdot \sin (c) \quad a \cdot \sin (b) \cdot \sin (c) \quad a \cdot \cos (c)]\)

In Radian angle mode：

Displays complexValue in rectangular form a+bi. The complexValue can have any complex form. However, an rei \({ }^{i \theta}\) entry causes an error in Degree angle mode.

Note: You must use parentheses for an ( \(\mathrm{r} \angle \theta\) ) polar entry.
\(\operatorname{ref}(\) Matrix1[, Tol]) \(\Rightarrow\) matrix
Returns the row echelon form of Matrixl.

Optionally, any matrix element is treated as zero if its absolute value is less than Tol. This tolerance is used only if the matrix has floating-point entries and does not contain any symbolic variables that have not been assigned a value. Otherwise, Tol is ignored.
- If you use ctri enter or set the Auto or Approximate mode to Approximate, computations are done using floatingpoint arithmetic.
- If Tol is omitted or not used, the default tolerance is calculated as: 5E-14 •max(dim(Matrix1)) •rowNorm (Matrixl)

Avoid undefined elements in Matrixl. They can lead to unexpected results.

For example, if \(a\) is undefined in the following expression, a warning message appears and the result is shown as:


In Gradian angle mode:
\(\square\)

In Degree angle mode:
\(((4 \angle 60))>\) Rect \(\quad 2+2 \cdot \sqrt{3} \cdot i\)

Note: To type \(\angle\), select it from the symbol list in the Catalogue.
\(\operatorname{ref}\left\{\left[\begin{array}{lll}a & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right\} \quad\left[\begin{array}{ccc}1 & \frac{1}{a} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\)

The warning appears because the generalized element \(1 / a\) would not be valid for \(a=0\).

You can avoid this by storing a value to \(a\) beforehand or by using the constraint ("|") operator to substitute a value, as shown in the following example.
\(\left.\operatorname{ref}\left(\left[\begin{array}{lll}a & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\right) \right\rvert\, a=0 \quad\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\)

Note: See also rref(), page 158.

\section*{RefreshProbeVars}

\section*{Catalogue > 国}

\section*{RefreshProbeVars}

Allows you to access sensor data from all connected sensor probes in your TIBasic program.
\begin{tabular}{|c|c|}
\hline StatusVar Value & Status \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { statusVar } \\
& =0
\end{aligned}
\]} & Normal (continue with th program) \\
\hline & The Vernier DataQuest \({ }^{\text {TM }}\) application is in data collection mode. \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { statusVar } \\
& =1
\end{aligned}
\]} & Note: The Vernier \\
\hline & DataQuest \({ }^{\text {TM }}\) application be in meter mode for th \\
\hline & command to work. \\
\hline
\end{tabular}
statusVar The Vernier DataQuest \({ }^{\text {TM }}\)
\(=2\) application is not launched.
statusVar The Vernier DataQuest \({ }^{\text {™ }}\)
=3 application is launched, but

\section*{Example}
```

Define temp()=
Prgm
© Check if system is ready
RefreshProbeVars status
If status=0 Then
Disp "ready"
For n,1,50
RefreshProbeVars status
temperature:=meter.temperature
Disp "Temperature: ",temperature
If temperature>30 Then
Disp "Too hot"
EndIf

```

\section*{StatusVar Value}

\section*{Status}
you have not connected any probes．
```

© Wait for 1 second between
samples
Wait 1
EndFor
Else
Disp "Not ready. Try again
later"
EndIf
EndPrgm
© Wait for 1 second between samples
Wait 1
EndFor
Else
Disp＂Not ready．Try again
later＂
EndIf
EndPrgm

```

Note：This can also be used with TI－ Innovator \({ }^{\text {TM }} \mathrm{Hub}\) ．
\begin{tabular}{|c|c|c|}
\hline remain（） & \multicolumn{2}{|r|}{Catalogue＞国运} \\
\hline remain（Expr 1，Expr 2 ）\(\Rightarrow\) expression & remain（ 7,0 ） & 7 \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { remain(List } 1, \text { List } 2) \Rightarrow \text { list } \\
& \text { remain(Matrix1, Matrix } 2) \Rightarrow \text { matrix }
\end{aligned}
\]} & remain \((7,3)\) & 1 \\
\hline & remain（ \((-7,3)\) & －1 \\
\hline & remain \((7,-3)\) & 1 \\
\hline \multirow[t]{2}{*}{Returns the remainder of the first argument with respect to the second argument as defined by the identities：} & remain \((-7,-3)\) & 1 \\
\hline & \(\operatorname{remain}(\{12,-14,16\},\{9,7,-5\})\) & \(\{3,0,1\}\) \\
\hline \multicolumn{3}{|l|}{\[
\begin{array}{ll}
\text { remain }(x, 0) & x \\
\text { remain }(x, y) & x-y \cdot i \operatorname{Part}(x / y)
\end{array}
\]} \\
\hline As a consequence，note that remain （ \(-\mathrm{x}, \mathrm{y}\) ）－remain \((\mathrm{x}, \mathrm{y})\) ．The result is either zero or it has the same sign as the first & \(\overline{\operatorname{remain}}\left(\left[\begin{array}{cc}9 & -7 \\ 6 & 4\end{array}\right],\left[\begin{array}{cc}4 & 3 \\ 4 & -3\end{array}\right]\right)\) & \(\left[\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right]\) \\
\hline
\end{tabular}

Request

\section*{Catalogue＞国}

Request promptString，var［，DispFlag
［，statusVar］］
Request promptString，func（argl， ．．．argn）［，DispFlag［，statusVar］］

Returns the remainder of the first argument with respect to the second argument as defined by the identities：
remain \((x, 0) \quad x\)
remain（ \(x, y\) ）\(\quad x-y-i P a r t(x / y)\)
As a consequence，note that remain zero or it has the same sign as the first argument．

Note：See also mod（），page 116.

Define a program：
Define request＿demo（ ）＝Prgm
Request＂Radius：＂，r
Disp＂Area＝＂，pi＊r²
EndPrgm

Programming command: Pauses the program and displays a dialog box containing the message promptString and an input box for the user's response.

When the user types a response and clicks OK, the contents of the input box are assigned to variable var.

If the user clicks Cancel, the program proceeds without accepting any input. The program uses the previous value of var if var was already defined.

The optional DispFlag argument can be any expression.
- If DispFlag is omitted or evaluates to 1, the prompt message and user's response are displayed in the Calculator history.
- If DispFlag evaluates to \(\mathbf{0}\), the prompt and response are not displayed in the history.

The optional statusVar argument gives the program a way to determine how the user dismissed the dialog box. Note that statusVar requires the DispFlag argument.
- If the user clicked OK or pressed Enter or Ctrl+Enter, variable statusVar is set to a value of 1 .
- Otherwise, variable statusVar is set to a value of \(\mathbf{0}\).

The func() argument allows a program to store the user's response as a function definition. This syntax operates as if the user executed the command:

Define func(arg1, ...argn) = user's response

Run the program and type a response:
request_demo()


Result after selecting OK:
Radius: 6/2
Area \(=28.2743\)

Define a program:
```

Define polynomial()=Prgm
Request "Enter a polynomial in
x:",p(x)
Disp "Real roots are:",polyRoots(p
(x),x)
EndPrgm

```

Run the program and type a response:
polynomial()


Result after entering \(x^{\wedge} 3+3 x+1\) and selecting OK:

Real roots are: \{-0.322185\}

The program can then use the defined function func（）．The promptString should guide the user to enter an appropriate user＇s response that completes the function definition．

Note：You can use the Request command within a user－defined program but not within a function．

To stop a program that contains a Request command inside an infinite loop：
－Handheld：Hold down the 선 on key and press enter repeatedly．
－Windows \({ }^{\circledR}\) ：Hold down the \(\mathbf{F 1 2}\) key and press Enter repeatedly．
－Macintosh \({ }^{\circledR}\) ：Hold down the F5 key and press Enter repeatedly．
－iPad \({ }^{\circledR}\) ：The app displays a prompt．You can continue waiting or cancel．

Note：See also RequestStr，page 152.

\section*{RequestStr}

RequestStr promptString，var［， DispFlag］

Programming command：Operates identically to the first syntax of the Request command，except that the user＇s response is always interpreted as a string．By contrast，the Request command interprets the response as an expression unless the user encloses it in quotation marks（＂＂）．

Note：You can use the RequestStr command within a user－defined program but not within a function．

To stop a program that contains a RequestStr command inside an infinite loop：
－Handheld：Hold down the \(\left\{\begin{aligned} \text { on key }\end{aligned}\right.\)

\section*{Catalogue＞国}

Define a program：
```

Define requestStr_demo()=Prgm
RequestStr "Your name:",name,0
Disp "Response has ",dim(name),"
characters."
EndPrgm

```

Run the program and type a response：
requestStr_demo()

and press enter repeatedly．
－Windows®：Hold down the F12 key and press Enter repeatedly．
－Macintosh \({ }^{\text {® }}\) ：Hold down the F5 key and press Enter repeatedly．
－iPad \({ }^{\oplus}\) ：The app displays a prompt．You can continue waiting or cancel．

Note：See also Request，page 150.

Result after selecting OK（Note that the DispFlag argument of \(\mathbf{0}\) omits the prompt and response from the history）：
```

requestStr_demo()

```

Response has 5 characters．

\section*{Return}

Catalogue＞国运
Define factorial \((n n)=\)
Func
Local answer，counter
\(1 \rightarrow\) answer
For counter， \(1, n n\)
answer counter \(\rightarrow\) answer
EndFor
Return answer
EndFunc
factorial (3) instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．
right（）
\(\operatorname{right}(\) List \(1[, N u m]) \Rightarrow\) list
Returns the rightmost Num elements contained in List1．

If you omit Num，returns all of List1．
right（sourceString［，Num］）\(\Rightarrow\) string
Returns the rightmost Num characters contained in character string sourceString．

If you omit Num，returns all of sourceString．
right（Comparison）\(\Rightarrow\) expression
Returns the right side of an equation or inequality．

Catalogue＞国
\(\overline{\operatorname{right}(\{1,3,-2,4\}, 3\} \quad\{3,-2,4\}}\)

\footnotetext{
\(\overline{\operatorname{right}(x<3)}\) 3
}
rk23(Expr, Var, depVar, \{Var0,
VarMax\}, depVar0, VarStep [, diftol])
\(\Rightarrow\) matrix
rk23(SystemOfExpr, Var, ListOfDepVars, \{Var0, VarMax\}, ListOfDepVars0, VarStep[, diftol]) \(\Rightarrow\) matrix
rk23(ListOfExpr, Var, ListOfDepVars, \{Var0, VarMax\}, ListOfDepVars0, \(\operatorname{VarStep}[\), diftol] \() \Rightarrow\) matrix

Uses the Runge-Kutta method to solve the system
\(\frac{d \text { depVar }}{d V a r}=\operatorname{Expr}(\) Var, depVar \()\)
with \(\operatorname{dep} \operatorname{Var}(\operatorname{Var} 0)=d e p \operatorname{Var} 0\) on the interval [Var0,VarMax]. Returns a matrix whose first row defines the Var output values as defined by VarStep. The second row defines the value of the first solution component at the corresponding Var values, and so on.

Expr is the right hand side that defines the ordinary differential equation (ODE).

SystemOfExpr is a system of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

ListOfExpr is a list of right-hand sides that define the system of ODEs (corresponds to order of dependent variables in ListOfDepVars).

Var is the independent variable.
ListOfDepVars is a list of dependent variables.
\{Var0, VarMax\} is a two-element list that tells the function to integrate from Var0 to VarMax.

ListOfDepVars0 is a list of initial values for dependent variables.

Differential equation:
\(\frac{y^{\prime}=0.001^{*} y^{*}(100-y) \text { and } y(0)=10}{\text { rk23( } 0.001 \cdot y \cdot(100-y), t, y,\{0,100\}, 10,1\}}\)
\(\left[\begin{array}{ccccr}0 . & 1 . & 2 . & 3 . & 4 \\ 10 . & 10.9367 & 11.9493 & 13.042 & 14.2\end{array}\right.\)

To see the entire result, press - and then use 4 and to move the cursor.

Same equation with diftol set to 1.E-6
rk23 \(\left(0.001 \cdot y \cdot(100-y), t y,\{0,100\}, 10,1,1 . \mathbf{E}^{-6}\right)\)
\(\left[\begin{array}{ccccc}0 . & 1 . & 2 . & 3 . & 4 . \\ 10 . & 10.9367 & 11.9495 & 13.0423 & 14.2189\end{array}\right.\),

Compare above result with CAS exact solution obtained using deSolve() and seqGen():
\begin{tabular}{r} 
deSolve \(\left(y^{\prime}=0.001 \cdot y \cdot(100-y)\right.\) and \(\left.y(0)=10, t y\right)\) \\
\(y=\frac{100 \cdot(1.10517)^{t}}{(1.10517)^{\prime}+9 .}\) \\
\(\operatorname{seqGen}\left(\frac{100 \cdot(1.10517)^{t}}{(1.10517)^{t}+9 .}, t y,\{0,100\}\right)\) \\
\(\{10 ., 10.9367,11.9494,13.0423,14.2189,15.4\) !
\end{tabular}

System of equations:
\(\left\{\begin{array}{l}y 1^{\prime}=-y 1+0.1 \cdot y 1 \cdot y 2 \\ y 2=3 \cdot y 2-y 1 \cdot y 2\end{array}\right.\)
with \(y l(0)=2\) and \(y 2(0)=5\)
\(\operatorname{rk} 23\left(\left\{\begin{array}{l}-y 1+0.1 \cdot y 1 \cdot y 2 \\ 3 \cdot y 2-y 1 \cdot y 2\end{array}, t,\{y 1, y 2\},\{0,5\},\{2,5\}, 1\right\}\right.\)
\(\left[\begin{array}{ccccc}0 . & 1 . & 2 . & 3 . & 4 . \\ 2 . & 1.94103 & 4.78694 & 3.25253 & 1.82848 \\ 5 . & 16.8311 & 12.3133 & 3.51112 & 6.27245\end{array}\right.\),

If VarStep evaluates to a nonzero number: \(\operatorname{sign}(\) VarStep \()=\operatorname{sign}(\) VarMax\(\operatorname{Var} 0)\) and solutions are returned at Var \(0+\mathrm{i}^{*}\) VarStep for all \(\mathrm{i}=0,1,2, \ldots\) such that Var0+i*VarStep is in [var0,VarMax] (may not get a solution value at VarMax).
if VarStep evaluates to zero, solutions are returned at the "Runge-Kutta" Var values.
diftol is the error tolerance (defaults to 0.001 ).


Note: See also Nth root template, page 2.
rotate()
rotate(Integerl[,\#ofRotations]) \(\Rightarrow\)
integer
Rotates the bits in a binary integer. You can enter Integerl in any number base; it is converted automatically to a signed, 64bit binary form. If the magnitude of Integerl is too large for this form, a symmetric modulo operation brings it within the range. For more information, see Base2, page 17.

If \#ofRotations is positive, the rotation is to the left. If \#ofRotations is negative, the rotation is to the right. The default is -1 (rotate right one bit).

Catalogue > 国
In Bin base mode:
\(\begin{array}{r}\hline \text { rotate }(0 \mathrm{~b} 111111111111111111111111111111) \\ \text { Ob100000000000000000000000000000000011)} \\ \hline \text { rotate }(256,1) \quad 0 b 1000000000\end{array}\)
To see the entire result, press \(\Delta\) and then use \(\boldsymbol{4}\) and to move the cursor.

In Hex base mode:

For example, in a right rotation:

Each bit rotates right.
Ob00000000000001111010110000110101
Rightmost bit rotates to leftmost.
produces:
Ob100000000000000111101011000011010
The result is displayed according to the Base mode.
rotate(List1[,\#ofRotations]) \(\Rightarrow\) list
Returns a copy of Listl rotated right or left by \#of Rotations elements. Does not alter List1.

If \#ofRotations is positive, the rotation is to the left. If \#of Rotations is negative, the rotation is to the right. The default is -1 (rotate right one element).
rotate(String1[,\#ofRotations]) \(\Rightarrow\) string
Returns a copy of Stringl rotated right or left by \#ofRotations characters. Does not alter String1.

If \#ofRotations is positive, the rotation is to the left. If \#ofRotations is negative, the rotation is to the right. The default is -1 (rotate right one character).
rotate (0h78E) 0h3C7
rotate(0h78E,-2) 0h80000000000001E3
rotate \((0 h 78 \mathrm{E}, 2) \quad 0 \mathrm{~h} 1 \mathrm{E} 38\)
Important: To enter a binary or hexadecimal number, always use the Ob or Oh prefix (zero, not the letter O).

In Dec base mode:
\begin{tabular}{ll}
\hline \(\operatorname{rotate}(\{1,2,3,4\})\) & \(\{4,1,2,3\}\) \\
\hline \(\operatorname{rotate}(\{1,2,3,4\},-2\}\) & \(\{3,4,1,2\}\) \\
\hline \(\operatorname{rotate}(\{1,2,3,4\}, 1)\) & \(\{2,3,4,1\}\) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\hline rotate("abcd") & "dabc" \\
\hline rotate("abcd",-2) & "cdab" \\
\hline rotate("abcd",1) & "bcda" \\
\hline
\end{tabular}
round()

Catalogue > 国
round( \(1.234567,3\) )
1.235

Returns the argument rounded to the specified number of digits after the decimal point.
digits must be an integer in the range \(0-\) 12. If digits is not included, returns the argument rounded to 12 significant digits.

Note：Display digits mode may affect how this is displayed．
round（List \(1[\) ，digits］\() \Rightarrow\) list
Returns a list of the elements rounded to the specified number of digits．
round（Matrixl \([\) ，digits］）\(\Rightarrow\) matrix
Returns a matrix of the elements \(\operatorname{round}(\{\pi, \sqrt{2}, \ln (2)\}, 4\}\)
\(\{3.1416,1.4142,0.6931\}\)
\(\operatorname{round}\left(\left[\begin{array}{cc}\ln (5) & \ln (3) \\ \pi & e^{1}\end{array}\right], 1\right) \quad\left[\begin{array}{ll}1.6 & 1.1 \\ 3.1 & 2.7\end{array}\right]\) rounded to the specified number of digits．

\section*{rowAdd（）}
rowAdd（Matrix1，rIndex 1，rIndex2）\(\Rightarrow\) matrix

Returns a copy of Matrixl with row rIndex2 replaced by the sum of rows Catalogue＞［1］
\(\left.\begin{array}{ll}\hline \text { rowAdd }\left(\left[\begin{array}{cc}3 & 4 \\ -3 & -2\end{array}\right], 1,2\right. \\ \text { rowAdd } & \left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], 1,2\right. \\ \hline & 4 \\ 0 & 2\end{array}\right] \quad\left[\begin{array}{cc}a & b \\ a+c & b+d\end{array}\right]\) rIndex 1 and rIndex2．
\begin{tabular}{|c|c|c|}
\hline rowDim（） & \multicolumn{2}{|r|}{Catalogue＞国运} \\
\hline rowDim（Matrix）\(\Rightarrow\) expression
Returns the number of rows in Matrix． & \(\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right] \rightarrow m 1\) & \(\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]\) \\
\hline Note：See also colDim（），page 26. & rowDim \((m 1)\) & 3 \\
\hline
\end{tabular}
rowNorm（）
rowNorm（Matrix）\(\Rightarrow\) expression
Returns the maximum of the sums of the absolute values of the elements in the
rowNorm \(\left(\left[\begin{array}{ccc}-5 & 6 & -7 \\ 3 & 4 & 9 \\ 9 & -9 & -7\end{array}\right]\right) \quad 25\) rows in Matrix．

Note：All matrix elements must simplify to numbers．See also colNorm（），page 26.
rowSwap（Matrix1，rIndex1，rIndex2）
\(\Rightarrow\) matrix
Returns Matrixl with rows rIndexl and rIndex2 exchanged．
\begin{tabular}{ll}
{\(\left[\begin{array}{ll}1 & 2 \\
3 & 4 \\
5 & 6\end{array}\right] \rightarrow\) mat } & {\(\left[\begin{array}{ll}1 & 2 \\
3 & 4 \\
5 & 6\end{array}\right]\)} \\
\hline rowSwap \((\) mat \(, 1,3)\) & {\(\left[\begin{array}{ll}5 & 6 \\
3 & 4 \\
1 & 2\end{array}\right]\)}
\end{tabular}
rref（）
\(\operatorname{rref}(\) Matrixl \([\), Tol \(]) \Rightarrow\) matrix
Returns the reduced row echelon form
of Matrixl．

Optionally，any matrix element is treated as zero if its absolute value is less than Tol．This tolerance is used only if the matrix has floating－point entries and does not contain any symbolic variables that have not been assigned a value． Otherwise，Tol is ignored．
－If you use atrl enter or set the Auto or Approximate mode to Approximate， computations are done using floating－ point arithmetic．
－If Tol is omitted or not used，the default tolerance is calculated as： 5E－14 •max（dim（Matrixl））•rowNorm （Matrixl）

Note：See also ref（），page 148.

\section*{\(S\)}
\(\sec ()\)
\(\mathbf{s e c}(\) Expr 1\() \Rightarrow\) expression
\(\mathbf{s e c}(\) List 1\() \Rightarrow\) list
Returns the secant of Exprl or returns a list containing the secants of all elements in List1．

\section*{Catalogue＞国}


Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode setting. You can use \({ }^{\circ}\), G , or r to override the angle mode temporarily.
sec-1()
sec-1(Exprl) \(\Rightarrow\) expression
sec-1(Listl) \(\Rightarrow\) list
Returns the angle whose secant is Exprl or returns a list containing the inverse secants of each element of Listl.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arcsec (...).

In Degree angle mode:
\[
\begin{array}{|ll|}
\hline \sec ^{-1}(1) & 0
\end{array}
\]

In Gradian angle mode:
\[
\sec ^{-1}(\sqrt{2}) \quad 50
\]

In Radian angle mode:
\[
\sec ^{-1}(\{1,2,5\}) \quad\left\{0, \frac{\pi}{3}, \cos ^{-1}\left(\frac{1}{5}\right)\right\}
\]

\section*{\(\operatorname{sech}()\)}
\(\operatorname{sech}(\) Expr 1\() \Rightarrow\) expression
\(\operatorname{sech}(\) List 1\() \Rightarrow\) list
Returns the hyperbolic secant of Exprl or returns a list containing the hyperbolic secants of the Listl elements.

Catalogue > 国
\begin{tabular}{ll}
\hline \(\operatorname{sech}(3)\) & \(\frac{1}{\cosh (3)}\) \\
\hline
\end{tabular}
\(\operatorname{sech}(\{1,2.3,4\})\)
\[
\left\{\frac{1}{\cosh (1)}, 0.198522, \frac{1}{\cosh (4)}\right\}
\]
sech-1()
Catalogue > 国
sech -1 (Expr 1\() \Rightarrow\) expression
sech-1(Listl) \(\Rightarrow\) list
Returns the inverse hyperbolic secant of Exprl or returns a list containing the inverse hyperbolic secants of each element of List1.

Note: You can insert this function from the keyboard by typing arcsech (...).

In Radian angle and Rectangular complex mode:
\[
\begin{array}{ll}
\hline \operatorname{sech}^{-1}(1) & 0 \\
\hline \operatorname{sech}^{-1}(\{1,-2,2.1\}) & \left\{0, \frac{2 \cdot \pi}{3} \cdot i, 8 \cdot \mathrm{E}^{-1} 15+1.07448 \cdot i\right\} \\
\hline
\end{array}
\]

Send exprOrString1[, exprOrString2] ...
Programming command: Sends one or more TI-Innovator \({ }^{\text {TM }}\) Hub commands to a connected hub.
exprOrString must be a valid TIInnovator \({ }^{\text {TM }}\) Hub Command. Typically, exprOrString contains a "SET ..." command to control a device or a "READ ..." command to request data.

The arguments are sent to the hub in succession.

Note: You can use the Send command within a user-defined programme but not within a function.

Note: See also Get (page 79), GetStr (page 85), and eval() (page 63).

Example: Turn on the blue element of the built-in RGB LED for 0.5 seconds.
```

Send "SET COLOR.BLUE ON TIME .5"
Done

```

Example: Request the current value of the hub's built-in light-level sensor. A Get command retrieves the value and assigns it to variable lightval.
\begin{tabular}{|lr|}
\hline Send "READ BRIGHTNESS" & Done \\
\hline Get lightval & Done \\
lightval & 0.347922 \\
\hline
\end{tabular}

Example: Send a calculated frequency to the hub's built-in speaker. Use special variable iostr.SendAns to show the hub command with the expression evaluated.
\begin{tabular}{|lr|}
\hline\(n:=50\) & 50 \\
\(m:=4\) & 4 \\
Send "SET SOUND eval(m•n)" & Done \\
iostr.SendAns & "SET SOUND 200" \\
\hline
\end{tabular}

\section*{seq()}
seq(Expr, Var, Low, High[, Step]) \(\Rightarrow\) list

Increments Var from Low through High by an increment of Step, evaluates Expr, and returns the results as a list. The original contents of Var are still there after seq() is completed.

The default value for Step \(=1\).

Catalogue > 国
\begin{tabular}{lr}
\hline \(\operatorname{seq}\left(n^{2}, n, 1,6\right)\) & \(\{1,4,9,16,25,36\}\) \\
\hline \(\operatorname{seq}\left(\frac{1}{n}, n, 1,10,2\right)\) & \(\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}\right\}\) \\
\hline \(\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{n^{2}}, n, 1,10,1\right)\right)\) & \(\frac{1968329}{1270080}\)
\end{tabular}

Note: To force an approximate result,
Handheld: Press atrl enter.
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\ominus}\) : Press \(\mathscr{H}^{+}+\)Enter.
iPad \({ }^{\star}\) : Hold enter, and select \(\approx\).
\(\operatorname{sum}\left(\operatorname{seq}\left(\frac{1}{n^{2}}, n, 1,10,1\right)\right) \quad 1.54977\)
seqGen（Expr，Var，depVar，\｛Var0， VarMax\}[, ListOfInitTerms
［，VarStep［，CeilingValue］］］）\(\Rightarrow\) list
Generates a list of terms for sequence dep \(\operatorname{Var}(\operatorname{Var})=E x p r\) as follows： Increments independent variable Var from Var0 through VarMax by VarStep， evaluates depVar（Var）for corresponding values of Var using the Expr formula and ListOfInitTerms，and returns the results as a list．
seqGen（ListOrSystemOfExpr，Var， ListOfDepVars，\｛Var0，VarMax\} [ ，MatrixOfInitTerms［，VarStep［， CeilingValue］］］）\(\Rightarrow\) matrix

Generates a matrix of terms for a system （or list）of sequences ListOfDepVars （Var）＝ListOrSystemOfExpr as follows： Increments independent variable Var from Var0 through VarMax by VarStep， evaluates ListOfDepVars（Var）for corresponding values of Var using ListOrSystemOfExpr formula and MatrixOfInitTerms，and returns the results as a matrix．

The original contents of Var are unchanged after seqGen（）is completed．

The default value for VarStep \(=\mathbf{1}\) ．

Generate the first 5 terms of the sequence \(u\)
\((n)=u(n-1)^{2} / 2\) ，with \(u(1)=\mathbf{2}\) and VarStep \(=\mathbf{1}\) ．
\(\operatorname{seqGen}\left(\frac{(u(n-1))^{2}}{n}, n, u,\{1,5\},\{2\}\right)\)
\[
\left\{2,2, \frac{4}{3}, \frac{4}{9}, \frac{16}{405}\right\}
\]

Example in which Var0＝2：
\[
\begin{array}{r}
\operatorname{seqGen}\left(\frac{u(n-1)+1}{n}, n, u,\{2,5\},\{3\}\right) \\
\left\{3, \frac{4}{3}, \frac{7}{12}, \frac{19}{60}\right\}
\end{array}
\]

Example in which initial term is symbolic：
\[
\begin{array}{r}
\operatorname{seqGen}\{u(n-1\}+2, n, u,\{1,5\},\{a\}\} \\
\{a, a+2, a+4, a+6, a+8\} \\
\hline
\end{array}
\]

System of two sequences：
\begin{tabular}{|c|c|c|}
\hline seqGen & \[
\left\{\left\{\frac{1}{n}, \frac{u(n-1)}{2}+u l(n-1)\right\}\right.
\] & ，, ，\(\left.\{u 1, u 2\},\{1,5\}\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}\) \\
\hline & & \(\left[\begin{array}{ccccc}1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ 2 & 2 & \frac{3}{2} & \frac{13}{13} & \frac{19}{24}\end{array}\right]\) \\
\hline
\end{tabular}

Note：The Void（＿）in the initial term matrix above is used to indicate that the initial term for \(u 1(n)\) is calculated using the explicit sequence formula \(u 1(n)=1 / n\) ．
seqn（）
seqn（Expr（ \(u, n[\) ，ListOfInitTerms \([\) ， \(n M a x[\), CeilingValue］］］）\(\Rightarrow\) list

\section*{Catalogue＞国}

Generate the first 6 terms of the sequence \(u\) \((n)=u(n-1) / 2\) ，with \(u(1)=\mathbf{2}\) ．
\[
\begin{aligned}
& \operatorname{seqn}\left(\frac{u(n-1)}{n},\{2\}, 6\right) \\
&\left\{2,1, \frac{1}{3}, \frac{1}{12}, \frac{1}{60}, \frac{1}{360}\right\}
\end{aligned}
\]

Generates a list of terms for a sequence \(u(n)=\operatorname{Expr}(u, n)\) as follows: Increments \(n\) from 1 through \(n M a x\) by 1 , evaluates \(u\) \((n)\) for corresponding values of \(n\) using the \(\operatorname{Expr}(u, n)\) formula and ListOfInitTerms, and returns the results as a list.
\(\operatorname{seqn}(\operatorname{Expr}(n[, n M a x[\), CeilingValue \(]])\)
\(\Rightarrow\) list
Generates a list of terms for a nonrecursive sequence \(u(n)=\operatorname{Expr}(n)\) as follows: Increments \(n\) from 1 through \(n M a x\) by 1 , evaluates \(u(n)\) for corresponding values of \(n\) using the Expr ( \(n\) ) formula, and returns the results as a list.

If \(n M a x\) is missing, \(n M a x\) is set to 2500
If \(n\) Max \(=0, n\) Max is set to 2500
Note: seqn() calls seqGen( ) with \(n 0=1\) and \(n\) step \(=1\)
\(\operatorname{seqn}\left(\frac{1}{n^{2}}, 6\right) \quad\left\{1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \frac{1}{25}, \frac{1}{36}\right\}\)

Point defaults to 0 . Point can be \(\infty\) or \(-\infty\), in which cases the expansion is through degree Order in \(1 /(\) Var Point).
series(...) returns "series(...)" if it is unable to determine such a representation, such as for essential singularities such as \(\sin (1 / z)\) at \(z=0, e-1 / z\) at \(\mathrm{z}=0\), or \(\mathrm{e}^{\mathrm{z}}\) at \(\mathrm{z}=\infty\) or \(-\infty\).

If the series or one of its derivatives has a jump discontinuity at Point, the result is likely to contain sub-expressions of the form \(\operatorname{sign}(\ldots\) ) or abs(...) for a real expansion variable or ( -1 ) floor(...angle(......) for a complex expansion variable, which is one ending with "_". If you intend to use the series only for values on one side of Point, then append the appropriate one of "| Var > Point", "| Var < Point", "| "Var \(\geq\) Point", or "Var \(\leq\) Point" to obtain a simpler result.
series() can provide symbolic approximations to indefinite integrals and definite integrals for which symbolic solutions otherwise can't be obtained.
series() distributes over 1st-argument lists and matrices.
series() is a generalized version of taylor ().

As illustrated by the last example to the right, the display routines downstream of the result produced by series(...) might rearrange terms so that the dominant term is not the leftmost one.

Note: See also dominantTerm(), page 56.

\section*{setMode()}

\section*{Catalogue > 国}
setMode(modeNameInteger, settingInteger) \(\Rightarrow\) integer
setMode(list) \(\Rightarrow\) integer list
Valid only within a function or program.
```

series ((1+\mp@subsup{\boldsymbol{e}}{}{x}\mp@subsup{)}{}{2},x,2,1)
(e+1)}\mp@subsup{)}{}{2}+2\cdot\mathbf{e}\cdot(\mathbf{e}+1)\cdot(x-1)+\mathbf{e}\cdot(2\cdote+1)\cdot(x-1)\mp@subsup{)}{}{2

```
setMode(modeNameInteger, settingInteger) temporarily sets mode modeNameInteger to the new setting settingInteger, and returns an integer corresponding to the original setting of that mode. The change is limited to the duration of the program/function's execution.
modeNameInteger specifies which mode you want to set. It must be one of the mode integers from the table below.
settingInteger specifies the new setting for the mode. It must be one of the setting integers listed below for the specific mode you are setting.
setMode(list) lets you change multiple settings. list contains pairs of mode integers and setting integers. setMode (list) returns a similar list whose integer pairs represent the original modes and settings.

If you have saved all mode settings with getMode(0) \(\rightarrow\) var, you can use setMode (var) to restore those settings until the function or program exits. See getMode (), page 84.

Note: The current mode settings are passed to called subroutines. If any subroutine changes a mode setting, the mode change will be lost when control returns to the calling routine.

Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.
\begin{tabular}{|c|c|}
\hline Define \(\operatorname{prog} 1()=\operatorname{Prgm}\) & \multirow[t]{5}{*}{Done} \\
\hline Disp approx \((\pi)\) & \\
\hline setMode( \((1,16)\) & \\
\hline Disp approx ( \(\pi\) ) & \\
\hline EndPrgm & \\
\hline \multicolumn{2}{|l|}{\(\operatorname{prog} 1()\)} \\
\hline & 3.14159 \\
\hline & 3.14 \\
\hline & Done \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Mode Name & Mode Integer & Setting Integers \\
\hline Display Digits & 1 &  \\
\hline Angle & 2 & 1=Radian, 2=Degree, 3=Gradian \\
\hline Exponential Format & 3 & 1=Normal, 2=Scientific, 3=Engineering \\
\hline Real or Complex & 4 & 1=Real, 2=Rectangular, 3=Polar \\
\hline Auto or Approx. & 5 & 1=Auto, 2=Approximate, 3=Exact \\
\hline Vector Format & 6 & 1=Rectangular, 2=Cylindrical, 3=Spherical \\
\hline Base & 7 & 1=Decimal, 2=Hex, 3=Binary \\
\hline Unit system & 8 & 1=SI, 2=Eng/US \\
\hline
\end{tabular}

\section*{shift()}
shift(Integer1[,\#ofShifts]) \(\Rightarrow\) integer
Shifts the bits in a binary integer. You can enter Integerl in any number base; it is converted automatically to a signed, 64-bit binary form. If the magnitude of Integerl is too large for this form, a symmetric modulo operation brings it within the range. For more information, see Base2, page 17.

If \#ofShifts is positive, the shift is to the left. If \#ofShifts is negative, the shift is to the right. The default is -1 (shift right one bit).

In a right shift, the rightmost bit is dropped and 0 or 1 is inserted to match the leftmost bit. In a left shift, the leftmost bit is dropped and 0 is inserted as the rightmost bit.

For example, in a right shift:
Each bit shifts right.
Ob0000000000000111101011000011010

Catalogue > 国
In Bin base mode:
```

shif((0b1111010110000110101)
0b111101011000011010
$\overline{\operatorname{shift}(256,1) \quad 0 b 1000000000}$

```

In Hex base mode:
\begin{tabular}{lr}
\hline shift \((0 \mathrm{Oh} 78 \mathrm{E})\) & 0h3C7 \\
\hline shift \((0 \mathrm{Oh} 78 \mathrm{E},-2)\) & 0h1E3 \\
\hline shift \((0 \mathrm{Oh} 78 \mathrm{E}, 2)\) & 0h1E38 \\
\hline
\end{tabular}

Important: To enter a binary or hexadecimal number, always use the Ob or Oh prefix (zero, not the letter O).

Inserts 0 if leftmost bit is 0 ， or 1 if leftmost bit is 1 ．
produces：
Ob000000000000000111101011000011010
The result is displayed according to the Base mode．Leading zeros are not shown．
shift（List1［，\＃ofShifts］）\(\Rightarrow\) list
Returns a copy of Listl shifted right or left by \＃ofShifts elements．Does not alter List1．

If \＃ofShifts is positive，the shift is to the left．If \＃ofShifts is negative，the shift is to the right．The default is -1 （shift right one element）．

Elements introduced at the beginning or end of list by the shift are set to the symbol＂undef＂．
shift（String1［，\＃ofShifts］）\(\Rightarrow\) string
Returns a copy of Stringl shifted right or left by \＃ofShifts characters．Does not alter Stringl．

If \＃ofShifts is positive，the shift is to the left．If \＃ofShifts is negative，the shift is to the right．The default is－1（shift right one character）．

Characters introduced at the beginning or end of string by the shift are set to a space．

In Dec base mode：
\begin{tabular}{lr}
\hline \(\operatorname{shift}(\{1,2,3,4\})\) & \(\{\) undef， \(1,2,3\}\) \\
\hline \(\operatorname{shift}(\{1,2,3,4\},-2\}\) & \(\{\) undef，undef， 1,2\(\}\) \\
\hline \(\operatorname{shift}(\{1,2,3,4\}, 2\}\) & \(\{3,4\), undef，undef\} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline shift（＂abcd＂） & ＂abc＂ \\
\hline shif（ \((\)＂abcd＂， 2\()\) & ＂ab＂ \\
\hline shif（（＂abcd＂，1） & ＂bcd＂ \\
\hline
\end{tabular}
sign（）
\(\boldsymbol{\operatorname { s i g n }}(\) Expr 1\() \Rightarrow\) expression
\(\operatorname{sign}(\) List 1\() \Rightarrow\) list
\(\operatorname{sign}(\) Matrix 1\() \Rightarrow\) matrix
For real and complex Expr1，returns Expr1／abs（Expr1）when Expr \(1 \neq 0\) ．

Returns 1 if Exprl is positive．Returns－1 if Exprlis negative．

Catalogue＞国
\begin{tabular}{lr}
\hline \(\operatorname{sign}(-3.2)\) & -1. \\
\hline \(\operatorname{sign}(\{2,3,4,-5\})\) & \(\{1,1,1,-1\}\) \\
\hline \(\operatorname{sign}(1+|x|)\) & 1 \\
\hline
\end{tabular}

If complex format mode is Real：
\(\operatorname{sign}\left(\left[\begin{array}{lll}-3 & 0 & 3\end{array}\right]\right) \quad\left[\begin{array}{lll}-1 & \pm 1 & 1\end{array}\right]\)
\(\boldsymbol{\operatorname { s i g n }}(\mathbf{0})\) represents the unit circle in the complex domain．

For a list or matrix，returns the signs of all the elements．

\section*{simult（）}

Catalogue＞国要
simult（coeffMatrix，constVector［，Tol］）
\(\Rightarrow\) matrix
Returns a column vector that contains the solutions to a system of linear equations．

Note：See also linSolve（），page 103.
coeffMatrix must be a square matrix that contains the coefficients of the equations．
constVector must have the same number of rows（same dimension）as coeffMatrix and contain the constants．

Optionally，any matrix element is treated as zero if its absolute value is less than Tol．This tolerance is used only if the matrix has floating－point entries and does not contain any symbolic variables that have not been assigned a value． Otherwise，Tol is ignored．
－If you set the Auto or Approximate mode to Approximate，computations are done using floating－point arithmetic．
－If Tol is omitted or not used，the default tolerance is calculated as： 5E－14 •max（dim（coeffMatrix）） －rowNorm（coeffMatrix）
simult（coeffMatrix，constMatrix［，Tol］） \(\Rightarrow\) matrix

Solves multiple systems of linear equations，where each system has the same equation coefficients but different constants．

Solve for \(x\) and \(y\) ：
\(x+2 y=1\)
\(3 x+4 y=-1\)
simult \(\left[\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\} \quad\left[\begin{array}{c}-3 \\ 2\end{array}\right]\)

The solution is \(\mathrm{x}=-3\) and \(\mathrm{y}=2\) ．

Solve：
\(a x+b y=1\)
\(c x+d y=2\)
\begin{tabular}{lr}
{\(\left[\begin{array}{ll}a & b \\
c & d\end{array}\right] \rightarrow\) matx1 } & {\(\left[\begin{array}{ll}a & b \\
c & d\end{array}\right]\)} \\
simult \(\left(\right.\) matx,\(\left[\begin{array}{l}1 \\
2\end{array}\right]\)
\end{tabular}\(\quad\left[\begin{array}{c}\frac{-(2 \cdot b-d)}{a \cdot d-b \cdot c} \\
\left.\frac{2 \cdot a-c}{a \cdot d-b \cdot c}\right]\end{array}\right.\)

Solve：
\(x+2 y=1\)
\(3 x+4 y=-1\)
\(x+2 y=2\)
\(3 x+4 y=-3\)

Each column in constMatrix must contain the constants for a system of equations. Each column in the resulting matrix contains the solution for the corresponding system.

\section*{\(\sin\)}

Expr-sin
Note: You can insert this operator from the computer keyboard by typing \(@>\) sin.

Represents Expr in terms of sine. This is a display conversion operator. It can be used only at the end of the entry line.
\(-\sin\) reduces all powers of \(\cos (\ldots)\) modulo \(1-\sin (\ldots)^{\wedge} 2\) so that any remaining powers of \(\sin (\ldots)\) have exponents in the range ( 0,2 ). Thus, the result will be free of \(\cos (\ldots)\) if and only if \(\cos (\ldots)\) occurs in the given expression only to even powers.

Note: This conversion operator is not supported in Degree or Gradian Angle modes. Before using it, make sure that the Angle mode is set to Radians and that Expr does not contain explicit references to degree or gradian angles.
simult \(\left\{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{cc}1 & 2 \\ -1 & -3\end{array}\right]\right\} \quad\left[\begin{array}{cc}-3 & -7 \\ 2 & \frac{9}{2}\end{array}\right]\)

For the first system, \(x=-3\) and \(y=2\). For the second system, \(x=-7\) and \(y=9 / 2\).
\(\overline{(\cos (x))^{2}>\sin } \quad 1-(\sin (x))^{2}\)

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode. You can use \({ }^{\circ}, g\), or \(r\) to override the angle mode setting temporarily.
\(\sin (\) squareMatrixl \() \Rightarrow\) squareMatrix
Returns the matrix sine of squareMatrixl. This is not the same as calculating the sine of each element. For information about the calculation method, refer to \(\boldsymbol{\operatorname { c o s } ( ) .}\)
squareMatrixl must be diagonalizable. The result always contains floating-point numbers.

\section*{\(\sin -1()\)}
\(\boldsymbol{\operatorname { s i n }}-1(\) Expr 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { s i n }}-1\) Listl \() \Rightarrow\) list
sin-1 (Exprl) returns the angle whose sine is Exprl as an expression.
\(\boldsymbol{\operatorname { s i n }}\)-1 (List1) returns a list of the inverse sines of each element of Listl.

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arcsin (...).
\(\sin -1(\) squareMatrix 1\() \Rightarrow\) squareMatrix
Returns the matrix inverse sine of squareMatrixl. This is not the same as calculating the inverse sine of each element. For information about the calculation method, refer to \(\cos ()\).


In Radian angle mode:
\begin{tabular}{lr}
\hline \(\sin \left(\frac{\pi}{4}\right)\) & \(\frac{\sqrt{2}}{2}\) \\
\hline \(\sin \left(45^{\circ}\right)\) & \(\frac{\sqrt{2}}{2}\)
\end{tabular}

In Radian angle mode:
\(\sin \left(\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)\)
\(\left[\begin{array}{ccc}0.9424 & -0.04542 & -0.031999 \\ -0.045492 & 0.949254 & -0.020274 \\ -0.048739 & -0.00523 & 0.961051\end{array}\right]\)
\[
\operatorname{cosec}
\]

squareMatrixl must be diagonalizable．
The result always contains floating－point numbers．
\(\sinh ()\)
Catalogue＞国远
\(\sinh (\) Expr 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { s i n h }}(\) List 1\() \Rightarrow\) list
\begin{tabular}{lr}
\hline \(\sinh (1.2)\) & 1.50946 \\
\hline \(\sinh (\{0,1.2,3\})\). & \(\{0,1.50946,10.0179\}\)
\end{tabular}
sinh（Exprl）returns the hyperbolic sine of the argument as an expression．
\(\sinh\)（Listl）returns a list of the hyperbolic sines of each element of List1．
\(\sinh (\) squareMatrixl \() \Rightarrow\) squareMatrix
Returns the matrix hyperbolic sine of squareMatrixl．This is not the same as calculating the hyperbolic sine of each element．For information about the calculation method，refer to \(\cos ()\) ．
squareMatrixl must be diagonalizable． The result always contains floating－point numbers．

In Radian angle mode：
\(\sinh \left(\left[\begin{array}{lcc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right)\)
\(\left[\begin{array}{llll}360.954 & 305.708 & 239.604 \\ 352.912 & 233.495 & 193.564 \\ 298.632 & 154.599 & 140.251\end{array}\right]\)
sinh－1（）
Catalogue＞国
sinh -1 （Expr 1\() \Rightarrow\) expression
sinh－1（List 1\() \Rightarrow\) list
sinh－1（Exprl）returns the inverse hyperbolic sine of the argument as an expression．
sinh－1（Listl）returns a list of the inverse hyperbolic sines of each element of List1．

Note：You can insert this function from the keyboard by typing arcsinh（．．．）．
sinh－1（squareMatrix 1）\(\Rightarrow\) squareMatrix

In Radian angle mode：

Returns the matrix inverse hyperbolic sine of squareMatrixl．This is not the same as calculating the inverse hyperbolic sine of each element．For information about the calculation method，refer to \(\cos ()\) ．
\(\sinh ^{-1}\left(\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right\}\)
\(\left[\begin{array}{ccc}0.041751 & 2.15557 & 1.1582 \\ 1.46382 & 0.926568 & 0.112557 \\ 2.75079 & -1.5283 & 0.57268\end{array}\right]\)
squareMatrixl must be diagonalizable． The result always contains floating－point numbers．

SinReg
SinReg \(X, Y[,[\) Iterations \(],[\) Period \(][\), Category， Include］］

Computes the sinusoidal regression on lists \(X\) and \(Y\) ． A summary of results is stored in the stat．results variable．（See page 178．）

All the lists must have equal dimension except for Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Iterations is a value that specifies the maximum number of times（ 1 through 16）a solution will be attempted．If omitted， 8 is used．Typically，larger values result in better accuracy but longer execution times，and vice versa．

Period specifies an estimated period．If omitted，the difference between values in \(X\) should be equal and in sequential order．If you specify Period，the differences between \(x\) values can be unequal．

Category is a list of category codes for the corresponding \(X\) and \(Y\) data．

Include is a list of one or more of the category codes． Only those data items whose category code is included in this list are included in the calculation．

The output of SinReg is always in radians，regardless of the angle mode setting．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements，＂page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat.RegEqn & Regression Equation: \(\mathrm{a} \bullet \sin (\mathrm{bx}+\mathrm{c})+\mathrm{d}\) \\
\hline \begin{tabular}{l} 
stat.a, stat.b, \\
stat.c, stat.d
\end{tabular} & Regression coefficients \\
\hline stat.Resid & Residuals from the regression \\
\hline stat.XReg & \begin{tabular}{l} 
List of data points in the modified \(X\) List actually used in the regression based \\
on restrictions of Freq, Category List, and Include Categories
\end{tabular} \\
\hline stat.YReg & \begin{tabular}{l} 
List of data points in the modified Y List actually used in the regression based \\
on restrictions of Freq, Category List, and Include Categories
\end{tabular} \\
\hline stat.FreqReg & List of frequencies corresponding to stat.XReg and stat.YReg \\
\hline
\end{tabular}

\section*{solve()}
solve(Equation, Var) \(\Rightarrow\) Boolean expression
solve(Equation, Var \(=\) Guess \() \Rightarrow\)
Boolean expression
solve(Inequality, Var) \(\Rightarrow\) Boolean expression

Returns candidate real solutions of an equation or an inequality for Var. The goal is to return candidates for all solutions. However, there might be equations or inequalities for which the number of solutions is infinite.
Solution candidates might not be real finite solutions for some combinations of values for undefined variables.

For the Auto setting of the Auto or Approximate mode, the goal is to produce exact solutions when they are concise, and supplemented by iterative searches with approximate arithmetic when exact solutions are impractical.
Due to default cancellation of the greatest common divisor from the numerator and denominator of ratios, solutions might be solutions only in the limit from one or both sides.

Catalogue > 国
solve \(\left(a \cdot x^{2}+b \cdot x+c=0, x\right)\)
\[
x=\frac{\sqrt{b^{2}-4 \cdot a \cdot c}-b}{2 \cdot a} \text { or } x=\frac{\left(\sqrt{b^{2}-4 \cdot a \cdot c}+b\right)}{2 \cdot a}
\]

For inequalities of types \(\geq\), \(\leq,<\), or \(>\), explicit solutions are unlikely unless the inequality is linear and contains only Var.

For the Exact mode, portions that cannot be solved are returned as an implicit equation or inequality.

Use the constraint ("|") operator to restrict the solution interval and/or other variables that occur in the equation or inequality. When you find a solution in one interval, you can use the inequality operators to exclude that interval from subsequent searches.
false is returned when no real solutions are found. true is returned if solve() can determine that any finite real value of Var satisfies the equation or inequality.

Since solve() always returns a Boolean result, you can use "and," "or," and "not" to combine results from solve() with each other or with other Boolean expressions.

Solutions might contain a unique new undefined constant of the form \(\mathrm{n} j\) with \(j\) being an integer in the interval 1-255. Such variables designate an arbitrary integer.

In Real mode, fractional powers having odd denominators denote only the real branch. Otherwise, multiple branched expressions such as fractional powers, logarithms, and inverse trigonometric functions denote only the principal branch. Consequently, solve() produces only solutions corresponding to that one real or principal branch.

Note: See also cSolve(), cZeros(), nSolve(), and zeros().
\[
\text { solve }(5 \cdot x-2 \geq 2 \cdot x, x) \quad x \geq \frac{2}{3}
\]
\[
\begin{array}{r}
\operatorname{exact}\left(\operatorname{solve}\left((x-a) \cdot e^{x}=-x \cdot(x-a), x\right)\right) \\
e^{x+x=0} \text { or } x=a
\end{array}
\]

In Radian angle mode:
solve \(\left.\left(\tan (x)=\frac{1}{x}, x\right) \right\rvert\, x>0\) and \(x<1\)
\(\qquad\)
\begin{tabular}{lr}
\hline solve \((x=x+1, x)\) & false \\
\hline solve \((x=x, x)\) & true
\end{tabular}
\(2 \cdot x-1 \leq 1\) and solve \(\left(x^{2} \neq 9, x\right) \quad x \neq-3\) and \(x \leq 1\)

In Radian angle mode:
solve \((\sin (x)=0, x) \quad x=n 1 \cdot \pi\)
\begin{tabular}{lr}
\hline solve \(\left(\frac{1}{x^{3}}=-1, x\right)\) & \(x=-1\) \\
\hline solve \((\sqrt{x}=-2, x)\) & false \\
\hline solve \((-\sqrt{x}=-2, x)\) & \(x=4\) \\
\hline
\end{tabular}
solve(Eqn1 and Eqn2[and ...], VarOrGuess1, VarOrGuess2[, ...])
\(\Rightarrow\) Boolean expression
solve(SystemOfEqns, VarOrGuess1, VarOrGuess2[, ...])
\(\Rightarrow\) Boolean expression
solve(\{Eqn1, Eqn2 [,...]\}
\{VarOrGuess1,VarOrGuess2 [, ... ]\})
\(\Rightarrow\) Boolean expression
Returns candidate real solutions to the simultaneous algebraic equations, where each VarOrGuess specifies a variable that you want to solve for.

You can separate the equations with the and operator, or you can enter a SystemOfEqns using a template from the Catalogue. The number of VarOrGuess arguments must match the number of equations. Optionally, you can specify an initial guess for a variable. Each VarOrGuess must have the form:
variable
- or -
variable \(=\) real or non-real number
For example, x is valid and so is \(\mathrm{x}=3\).
If all of the equations are polynomials and if you do NOT specify any initial guesses, solve() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all real solutions.

For example, suppose you have a circle of radius \(r\) at the origin and another circle of radius \(r\) centred where the first circle crosses the positive \(x\)-axis. Use solve() to find the intersections.
\[
\begin{aligned}
& \text { solve }\left(y=x^{2}-2 \text { and } x+2 \cdot y=-1,\{x, y\}\right) \\
& \qquad x=\frac{-3}{2} \text { and } y=\frac{1}{4} \text { or } x=1 \text { and } y=-1
\end{aligned}
\]

As illustrated by \(r\) in the example to the right, simultaneous polynomial equations can have extra variables that have no values, but represent given numeric values that could be substituted later.

You can also (or instead) include solution variables that do not appear in the equations. For example, you can include \(z\) as a solution variable to extend the previous example to two parallel intersecting cylinders of radius \(r\).

The cylinder solutions illustrate how families of solutions might contain arbitrary constants of the form \(c k\), where \(k\) is an integer suffix from 1 through 255.

For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list solution variables. If your initial choice exhausts memory or your patience, try rearranging the variables in the equations and/or varOrGuess list.
If you do not include any guesses and if any equation is non-polynomial in any variable but all equations are linear in the solution variables, solve() uses Gaussian elimination to attempt to determine all real solutions.

If a system is neither polynomial in all of its variables nor linear in its solution variables, solve() determines at most one solution using an approximate iterative method. To do so, the number of solution variables must equal the number of equations, and all other variables in the equations must simplify to numbers.

Each solution variable starts at its guessed value if there is one; otherwise, it starts at 0.0.
\[
\begin{aligned}
\text { solve }\left(x^{2}+y^{2}=r^{2} \text { and }(x-r)^{2}+y^{2}=r^{2},\{x, y\}\right) \\
x=\frac{r}{2} \text { and } y=\frac{\sqrt{3} \cdot r}{2} \text { or } x=\frac{r}{2} \text { and } y=\frac{-\sqrt{3} \cdot r}{2}
\end{aligned}
\]
solve \(\left(x^{2}+y^{2}=r^{2}\right.\) and \(\left.(x-r)^{2}+y^{2}=r^{2},\{x, y, z\}\right)\)
\(x=\frac{r}{2}\) and \(y=\frac{\sqrt{3} \cdot r}{2}\) and \(z=c 1\) or \(x=\frac{r}{2}\) and \(y \Rightarrow\)

To see the entire result, press \(\boldsymbol{\Delta}\) and then use 4 and to move the cursor.
\[
\begin{aligned}
& \text { solve }\left(x+e^{z} \cdot y=1 \text { and } x-y=\sin (z),\{x, y\}\right) \\
& \qquad x=\frac{e^{z} \cdot \sin (z)+1}{e^{z}+1} \text { and } y=\frac{-(\sin (z)-1)}{e^{z}+1} \\
& \hline \operatorname{solve}\left(e^{z} \cdot y=1 \text { and }-y=\sin (z),\{y, z\}\right) \\
& y=2.812 \mathrm{E}^{-10} \text { and } z=21.9911 \text { or } y=0.00187 y^{v}
\end{aligned}
\]

To see the entire result, press \(\boldsymbol{\Delta}\) and then use
4 and to move the cursor.
\[
\begin{array}{r}
\text { solve }\left(e^{z} \cdot y=1 \text { and }-y=\sin (z),\{y, z=2 \cdot \pi\}\right) \\
y=0.001871 \text { and } z=6.28131 \\
\hline
\end{array}
\]

Use guesses to seek additional solutions one by one．For convergence，a guess may have to be rather close to a solution．

\section*{SortA}

\section*{Catalogue＞国}

SortA Listl［，List2］［，List3］．．．
SortA Vector 1 ［，Vector2］［，Vector3］．．．
Sorts the elements of the first argument in ascending order．

If you include additional arguments， sorts the elements of each so that their new positions match the new positions of the elements in the first argument．
\begin{tabular}{lr}
\hline\(\{2,1,4,3\} \rightarrow\) list 1 & \(\{2,1,4,3\}\) \\
\hline SortA list1 & Done \\
\hline list \(1,2,3,4\}\) \\
\hline\(\{4,3,2,1\} \rightarrow\) list 2 & \(\{4,3,2,1\}\) \\
\hline SortA list2，list1 & Done \\
\hline list 2 & \(\{1,2,3,4\}\) \\
\hline list 1 & \(\{4,3,2,1\}\)
\end{tabular}

All arguments must be names of lists or vectors．All arguments must have equal dimensions．

Empty（void）elements within the first argument move to the bottom．For more information on empty elements，see page 255.

SortD
Catalogue＞国
SortD List1［，List2］［，List3］．．．
SortD Vector \(1[\), Vector 2 ］［，Vector 3\(]\) ．．．
Identical to SortA，except SortD sorts the elements in descending order．

Empty（void）elements within the first argument move to the bottom．For more information on empty elements，see page 255.

\section*{Sphere}

Vector Sphere
Note：To force an approximate result，

Note：You can insert this operator from the computer keyboard by typing ＠＞Sphere．

Displays the row or column vector in spherical form \([\rho \angle \theta \angle \varphi]\) ．
Vector must be of dimension 3 and can be either a row or a column vector．

\section*{Note：\(>\) Sphere is a display－format} instruction，not a conversion function． You can use it only at the end of an entry line．

Handheld：Press ctrl enter．
Windows \({ }^{\circledR}\) ：Press Ctrl＋Enter．
Macintosh \({ }^{\circledR}\) ：Press \(\mathscr{H}+\) Enter．
iPad \(^{\circledR}\) ：Hold enter，and select \(\approx\) ．
\[
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right]} \\
& {\left[\begin{array}{lll}
3.74166 & \angle 1.10715 & \angle 0.640522
\end{array}\right]}
\end{aligned}
\]

Note：To force an approximate result，
Handheld：Press ctrl enter．
Windows \({ }^{\circledR}\) ：Press Ctrl＋Enter．
Macintosh \({ }^{\circledR}\) ：Press \(\mathscr{H}+\) Enter．
iPad \(^{\circledR}\) ：Hold enter，and select \(\approx\) ．
\[
\begin{aligned}
& \left(\left[\begin{array}{lll}
2 & \angle \frac{\pi}{4} & 3
\end{array}\right]\right) \text { Sphere } \\
& {[3.60555<0.785398 \quad \angle 0.588003]}
\end{aligned}
\]

Press enter
\[
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & \angle \frac{\pi}{4}
\end{array} 3\right]\right) & \text { Sphere } \\
& {\left[\sqrt{13}<\frac{\pi}{4}<\sin ^{-1}\left(\frac{2 \cdot \sqrt{13}}{13}\right)\right] }
\end{aligned}
\]

\begin{tabular}{|c|c|c|}
\hline sqrt（） & & Catalogue＞国运 \\
\hline sqrt（Exprl）\(\Rightarrow\) expression & \(\sqrt{4}\) & 2 \\
\hline \(\mathbf{s q r t}(\) List 1\()=\) list & \(\sqrt{ } \sqrt{9, a, 4\}}\) & \(\{3, \sqrt{a}, 2\}\) \\
\hline
\end{tabular}

Returns the square root of the argument．

For a list，returns the square roots of all the elements in List1．

Note：See also Square root template， page 1.

\section*{stat．results \\ Catalogue＞国2}

\section*{stat．results}

Displays results from a statistics calculation．

The results are displayed as a set of name－value pairs．The specific names shown are dependent on the most recently evaluated statistics function or command．

You can copy a name or value and paste it into other locations．
\begin{tabular}{lr}
\hline xlist：\(:\{1,2,3,4,5\}\) & \(\{1,2,3,4,5\}\) \\
\hline ylist：\(=\{4,8,11,14,17\}\) & \(\{4,8,11,14,17\}\) \\
\hline
\end{tabular}

LinRegMx xlist，ylist，1：stat．results
\begin{tabular}{cc}
{\(\left[\begin{array}{cc}\text {＂Title＂} & \text {＂Linear Regression }(\mathrm{mx}+\mathrm{b}) " \\
\text {＂RegEqn＂} & " \mathrm{~m} * \mathrm{x}+\mathrm{b} " \\
\text {＂m＂} & 3.2 \\
\text {＂b＂} & 1.2 \\
\text {＂r2＂} & 0.996109 \\
\text {＂r＂} & 0.998053 \\
\text {＂Resid＂} & "\{\ldots\} \text {＂}\end{array}\right]\)} \\
\hline stat．values \(\left[\begin{array}{cc}\text {＂Linear Regression（mx＋b）＂} \\
& \text {＂m＊x＋b＂} \\
3.2 \\
1.2 \\
0.996109 \\
0.998053 \\
& "\{-0.4,0.4,0.2,0 .,-0.2\} "\end{array}\right]\)
\end{tabular}

Note：Avoid defining variables that use the same names as those used for statistical analysis．In some cases，an error condition could occur．Variable names used for statistical analysis are listed in the table below．
\begin{tabular}{lllll} 
stat．a & stat．dfDenom & stat．MedianY & stat．Q3X & stat．SSBlock \\
stat．AdjR & \\
stat．b & stat．dfBlock & stat．MEPred & stat．Q3Y & stat．SSCol \\
stat．b0 & stat．dfCol & stat．MinX & stat．r & stat．SSX \\
stat．b1 & stat．dfError & stat．MinY & stat．r \({ }^{2}\) & stat．SSY \\
stat．b2 & stat．dfInteract & stat．MS & stat．RegEqn & stat．SSError \\
stat．b3 & stat．dfReg & stat．MSBlock & stat．Resid & stat．SSInteract \\
stat．b4 & stat．dfNumer & stat．MSCol & stat．ResidTrans & stat．SSReg \\
stat．b5 & stat．dfRow & stat．MSError & stat．\(\sigma x\) & stat．SSRow \\
stat．b6 & stat．DW & stat．MSInteract & stat．бy & stat．tList \\
stat．b7 & stat．e & stat．MSReg & stat．\(\sigma x 1\) & stat．UpperPred \\
stat．b8 & stat．ExpMatrix & stat．MSRow & stat．\(\sigma x 2\) & stat．UpperVal \\
stat．b9 & stat．F & stat．n & stat．\(\sum x\) & stat． \(\bar{X}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline stat．b10 & stat．Fcol & stat．\(\hat{p} 1\) & stat． \(2 x y\) & stat．\(\overline{\mathrm{x}} 2\) \\
\hline stat．bList & stat．FInteract & stat．\(\hat{p} 2\) & stat．\(\Sigma \mathrm{y}\) & stat．\(\overline{\mathrm{x}}\) Diff \\
\hline stat．\(\chi^{2}\) & stat．FreqReg & stat．\(\hat{p}\) Diff & stat．\(\sum \mathrm{y}^{2}\) & stat．\(\overline{\mathrm{X}}\) List \\
\hline stat．c & stat．Frow & stat．PList & stat．s & stat．XReg \\
\hline stat．CLower & stat．Leverage & stat．PVal & stat．SE & stat．XVal \\
\hline stat．CLowerList & stat．LowerPred & stat．PValBlock & stat．SEList & stat．XValList \\
\hline stat．CompList & stat．LowerVal & stat．PValCol & stat．SEPred & stat．\(\overline{\mathrm{y}}\) \\
\hline stat．CompMatrix & stat．m & stat．PVallnteract & stat．sResid & stat． y \\
\hline stat．CookDist & stat．MaxX & stat．PValRow & stat．SEslope & stat．y List \\
\hline stat．CUpper & stat．MaxY & stat．Q1X & stat．sp & stat．YReg \\
\hline stat．CUpperList & stat．ME & stat．Q1Y & stat．SS & stat．YReg \\
\hline stat．d & stat．MedianX & & & \\
\hline
\end{tabular}

Note：Each time the Lists \＆Spreadsheet application calculates statistical results，it copies the＂stat．＂group variables to a＂stat\＃．＂group，where \＃is a number that is incremented automatically．This lets you maintain previous results while performing multiple calculations．

\section*{stat．values}

Catalogue＞国运
stat．values
Displays a matrix of the values calculated for the most recently evaluated statistics function or command．

Unlike stat．results，stat．values omits the names associated with the values．

You can copy a value and paste it into other locations．

\section*{stDevPop（）}
stDevPop（List［，freqList］）\(\Rightarrow\) expression

Returns the population standard deviation of the elements in List．

Each freqList element counts the number of consecutive occurrences of the corresponding element in List．

Note：List must have at least two elements．Empty（void）elements are ignored．For more information on empty elements，see page 255.

In Radian angle and auto modes：
\begin{tabular}{l}
\hline \(\operatorname{stDevPop}(\{a, b, c\})\) \\
\(\frac{\sqrt{2 \cdot\left(a^{2}-a \cdot(b+c)+b^{2}-b \cdot c+c^{2}\right)}}{3}\) \\
\hline \(\operatorname{stDevPop}(\{1,2,5,-6,3,-2\})\) \\
\hline \(\operatorname{stDevPop}(\{1.3,2.5,-6.4\},\{3,2,5\})\) \\
\hline
\end{tabular}
stDevPop(Matrixl[, freqMatrix]) \(\Rightarrow\) matrix

Returns a row vector of the population standard deviations of the columns in Matrixl.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl.

Note:Matrix 1 must have at least two rows. Empty (void) elements are ignored. For more information on empty elements, see page 255.

\section*{stDevSamp()}
stDevSamp \((\) List \([\), freqList \(]) \Rightarrow\) expression

Returns the sample standard deviation of the elements in List.

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.

Note:List must have at least two elements. Empty (void) elements are ignored. For more information on empty elements, see page 255.
stDevSamp(Matrixl[, freqMatrix]) \(\Rightarrow\) matrix

Returns a row vector of the sample standard deviations of the columns in Matrixl.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl.
\(\left.\begin{array}{l}\text { stDevPop }\left(\left[\begin{array}{ccc}1 & 2 & 5 \\ -3 & 0 & 1 \\ 5 & 7 & 3\end{array}\right]\right)\left[\begin{array}{lll}\frac{4 \cdot \sqrt{6}}{3} & \frac{\sqrt{78}}{3} & \frac{2 \cdot \sqrt{6}}{3}\end{array}\right] \\ \text { stDevPop }\left(\left[\begin{array}{cc}-1.2 & 5.3 \\ 2.5 & 7.3 \\ 6 & -4\end{array}\right],\left[\begin{array}{ll}4 & 2 \\ 3 & 3 \\ 1 & 7\end{array}\right]\right) \\ {[2.52608} \\ 5.21506\end{array}\right] \quad\). \(\left[\begin{array}{ll}2.52608 & 5.21506\end{array}\right]\)

Catalogue > 国
stDevSamp \((\{a, b, c\})\)
\(\frac{\sqrt{3 \cdot\left(a^{2}-a \cdot(b+c)+b^{2}-b \cdot c+c^{2}\right)}}{3}\)
stDevSamp \((\{1,2,5,-6,3,-2\}) \quad \frac{\sqrt{62}}{2}\)
stDevSamp \((\{1.3,2.5,-6.4\},\{3,2,5\}\}\)
4.33345
stDevSamp \(\left(\left[\begin{array}{ccc}1 & 2 & 5 \\ -3 & 0 & 1 \\ 5 & 7 & 3\end{array}\right]\right) \quad\left[\begin{array}{lll}4 & \sqrt{13} & 2\end{array}\right]\)
stDevSamp \(\left(\left[\begin{array}{cc}-1.2 & 5.3 \\ 2.5 & 7.3 \\ 6 & -4\end{array}\right] \cdot\left[\begin{array}{ll}4 & 2 \\ 3 & 3 \\ 1 & 7\end{array}\right]\right.\)
\([2.7005\)
\(5.44695]\)

Note:Matrixlmust have at least two rows. Empty (void) elements are ignored. For more information on empty elements, see page 255.

Programming command: Terminates the program.

Stop is not allowed in functions.
Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.
\begin{tabular}{|c|c|}
\hline \(i:=0\) & 0 \\
\hline Define \(\operatorname{progl}()=\operatorname{Prgm}\) & Done \\
\hline For \(\mathbf{i , 1 , 1 0 , 1}\) & \\
\hline If \(i=5\) & \\
\hline Stop & \\
\hline EndFor & \\
\hline EndPrgm & \\
\hline \(\operatorname{prog1}()\) & Done \\
\hline \(i\) & 5 \\
\hline
\end{tabular}
Store \(\quad\) See \(\rightarrow\) (store), page 237.
\begin{tabular}{|c|c|c|}
\hline string() & \multicolumn{2}{|r|}{Catalogue > 国 \({ }_{\text {2 }}\)} \\
\hline string (Expr \() \Rightarrow\) string & string(1.2345) & "1.2345" \\
\hline Simplifies Expr and returns the result as & string( \(1+2\) ) & "3" \\
\hline a character string. & string \((\cos (x)+\sqrt{3})\) & " \(\cos (\mathrm{x})+\sqrt{ }(3) "\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline subMat() & \multicolumn{2}{|r|}{Catalogue >} \\
\hline subMat(Matrixl [, startRow][, startCol] [, endRow][, endCol]) \(\Rightarrow\) matrix & \(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \rightarrow m 1\) & \(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\) \\
\hline Matrixl. & \(\operatorname{subMat}(m 1,2,1,3,2)\) & \(\left[\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right]\) \\
\hline Defaults: startRow=1, startCol=1, endRow=last row, endCol=last column. & subMat ( ( \(1,2,2\) ) & \(\left[\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right]\) \\
\hline
\end{tabular}
\(\operatorname{sum}(\operatorname{List}[, \operatorname{Start}[, E n d]]) \Rightarrow\) expression
Returns the sum of all elements in List.
Start and End are optional. They specify a range of elements.

Any void argument produces a void result. Empty (void) elements in List are ignored. For more information on empty elements, see page 255.
sum(Matrix \([\) [, Start \([\), End \(]]) \Rightarrow\) matrix
Returns a row vector containing the sums of all elements in the columns in Matrixl.

Start and End are optional. They specify a range of rows.

Any void argument produces a void result. Empty (void) elements in Matrixl are ignored. For more information on empty elements, see page 255.

\section*{sumlf()}
sumlf(List,Criteria[,SumList \(]) \Rightarrow\) value
Returns the accumulated sum of all elements in List that meet the specified Criteria. Optionally, you can specify an alternate list, sumList, to supply the elements to accumulate.

List can be an expression, list, or matrix. SumList, if specified, must have the same dimension(s) as List.

Criteria can be:
- A value, expression, or string. For example, \(\mathbf{3 4}\) accumulates only those elements in List that simplify to the value 34.
- A Boolean expression containing the symbol ? as a place holder for each element. For example, ?<10 accumulates only those elements in List that are less than 10.
\begin{tabular}{lr}
\hline \(\operatorname{sum}(\{1,2,3,4,5\})\) & 15 \\
\hline \(\operatorname{sum}(\{a, 2 \cdot a, 3 \cdot a\})\) & \(6 \cdot a\) \\
\hline \(\operatorname{sum}(\operatorname{seq}(n, n, 1,10))\) & 55 \\
\hline \(\operatorname{sum}(\{1,3,5,7,9\}, 3)\) & 21 \\
\hline
\end{tabular}

When a List element meets the Criteria， the element is added to the accumulating sum．If you include sumList，the corresponding element from sumList is added to the sum instead．

Within the Lists \＆Spreadsheet application，you can use a range of cells in place of List and sumList．

Empty（void）elements are ignored．For more information on empty elements， see page 255.

Note：See also countlf（），page 35.
system（Eqn1［，Eqn2［，Eqn3［，．．．］］］）
system（Expr1［，Expr2［，Expr3［，．．．］］］）

Returns a system of equations， formatted as a list．You can also create a system by using a template．

Note：See also System of equations，page 3.

\section*{\(T\)}

\section*{T（transpose）}

Catalogue＞国远

Matrix \(\mathbf{T} \Rightarrow\) matrix
Returns the complex conjugate transpose of Matrixl．

Note：You can insert this operator from the computer keyboard by typing＠t．
\begin{tabular}{lr}
\hline\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9\end{array}\right]^{\top}\) & {\(\left[\begin{array}{lll}1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9\end{array}\right]\)} \\
\hline\(\left[\begin{array}{ll}a & b \\
c & d\end{array}\right]^{\top}\) & {\(\left[\begin{array}{cc}a & c \\
b & d\end{array}\right]\)} \\
\hline\(\left[\begin{array}{ll}1+i & 2+i \\
3+i & 4+i\end{array}\right]^{\top}\) & {\(\left[\begin{array}{cc}1-i & 3-i \\
2-i & 4-i\end{array}\right]\)}
\end{tabular}
\(\boldsymbol{\operatorname { t a n }}(\) Expr 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { t a n }}(\) List 1\() \Rightarrow\) list
\(\boldsymbol{\operatorname { t a n }}(E x p r 1)\) returns the tangent of the argument as an expression.
\(\boldsymbol{\operatorname { t a n }}(\) List 1\()\) returns a list of the tangents of all elements in List 1 .

Note: The argument is interpreted as a degree, gradian or radian angle, according to the current angle mode. You can use \({ }^{\circ}, G\) or \({ }^{r}\) to override the angle mode setting temporarily.
\(\boldsymbol{\operatorname { t a n }}(\) squareMatrix 1\() \Rightarrow\) squareMatrix
Returns the matrix tangent of squareMatrixl. This is not the same as calculating the tangent of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrixl must be diagonalisable. The result always contains floating-point numbers.

In Degree angle mode:
\begin{tabular}{lr}
\hline \(\tan \left(\frac{\pi}{4} r\right)\) & 1 \\
\hline \(\tan (45)\) & 1 \\
\hline \(\tan (\{0,60,90\})\) & \(\{0, \sqrt{3}\), undef \(\}\)
\end{tabular}

In Gradian angle mode:
\begin{tabular}{lr}
\hline \(\tan \left(\frac{\pi}{4} r\right)\) & 1 \\
\hline \(\tan (50)\) & 1 \\
\hline \(\tan (\{0,50,100\})\) & \(\{0,1\), undef \(\}\)
\end{tabular}

In Radian angle mode:
\begin{tabular}{lr}
\hline \(\tan \left(\frac{\pi}{4}\right\}\) & 1 \\
\hline \(\tan \left(45^{\circ}\right)\) & 1 \\
\(\tan \left\{\left\{\left\{, \frac{\pi}{3}, \pi, \frac{\pi}{4}\right\}\right\}\right.\) & \(\{0, \sqrt{3}, 0,1\}\) \\
\hline
\end{tabular}

In Radian angle mode:
\(\tan \left(\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\right\}\)
\(\left[\begin{array}{ccc}-28.2912 & 26.0887 & 11.1142 \\ 12.1171 & -7.83536 & -5.48138 \\ 36.8181 & -32.8063 & -10.4594\end{array}\right]\)
\(\boldsymbol{\operatorname { t a n }}^{-1}()\)
\(\boldsymbol{\operatorname { t a n }}^{-1}(\) Expr 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { t a n }}^{-1}(\) List 1\() \Rightarrow\) list
\(\boldsymbol{t a n}^{-1}(\) Expr 1\()\) returns the angle whose tangent is Exprl as an expression.
\(\boldsymbol{\operatorname { t a n }}^{-1}(\) List \(l)\) returns a list of the inverse tangents of each element of Listl.

In Degree angle mode:
\(\tan ^{-1}(1) \quad 45\)

In Gradian angle mode:

Note: The result is returned as a degree, gradian or radian angle, according to the current angle mode setting.

Note: You can insert this function from the keyboard by typing arctan (...).

\section*{\(\boldsymbol{\operatorname { t a n }}^{-1}\) (squareMatrixl) \(\Rightarrow\) squareMatrix}

Returns the matrix inverse tangent of squareMatrixl. This is not the same as calculating the inverse tangent of each element. For information about the calculation method, refer to \(\cos ()\).
squareMatrixl must be diagonalisable. \(\tan ^{-1}(1)\) 50

In Radian angle mode:
\(\tan ^{-1}(\{0,0.2,0.5\}) \quad\{0,0.197396,0.463648\}\)
In Radian angle mode:

\(\left[\begin{array}{ccc}-0.083658 & 1.26629 & 0.62263 \\ 0.748539 & 0.630015 & -0.070012 \\ 1.68608 & -1.18244 & 0.455126\end{array}\right]\) The result always contains floating-point numbers.

\section*{tangentLine()}

\section*{tangentLine}
(Expr1,Var,Point) \(\Rightarrow\) expression

\section*{tangentLine}
(Expr1,Var \(=\) Point \() \Rightarrow\) expression
Returns the tangent line to the curve represented by Exprl at the point specified in Var=Point.

Make sure that the independent variable is not defined. For example, If \(f 1(x):=5\) and \(x:=3\), then tangentLine \((f 1(x), x, 2)\) returns "false."

Catalogue > [9-2]
\begin{tabular}{lr}
\hline tangentLine \(\left(x^{2}, x, 1\right)\) & \(2 \cdot x-1\) \\
\hline tangentLine \(\left((x-3)^{2}-4, x=3\right)\) & -4 \\
\hline\(\left(\begin{array}{r}\frac{1}{3} \\
\text { tangentLine }\left(x^{3}, x=0\right)\end{array}\right.\) \\
\hline tangentLine \(\left(\sqrt{x^{2}-4}, x=2\right)\) & undef \\
\hline\(x:=3:\) tangentLine \(\left(x^{2}, x, 1\right)\) & 5 \\
\hline
\end{tabular}

\section*{tanh()}

Catalogue > [国
\(\tanh (\) Expr 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { t a n h }}(\) List 1\() \Rightarrow\) list
\begin{tabular}{lr}
\hline \(\tanh (1.2)\) & 0.833655 \\
\hline \(\tanh (\{0,1\})\) & \(\{0, \tanh (1)\}\) \\
\hline
\end{tabular}
\(\boldsymbol{\operatorname { t a n h }}\) (Exprl) returns the hyperbolic tangent of the argument as an expression.
\(\boldsymbol{\operatorname { t a n h }}\)（Listl）returns a list of the hyperbolic tangents of each element of List1．

\section*{\(\boldsymbol{\operatorname { t a n h }}(\) squareMatrix1 \() \Rightarrow\) squareMatrix}

Returns the matrix hyperbolic tangent of squareMatrixl．This is not the same as calculating the hyperbolic tangent of each element．For information about the calculation method，refer to \(\cos ()\) ．
squareMatrixl must be diagonalisable． The result always contains floating－point numbers．

\section*{\(\boldsymbol{t a n h}^{-1}()\)}

In Radian angle mode：
\(\left[\begin{array}{ccc}-0.097966 & 0.933436 & 0.425972 \\ 0.488147 & 0.538881 & -0.129382 \\ 1.28295 & -1.03425 & 0.428817\end{array}\right]\)
\(\boldsymbol{\operatorname { t a n h }}^{-1}(\) Expr 1\() \Rightarrow\) expression
\(\boldsymbol{\operatorname { t a n h }}^{-1}(\) List 1\() \Rightarrow\) list
\(\boldsymbol{t a n h}^{-1}\)（Exprl）returns the inverse hyperbolic tangent of the argument as an expression．
\(\boldsymbol{t a n h}^{-1}\)（Listl）returns a list of the inverse hyperbolic tangents of each element of List1．

Note：You can insert this function from the keyboard by typing arctanh（．．．）．
\(\boldsymbol{t a n h}^{-1}(\) squareMatrix 1\() \Rightarrow\) squareMatrix
Returns the matrix inverse hyperbolic tangent of squareMatrixl．This is not the same as calculating the inverse hyperbolic tangent of each element．For information about the calculation method，refer to \(\boldsymbol{\operatorname { c o s } ( ) .}\)
squareMatrixl must be diagonalisable． The result always contains floating－point numbers．

Catalog＞国合
In Rectangular complex format：
\begin{tabular}{lr}
\hline \(\tanh ^{-1}(0)\) & 0 \\
\hline \(\tanh ^{-1}(\{1,2.1,3\})\) & \(\left\{\right.\) undef， \(\left.0.518046-1.5708 \cdot \boldsymbol{i}, \frac{\ln (2)}{2}-\frac{\pi}{2} \cdot \boldsymbol{i}\right\}\) \\
\hline
\end{tabular}

In Radian angle mode and Rectangular complex format：
\begin{tabular}{l}
\hline \(\tanh ^{-1}\left(\left[\begin{array}{lll}1 & 5 & 3 \\
4 & 2 & 1 \\
6 & -2 & 1\end{array}\right]\right)\) \\
{\(\left[\begin{array}{cc}-0.099353+0.164058 \cdot \boldsymbol{i} & 0.267834-1.4908 \\
-0.087596-0.725533 \cdot \boldsymbol{i} & 0.479679-0.9473 \cdot \\
0.511463-2.08316 \cdot \boldsymbol{i} & -0.878563+1.790] \\
\hline\end{array}\right.\)}
\end{tabular}

To see the entire result，press \(\boldsymbol{\Delta}\) and then use 4 and to move the cursor．
taylor（Expr1，Var，Order［， Point \(]\) ）\(\Rightarrow\) expression

Returns the requested Taylor polynomial．The polynomial includes non－zero terms of integer degrees from zero through Order in（Var minus Point）．taylor（）returns itself if there is no truncated power series of this order，or if it would require negative or fractional exponents．Use substitution and／or temporary multiplication by a power of （Var minus Point）to determine more general power series．
\begin{tabular}{ll}
\(\operatorname{taylor}\left(e^{\sqrt{x}}, x, 2\right)\) & \(\operatorname{taylor}\left(e^{\sqrt{x}}, x, 2,0\right)\) \\
\hline \(\operatorname{taylor}\left(e^{t}, t, 4\right) \mid t=\sqrt{x}\) & \(\frac{x^{2}}{24}+\frac{x^{2}}{6}+\frac{x}{2}+\sqrt{x}+1\)
\end{tabular}
taylor \(\left(\frac{1}{x \cdot(x-1)}, x, 3\right) \quad\) taylor \(\left(\frac{1}{x \cdot(x-1)}, x, 3,0\right)\)
\(\operatorname{expand}\left(\frac{\operatorname{taylor}\left(\frac{x}{x \cdot(x-1)}, x, 4\right)}{x}, x\right)\)
\(-x^{3}-x^{2}-x-\frac{1}{x}-1\)

Point defaults to zero and is the expansion point．
\(\mathrm{tCdf}(\) lowBound，upBound,\(d f) \Rightarrow\) number if lowBound and upBound are numbers，list if lowBound and upBound are lists

Computes the Student－\(t\) distribution probability between lowBound and upBound for the specified degrees of freedom \(d f\) ．

For \(\mathrm{P}(\mathrm{X} \leq\) upBound \()\) ，set lowBound \(=-\infty\) ．

\section*{tCollect（）}

Catalogue＞国
tCollect（Exprl）\(\Rightarrow\) expression
Returns an expression in which products and integer powers of sines and cosines are converted to a linear combination of sines and cosines of multiple angles， angle sums and angle differences．The transformation converts trigonometric polynomials into a linear combination of their harmonics．
\begin{tabular}{lc}
\hline \(\mathrm{tCollect}\left((\cos (\alpha))^{2}\right)\) & \(\frac{\cos (2 \cdot \alpha)+1}{2}\) \\
\hline \(\mathrm{tCollect}(\sin (\alpha) \cdot \cos (\beta))\) & \(\frac{\sin (\alpha-\beta)+\sin (\alpha+\beta)}{2}\) \\
\hline
\end{tabular}

Sometimes tCollect（）will accomplish your goals when the default trigonometric simplification does not． tCollect（）tends to reverse transformations done by tExpand（）． Sometimes applying tExpand（）to a result from tCollect（），or vice versa，in two separate steps simplifies an expression．

\section*{tExpand（）}

Catalogue＞国
tExpand（Expr1）\(\Rightarrow\) expression
Returns an expression in which sines and cosines of integer－multiple angles，angle sums and angle differences are expanded．Because of the identity（sin \((x)) 2+(\cos (x)) 2=1\) ，there are many possible equivalent results． Consequently，a result might differ from a result shown in other publications．

Sometimes tExpand（）will accomplish your goals when the default trigonometric simplification does not． tExpand（）tends to reverse transformations done by tCollect（）． Sometimes applying tCollect（）to a result from tExpand（），or vice versa，in two separate steps simplifies an expression．

Note：Degree－mode scaling by \(\pi / 180\) interferes with the ability of tExpand（）to recognise expandable forms．For best results，tExpand（）should be used in Radian mode．
\begin{tabular}{r}
\hline \(\operatorname{tExpand}(\sin (3 \cdot \varphi)) \quad 4 \cdot \sin (\varphi) \cdot(\cos (\varphi))^{2}-\sin (\varphi)\) \\
\begin{tabular}{r}
\(\operatorname{tExpand}(\cos (\alpha-\beta))\) \\
\(\cos (\alpha) \cdot \cos (\beta)+\sin (\alpha) \cdot \sin (\beta)\)
\end{tabular} \\
\hline
\end{tabular}
- If DispFlag is omitted or evaluates to \(\mathbf{1}\), the text message is added to the Calculator history.
- If DispFlag evaluates to \(\mathbf{0}\), the text message is not added to the history.

If the programme needs a typed response from the user, refer to Request, page 150, or RequestStr, page 152.

Note: You can use this command within a userdefined programme but not within a function.

Then See If, page 88.

\section*{tInterval}

Catalogue > 国
tInterval List[,Freq[,CLevel]]
(Data list input)
tInterval \(\overline{\mathrm{x}}, s x, n[\), CLevel \(]\)
(Summary stats input)
Computes a \(t\) confidence interval. A summary of results is stored in the stat.results variable (page 178).

For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat.CLower, \\
stat.CUpper
\end{tabular} & Confidence interval for an unknown population mean \\
\hline stat. \(\overline{\mathrm{X}}\) & \begin{tabular}{l} 
Sample mean of the data sequence from the normal random \\
distribution
\end{tabular} \\
\hline stat.ME & Margin of error \\
\hline stat.df & Degrees of freedom \\
\hline stat.бx & Sample standard deviation \\
\hline stat.n & Length of the data sequence with sample mean \\
\hline
\end{tabular}

\section*{tInterval_2Samp}
```

tInterval_2Samp List1,List2[,Freq1[,Freq2[,CLevel
[,Pooled]]]]

```
(Data list input)
tInterval_2Samp \(\overline{\mathrm{X}} 1, s x 1, n 1, \overline{\mathrm{x}} 2, s x 2, n 2[, C L e v e l\)
[,Pooled]]
(Summary stats input)
Computes a two-sample \(t\) confidence interval. A summary of results is stored in the stat.results variable (page 178).

Pooled=1 pools variances; Pooled=0 does not pool variances.

For information on the effect of empty elements in a
list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat.CLower, \\
stat.CUpper
\end{tabular} & \begin{tabular}{l} 
Confidence interval containing confidence level probability of \\
distribution
\end{tabular} \\
\hline stat. \(\overline{\mathrm{x} 1-\overline{\mathrm{x} 2}}\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat.ME & Margin of error \\
\hline stat.df & Degrees of freedom \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat. \(\overline{\mathrm{x}} 1\), stat. \(\overline{\mathrm{x}} 2\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat. x 1, stat. x 2 & Sample standard deviations for List 1 and List 2 \\
\hline stat.n1, stat.n2 & Number of samples in data sequences \\
\hline stat.sp & The pooled standard deviation. Calculated when Pooled \(=\) YES \\
\hline
\end{tabular}

\section*{tmpCnv()}
tmpCnv(Expr \({ }_{-}{ }^{\circ}\) tempUnit, _ \({ }^{\circ}\) tempUnit 2 )
\(\Rightarrow\) expression \({ }_{-}{ }^{\circ}\) tempUnit 2
Converts a temperature value specified by Expr from one unit to another. Valid temperature units are:
\(\_^{\circ} \mathrm{C}\) Celsius
_ \({ }^{\circ}\) F Fahrenheit
_ \({ }^{\circ} \mathrm{K}\) Kelvin
- \({ }^{\circ}\) R Rankine

To type \({ }^{\circ}\), select it from the Catalogue symbols.
to type _ , press ctril \(\Delta\).
For example, \(100{ }^{\circ} \mathrm{C}\) converts to \(212{ }^{\circ} \mathrm{F}\).
To convert a temperature range, use \(\Delta\) tmpCnv() instead.

\section*{\(\Delta\) tmpCnv()}
\(\Delta \operatorname{tmpCnv}\left(\right.\) Expr_ \({ }^{\circ}\) tempUnit, \({ }^{\circ}\) tempUnit 2 ) \(\overline{ }{ }^{\text {expression }}{ }^{\circ}\) tempUnit 2

Note: You can insert this function from the keyboard by typing deltaTmpCnv (...).

Converts a temperature range (the difference between two temperature values) specified by Expr from one unit to another. Valid temperature units are:

Catalogue > 国
\begin{tabular}{lr}
\hline \(\operatorname{tmpCnv}\left(100 \cdot \cdot_{-}{ }^{\circ} \mathrm{C},{ }_{-}{ }^{\circ} \mathrm{F}\right)\) & \(212 \cdot \cdot_{-}{ }^{\circ} \mathrm{F}\) \\
\hline \(\operatorname{tmpCnv}\left(32 \cdot{ }^{\circ} \mathrm{F},{ }_{-}{ }^{\circ} \mathrm{C}\right)\) & \(0 \cdot \cdot_{-}{ }^{\circ} \mathrm{C}\) \\
\hline \(\operatorname{tmpCnv}\left(0 \cdot{ }^{\circ}{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{K}\right)\) & \(273.15 \cdot{ }^{\circ} \mathrm{K}\) \\
\hline \(\operatorname{tmpCnv}\left(0 \cdot{ }^{\circ}{ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{R}\right)\) & \(459.67 \cdot{ }^{\circ} \mathrm{R}\)
\end{tabular}

Note: You can use the Catalogue to select temperature units.

\footnotetext{
_ \({ }^{\circ} \mathrm{C}\) Celsius
}
＿\({ }^{\circ}\) F Fahrenheit
＿\({ }^{\circ} \mathrm{K}\) Kelvin
＿\({ }^{\circ}\) R Rankine
To enter \({ }^{\circ}\) ，select it from the Symbol Palette or type＠d．

To type＿，press ctrl \(\quad-\) ．
\(1{ }^{\circ} \mathrm{C}\) and \(1_{-}{ }^{\circ} \mathrm{K}\) have the same magnitude，as do \(1_{-}{ }^{\circ} \mathrm{F}\) and \(1_{-}{ }^{\circ} \mathrm{R}\) ．
However， \(1_{-}{ }^{\circ} \mathrm{C}\) is \(9 / 5\) as large as \(1_{-}{ }^{\circ} \mathrm{F}\) ．
For example，a \(100{ }^{\circ} \mathrm{C}\) range（from \(0_{-}{ }^{\circ} \mathrm{C}\) to \(100{ }^{\circ} \mathrm{C}\) ）is equivalent to a \(180{ }^{\circ} \mathrm{F}\) range．

To convert a particular temperature value instead of a range，use tmpCnv() ．

\section*{tPdf（）}
tPdf（XVal，df）\(\Rightarrow\) number if \(X V a l\) is a number，list if \(X V a l\) is a list

Computes the probability density function（pdf）for the Student－\(t\) distribution at a specified \(x\) value with specified degrees of freedom \(d f\) ．

\section*{trace（）}

Catalogue＞国
trace（squareMatrix）\(\Rightarrow\) expression
Returns the trace（sum of all the elements on the main diagonal）of squareMatrix．
\begin{tabular}{lc}
\hline \(\operatorname{trace}\left(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9\end{array}\right]\right)\) & 15 \\
\hline \(\operatorname{trace}\left(\left[\begin{array}{ll}a & 0 \\
1 & a\end{array}\right]\right\}\) & \(2 \cdot a\) \\
\hline
\end{tabular}

Try
blockl
Else
block2

\section*{EndTry}

Executes blockl unless an error occurs. programme execution transfers to block2 if an error occurs in block1. System variable errCode contains the error code to allow the programme to perform error recovery. For a list of error codes, see "Error codes and messages," page 265.
block 1 and block 2 can be either a single statement or a series of statements separated with the ":" character.

Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.

\section*{Example 2}

To see the commands Try, CIrErr and PassErr in operation, enter the eigenvals () programme shown at the right. Run the programme by executing each of the following expressions.


Note: See also ClrErr, page 25, and PassErr, page 133.
\begin{tabular}{rl}
\hline Define \(\operatorname{prog} 1()=\) & \(\operatorname{Prgm}\) \\
& Try \\
& \(z:=z+1\) \\
& Disp "z incremented." \\
& Else \\
& Disp "Sorry, z undefined." \\
& EndTry \\
& EndPrgm
\end{tabular}

Done
\(z:=1: \operatorname{prog} 1()\)
z incremented.
Done
DelVar z:prog1()

\section*{Sorry, z undefined.}

Done

Define eigenvals \((a, b)=P r g m\)
© programme eigenvals( \(\mathrm{A}, \mathrm{B}\) ) displays
eigenvalues of \(A \cdot B\)
Try
Disp "A= ", a
Disp "B= ", b
Disp " "
Disp "Eigenvalues of \(A \cdot B\) are:",eigVI(a*b)
Else
If errCode=230 Then
Disp "Error: Product of \(A \cdot B\) must be a square matrix"

CIrErr

PassErr
Endlf
EndTry
EndPrgm

\section*{tTest}

Catalogue＞国
tTest \(\mu 0\) ，List \([\) ，Freq［，Hypoth］］
（Data list input）

\section*{tTest \(\mu 0, \overline{\mathrm{x}}, s x, n,[\) Hypoth］}
（Summary stats input）
Performs a hypothesis test for a single unknown population mean \(\mu\) when the population standard deviation \(\sigma\) is unknown．A summary of results is stored in the stat．results variable（page 178）．

Test \(H_{0}: \mu=\mu 0\) ，against one of the following：
For \(\mathrm{H}_{\mathrm{a}}: \mu<\mu 0\) ，set Hypoth＜0
For \(\mathrm{H}_{\mathrm{a}}: \mu \neq \mu 0\)（default），set Hypoth \(=0\)
For \(\mathrm{H}_{\mathrm{a}}: \mu>\mu 0\) ，set Hypoth \(>0\)
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．t & \((\overline{\mathrm{x}}-\mu 0) /(\) stdev／sqrt（n）） \\
\hline stat．PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat．df & Degrees of freedom \\
\hline stat．\(\overline{\mathrm{x}}\) & Sample mean of the data sequence in List \\
\hline stat．sx & Sample standard deviation of the data sequence \\
\hline stat．n & Size of the sample \\
\hline
\end{tabular}
tTest_2Samp List1,List2[,Freq1[,Freq2[,Hypoth
[,Pooled]]]]
(Data list input)
tTest_2Samp \(\overline{\mathrm{x}} 1, s x 1, n 1, \overline{\mathrm{x}} 2, s x 2, n 2[, H y p o t h[\), Pooled \(]]\)
(Summary stats input)
Computes a two-sample \(t\) test. A summary of results is stored in the stat.results variable (page 178).

Test \(\mathrm{H}_{0}: \mu 1=\mu 2\), against one of the following:
For \(\mathrm{H}_{\mathrm{a}}: \mu 1<\mu 2\), set Hypoth<0
For \(\mathrm{H}_{\mathrm{a}}: \mu 1 \neq \mu 2\) (default), set Hypoth \(=0\)
For \(\mathrm{H}_{\mathrm{a}}: \mu 1>\mu 2\), set Hypoth \(>0\)
Pooled \(=1\) pools variances
Pooled \(=\mathbf{0}\) does not pool variances
For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.t & Standard normal value computed for the difference of means \\
\hline stat.PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat.df & Degrees of freedom for the t-statistic \\
\hline stat. \(\overline{\mathrm{x}} 1\), stat. \(\overline{\mathrm{x}} 2\) & Sample means of the data sequences in List 1 and List 2 \\
\hline stat.sx1, stat.sx2 & Sample standard deviations of the data sequences in List 1 and List 2 \\
\hline stat.n1, stat.n2 & Size of the samples \\
\hline stat.sp & The pooled standard deviation. Calculated when Pooled \(=1\). \\
\hline
\end{tabular}

\section*{tvmFV()}
tvmFV(N,I,PV,Pmt,[PpY],[CpY],
\([\) PmtAt \(]) \Rightarrow\) value
Financial function that calculates the future value of money.

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 197．See also amortTbl（），page 8.
\begin{tabular}{|c|c|c|}
\hline tvml（） & \multicolumn{2}{|r|}{Catalogue＞国运} \\
\hline \[
\begin{aligned}
& \text { tvmı }(N, P V, P m t, F V,[P p Y],[C p Y], \\
& [P m t A t]) \Rightarrow \text { value }
\end{aligned}
\] & \(\operatorname{tvmI}(240,100000,-1000,0,12,12)\) & 10.5241 \\
\hline
\end{tabular}

Financial function that calculates the interest rate per year．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 197．See also amortTbl（），page 8.
\begin{tabular}{|c|c|c|}
\hline tvmN（） & \multicolumn{2}{|r|}{Catalogue＞国运} \\
\hline \[
\begin{aligned}
& \operatorname{tvmN}(I, P V, P m t, F V,[P p Y],[C p Y], \\
& [P m t A t]) \Rightarrow \text { value }
\end{aligned}
\] & tvmN（ \(5,0,-500,77641,12,12)\) & 120. \\
\hline
\end{tabular}

Financial function that calculates the number of payment periods．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 197．See also amortTbl（），page 8.
\begin{tabular}{|c|c|c|}
\hline tvmPmt（） & \multicolumn{2}{|r|}{Catalogue＞国 \({ }^{2}\)} \\
\hline \[
\begin{aligned}
& \text { tvmPmt }(N, I, P V, F V,[P p Y],[C p Y], \\
& [P m t A t]) \Rightarrow \text { value }
\end{aligned}
\] & tvmPmt（ \(60,4,30000,0,12,12)\) & －552．496 \\
\hline
\end{tabular}

Financial function that calculates the amount of each payment．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 197．See also amortTbl（），page 8.
tvmPV（N，I，Pmt，FV，［PpY］，［CpY］，
\([P m t A t]) \Rightarrow\) value
\[
\operatorname{tvmPV}(48,4,-500,30000,12,12) \quad-3426.7
\]

Financial function that calculates the present value．

Note：Arguments used in the TVM functions are described in the table of TVM arguments，page 197．See also amortTbl（），page 8.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
TVM \\
argument＊
\end{tabular} & Description & Data type \\
\hline\(N\) & Number of payment periods & real number \\
\hline\(I\) & Annual interest rate & real number \\
\hline\(P V\) & Present value & real number \\
\hline Pmt & Payment amount & real number \\
\hline FV & Future value & real number \\
\hline PpY & Payments per year，default＝1 & integer＞0 \\
\hline\(C p Y\) & Compounding periods per year，default＝1 & integer＞0 \\
\hline PmtAt & \begin{tabular}{l} 
Payment due at the end or beginning of each period， \\
default＝end
\end{tabular} & \begin{tabular}{l} 
integer（0＝end， \\
\(1=\) beginning \()\)
\end{tabular} \\
\hline
\end{tabular}
＊These time－value－of－money argument names are similar to the TVM variable names （such as tvm．pv and tvm．pmt）that are used by the Calculator application＇s finance solver．Financial functions，however，do not store their argument values or results to the TVM variables．

TwoVar
Catalogue＞国
TwoVar X，Y［，［Freq］［，Category，Include］］
Calculates the TwoVar statistics．A summary of results
is stored in the stat．results variable（page 178）．
All the lists must have equal dimension except for
Include．
\(X\) and \(Y\) are lists of independent and dependent variables．

Freq is an optional list of frequency values. Each element in Freq specifies the frequency of occurrence for each corresponding \(X\) and \(Y\) data point. The default value is 1 . All elements must be integers \(\geq 0\).

Category is a list of numeric category codes for the corresponding \(X\) and \(Y\) data.

Include is a list of one or more of the category codes. Only those data items whose category code is included in this list are included in the calculation.

An empty (void) element in any of the lists \(X\), Freq, or Category results in a void for the corresponding element of all those lists. An empty element in any of the lists \(X 1\) through \(X 20\) results in a void for the corresponding element of all those lists. For more information on empty elements, see page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat. \(\overline{\mathrm{x}}\) & Mean of x values \\
\hline stat. x & Sum of x values \\
\hline stat. x 2 & Sum of x 2 values \\
\hline stat.sx & Sample standard deviation of x \\
\hline stat. x & Population standard deviation of x \\
\hline stat. n & Number of data points \\
\hline stat. \(\overline{\mathrm{y}}\) & Mean of y values \\
\hline stat. y & Sum of y values \\
\hline stat. \(\mathrm{y}^{2}\) & Sum of y 2 values \\
\hline stat.sy & Population standard deviation of y \\
\hline stat. y & Sum of \(\mathrm{x} \cdot \mathrm{y}\) values \\
\hline stat. xy & Correlation coefficient \\
\hline stat. r & Minimum of x values \\
\hline stat.Min X & 1st Quartile of x \\
\hline stat. \(\mathrm{Q}_{1} \mathrm{X}\) & Median of x \\
\hline stat.Median X & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat. \(Q_{3} \mathrm{X}\) & 3rd Quartile of x \\
\hline stat.MaxX & Maximum of x values \\
\hline stat.MinY & Minimum of y values \\
\hline stat. \(Q_{1} \mathrm{Y}\) & 1st Quartile of y \\
\hline stat.MedY & Median of y \\
\hline stat. \(Q_{3} \mathrm{Y}\) & 3rd Quartile of y \\
\hline stat.MaxY & Maximum of y values \\
\hline stat. \((\mathrm{x}-)^{2}\) & Sum of squares of deviations from the mean of x \\
\hline stat. \((\mathrm{y}-)^{2}\) & Sum of squares of deviations from the mean of y \\
\hline
\end{tabular}

\section*{\(U\)}
unitV()
unitV(Vectorl) \(\Rightarrow\) vector
Returns either a row- or column-unit vector, depending on the form of Vectorl.

Vectorl must be either a single-row matrix or a single-column matrix.

Catalogue > 国远
\(\overline{\operatorname{unitV}}\left(\left[\begin{array}{lll}a & b & c\end{array}\right]\right)\)
\(\left[\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} \frac{c}{\sqrt{a^{2}+b^{2}+c}}\right.\) \(\operatorname{unitV}\left(\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\right) \quad\left[\begin{array}{lll}\frac{\sqrt{6}}{6} & \frac{\sqrt{6}}{3} & \frac{\sqrt{6}}{6}\end{array}\right]\)
unitV \(\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)\)
\(\left.\begin{array}{c}\frac{\sqrt{14}}{14} \\ \frac{\sqrt{14}}{7} \\ \frac{3 \cdot \sqrt{14}}{14}\end{array}\right]\)

To see the entire result, press \(\Delta\) and then use
4 and to move the cursor.
unLock Varl[, Var2] [, Var3] ...
unLock Var.
Unlocks the specified variables or variable group. Locked variables cannot be modified or deleted.

See Lock, page 107, and getLockInfo(), page 84.

\section*{V}
\begin{tabular}{|c|c|c|}
\hline varPop() & \multicolumn{2}{|r|}{Catalogue > [1]} \\
\hline varPop(List \([\), freqList \(]\) ) \(\Rightarrow\) expression & \(\operatorname{varPop}(\{5,10,15,20,25,30\})\) & 875 \\
\hline Returns the population variance of List. & & 12 \\
\hline & Ans 1. & 72.9167 \\
\hline
\end{tabular}

Each freqList element counts the number of consecutive occurrences of the corresponding element in List.

Note: List must contain at least two elements.

If an element in either list is empty (void), that element is ignored, and the (void), that element is ignored, and the
corresponding element in the other list is also ignored. For more information on empty elements, see page 255.
\begin{tabular}{lr}
\hline\(a:=65\) & 65 \\
\hline Lock \(a\) & Done \\
\hline getLockInfo \((a)\) & 1 \\
\hline\(a:=75\) & "Error: Variable is locked." \\
\hline DelVar \(a\) & "Error: Variable is locked." \\
\hline Unlock \(a\) & Done \\
\hline\(a:=75\) & 75 \\
\hline DelVar \(a\) & Done \\
\hline
\end{tabular}
varSamp()
varSamp(List \([\), freqList \(]) \Rightarrow\) expression
Returns the sample variance of List.
Each freqList element counts the
number of consecutive occurrences of
the corresponding element in List.
Note: List must contain at least two elements.

Catalogue > 国
\begin{tabular}{l}
\hline \(\operatorname{varSamp}(\{a, b, c\})\) \\
\(\frac{a^{2}-a \cdot(b+c)+b^{2}-b \cdot c+c^{2}}{3}\) \\
\hline \(\operatorname{varSamp}(\{1,2,5,-6,3,-2\})\) \\
\hline \(\operatorname{varSamp}(\{1,3,5\},\{4,6,2\})\)
\end{tabular}

If an element in either list is empty (void), that element is ignored, and the corresponding element in the other list is also ignored. For more information on empty elements, see page 255.
varSamp(Matrixl[,
freqMatrix] \(\Rightarrow\) matrix
Returns a row vector containing the sample variance of each column in Matrixl.

Each freqMatrix element counts the number of consecutive occurrences of the corresponding element in Matrixl.

If an element in either matrix is empty (void), that element is ignored, and the corresponding element in the other matrix is also ignored. For more information on empty elements, see page 255.

Note: Matrixl must contain at least two rows.
varSamp \(\left.\left[\begin{array}{ccc}1 & 2 & 5 \\ -3 & 0 & 1 \\ .5 & .7 & 3\end{array}\right]\right)\)
\(\left.\operatorname{varSamp}\left[\begin{array}{ll}-1.1 & 2.2 \\ 3.4 & 5.1 \\ -2.3 & 4.3\end{array}\right],\left[\begin{array}{ll}6 & 3 \\ 2 & 4 \\ 5 & 1\end{array}\right]\right)\)
\(\left[\begin{array}{lll}3.75 & 1.03 & 4\end{array}\right]\)

\section*{W}

\section*{Wait}

\section*{Wait timeInSeconds}

Suspends execution for a period of timeInSeconds seconds.

Wait is particularly useful in a programme that needs a brief delay to allow requested data to become available.

The argument timeInSeconds must be an expression that simplifies to a decimal value in the range 0 through 100. The command rounds this value up to the nearest 0.1 seconds.

To cancel a Wait that is in progress,
- Handheld: Hold down the ran key and press enter repeatedly.

Catalogue > 国
To wait 4 seconds:
Wait 4

To wait \(1 / 2\) second:
Wait 0.5

To wait 1.3 seconds using the variable seccount:
seccount:=1.3
Wait seccount

This example switches a green LED on for 0.5 seconds and then switches it off.

Send "SET GREEN 1 ON"
Wait 0.5
Send "SET GREEN 1 OFF"
－Windows \({ }^{\circledR}\) ：Hold down the \(\mathbf{F 1 2}\) key and press Enter repeatedly．
－Macintosh \({ }^{\circledR}\) ：Hold down the F5 key and press Enter repeatedly．
－iPad \({ }^{\circledR}\) ：The app displays a prompt．You can continue waiting or cancel．

Note：You can use the Wait command within a user－defined programme but not within a function．

\section*{warnCodes（）}

\section*{Catalogue＞国}
warnCodes（Exprl， StatusVar）\(\Rightarrow\) expression

Evaluates expression Expr1，returns the result and stores the codes of any generated warnings in the StatusVar list variable．If no warnings are generated， this function assigns StatusVar an empty list．

Exprl can be any valid TI－Nspire \({ }^{\text {TM }}\) or TI－Nspire \({ }^{\text {TM }}\) CAS maths expression．You cannot use a command or assignment as Expr1．

StatusVar must be a valid variable name．
For a list of warning codes and associated messages，see page 273.

\section*{when（）}
when（Condition，trueResult［， falseResult \(]\)［，unknownResult \(]\) ）
\(\Rightarrow\) expression
Returns trueResult，falseResult，or unknownResult，depending on whether Condition is true，false，or unknown． Returns the input if there are too few arguments to specify the appropriate result．

Omit both falseResult and
when \((x<0, x+3) \mid x=5 \quad\) undef
unknownResult to make an expression defined only in the region where Condition is true．

Use an undef falseResult to define an expression that graphs only on an interval．
when（）is helpful for defining recursive functions．
\begin{tabular}{lr}
\hline when \((n>0, n \cdot\) factoral \((n-1), 1) \rightarrow\) factoral \((n)\) \\
& Done \\
\hline factoral \((3)\) & 6 \\
\hline \(3!\) & 6
\end{tabular}6
While Catalogue \(>\) 国

While Condition
Block

\section*{EndWhile}

Executes the statements in Block as long as Condition is true．

Block can be either a single statement or a sequence of statements separated with the＂：＂character．

Note for entering the example：For instructions on entering multi－line programme and function definitions， refer to the Calculator section of your product guidebook．
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Define sum＿of＿recip \((n)=\) Func} \\
\hline & Local i，tempsum \\
\hline & \(1 \rightarrow i\) \\
\hline & \(0 \rightarrow\) tempsum \\
\hline & While \(i \leq n\) \\
\hline & \[
\text { tempsum }+\frac{1}{i} \rightarrow \text { tempsum }
\] \\
\hline & \(i+1 \rightarrow i\) \\
\hline & EndWhile \\
\hline & Return tempsum \\
\hline & EndFunc \\
\hline \multicolumn{2}{|r|}{Done} \\
\hline sum＿of＿recip（3） & 11 \\
\hline & 6 \\
\hline
\end{tabular}

\section*{\(X\)}

\section*{Catalogue \(>\)［}
\begin{tabular}{lr}
\hline true xor true & false \\
\hline \(5>3\) xor \(3>5\) & true
\end{tabular}

BooleanList1xorBooleanList2 returns Boolean list

BooleanMatrix1xorBooleanMatrix2 returns Boolean matrix

Returns true if BooleanExprl is true and BooleanExpr 2 is false, or vice versa.

Returns false if both arguments are true or if both are false. Returns a simplified Boolean expression if either of the arguments cannot be resolved to true or false.

Note: See or, page 130.
Integer 1 xor Integer \(2 \Rightarrow\) integer
Compares two real integers bit-by-bit using an xor operation. Internally, both integers are converted to signed, 64-bit binary numbers. When corresponding bits are compared, the result is 1 if either bit (but not both) is 1 ; the result is 0 if both bits are 0 or both bits are 1 . The returned value represents the bit results and is displayed according to the Base mode.

You can enter the integers in any number base. For a binary or hexadecimal entry, you must use the 0b or Oh prefix, respectively. Without a prefix, integers are treated as decimal (base 10).

If you enter a decimal integer that is too large for a signed, 64-bit binary form, a symmetric modulo operation is used to bring the value into the appropriate range. For more information, see Base2, page 17.

Note: See or, page 130.

\section*{Z}

Catalogue > [an
zeroes(Expr, Var) \(\Rightarrow l i s t\)
zeroes \((\) Expr, Var \(=\) Guess \() \Rightarrow\) list

In Hex base mode:
Important: Zero, not the letter O.
0h7AC36 xor 0h3D5F 0h79169

In Bin base mode:
0b100101 xor 0b100
0b100001

Note: A binary entry can have up to 64 digits (not counting the Ob prefix). A hexadecimal entry can have up to 16 digits.

Returns a list of candidate real values of Var that make Expr=0. zeroes() does this by computing exp>list(solve ( Expr=0,Var), Var).

For some purposes, the result form for zeroes() is more convenient than that of solve(). However, the result form of zeroes() cannot express implicit solutions, solutions that require inequalities, or solutions that do not involve Var.

Note: See also cSolve(), cZeroes() and solve().
zeroes(\{Expr1, Expr2\}, \{VarOrGuess1, VarOrGuess 2 [, ... ]\}) \(\Rightarrow\) matrix

Returns candidate real zeroes of the simultaneous algebraic expressions, where each VarOrGuess specifies an unknown whose value you seek.

Optionally, you can specify an initial guess for a variable. Each VarOrGuess must have the form:
variable
- or -
variable \(=\) real or non-real number
For example, x is valid and so is \(\mathrm{x}=3\).
If all of the expressions are polynomials and if you do NOT specify any initial guesses, zeroes() uses the lexical Gröbner/Buchberger elimination method to attempt to determine all real zeroes.

For example, suppose you have a circle of radius \(r\) at the origin and another circle of radius \(r\) centred where the first circle crosses the positive \(x\)-axis. Use zeroes() to find the intersections.
\[
\begin{aligned}
& \operatorname{exact}\left(2 \operatorname{zeros}\left(a \cdot\left(e^{x}+x\right) \cdot(\operatorname{sign}(x)-1), x\right)\right) \quad\{\bar{\square}\} \\
& \operatorname{exact}\left(\operatorname{solve}\left(a \cdot\left(e^{x}+x\right) \cdot(\operatorname{sign}(x)-1)=0, x\right)\right) \\
& \quad e^{x}+x=0 \text { or } x>0 \text { or } a=0
\end{aligned}
\]

As illustrated by \(r\) in the example to the right, simultaneous polynomial expressions can have extra variables that have no values, but represent given numeric values that could be substituted later.

Each row of the resulting matrix represents an alternate zero, with the components ordered the same as the varOrGuess list. To extract a row, index the matrix by [row].

You can also (or instead) include unknowns that do not appear in the expressions. For example, you can include \(z\) as an unknown to extend the previous example to two parallel intersecting cylinders of radius \(r\). The cylinder zeroes illustrate how families of zeroes might contain arbitrary constants in the form ck, where \(k\) is an integer suffix from 1 through 255.
For polynomial systems, computation time or memory exhaustion may depend strongly on the order in which you list unknowns. If your initial choice exhausts memory or your patience, try rearranging the variables in the expressions and/or varOrGuess list.
If you do not include any guesses and if any expression is non-polynomial in any variable but all expressions are linear in the unknowns, zeroes() uses Gaussian elimination to attempt to determine all real zeroes.

If a system is neither polynomial in all of its variables nor linear in its unknowns, zeroes() determines at most one zero using an approximate iterative method. To do so, the number of unknowns must equal the number of expressions, and all other variables in the expressions must simplify to numbers.
\(\operatorname{zeros}\left(\left\{x^{2}+y^{2}-r^{2},(x-r)^{2}+y^{2}-r^{2}\right\},\{x, y\}\right)\)
\[
\left[\begin{array}{cc}
\frac{r}{2} & \frac{-\sqrt{3} \cdot r}{2} \\
\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2}
\end{array}\right]
\]

Extract row 2:
Ans[2] \(\left[\begin{array}{ll}\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2}\end{array}\right]\)
\(\operatorname{zeros}\left(\left\{x^{2}+y^{2}-r^{2},(x-r)^{2}+y^{2}-r^{2}\right\},\{x, y, z\}\right)\)
\[
\left[\begin{array}{ccc}
\frac{r}{2} & \frac{-\sqrt{3} \cdot r}{2} & c 1 \\
\frac{r}{2} & \frac{\sqrt{3} \cdot r}{2} & c 1
\end{array}\right]
\]
\[
\left.\begin{array}{l}
\operatorname{zeros}\left(\left\{x+e^{z} \cdot y-1, x-y-\sin (z)\right\},\{x, y\}\right) \\
{\left[\frac{e^{z} \cdot \sin (z)+1}{e^{z}+1}\right.}
\end{array} \frac{-(\sin (z)-1)}{e^{z}+1}\right] .
\]


Each unknown starts at its guessed value if there is one；otherwise，it starts at 0．0．
Use guesses to seek additional zeroes one by one．For convergence，a guess may have to be rather close to a zero．
\begin{tabular}{r}
\hline \(\operatorname{zeros}\left(\left\{e^{z} \cdot y-1, y-\sin (z)\right\},\{y, z=2 \cdot \pi\}\right)\) \\
{\([0.001871 \quad 6.28131]\)} \\
\hline
\end{tabular}

\section*{zInterval}
zInterval \(\sigma\) ，List \([\), Freq［，CLevel］\(]\)
（Data list input）
zInterval \(\sigma, \overline{\mathrm{x}}, n[\), CLevel \(]\)
（Summary stats input）
Computes a \(z\) confidence interval．A summary of results is stored in the stat．results variable（page 178）．

For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat．CLower， \\
stat．CUpper
\end{tabular} & Confidence interval for an unknown population mean \\
\hline stat．\(\overline{\mathrm{X}}\) & \begin{tabular}{l} 
Sample mean of the data sequence from the normal random \\
distribution
\end{tabular} \\
\hline stat．ME & Margin of error \\
\hline stat．sx & Sample standard deviation \\
\hline stat．n & Length of the data sequence with sample mean \\
\hline stat．\(\sigma\) & Known population standard deviation for data sequence List \\
\hline
\end{tabular}
zInterval＿1Prop
Catalogue＞国远
zInterval＿1Prop \(x, n\)［，CLevel］
Computes a one－proportion \(z\) confidence interval．A
summary of results is stored in the stat．results
variable（page 178）．
\(x\) is a non－negative integer．
For information on the effect of empty elements in a
list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat.CLower, \\
stat.CUpper
\end{tabular} & \begin{tabular}{l} 
Confidence interval containing confidence level probability of \\
distribution
\end{tabular} \\
\hline stat. \(\hat{p}\) & The calculated proportion of successes \\
\hline stat.ME & Margin of error \\
\hline stat.n & Number of samples in data sequence \\
\hline
\end{tabular}

\section*{zInterval_2Prop}

\section*{Catalogue > 国2}
zInterval_2Prop \(x 1, n 1, x 2, n 2[\), CLevel \(]\)
Computes a two-proportion \(z\) confidence interval. A summary of results is stored in the stat.results variable (page 178).
\(x 1\) and \(x 2\) are non-negative integers.
For information on the effect of empty elements in a
list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat.CLower, \\
stat.CUpper
\end{tabular} & \begin{tabular}{l} 
Confidence interval containing confidence level probability of \\
distribution
\end{tabular} \\
\hline stat. \(\hat{p}\) Diff & The calculated difference between proportions \\
\hline stat.ME & Margin of error \\
\hline stat. \(\hat{p} 1\) & First sample proportion estimate \\
\hline stat. \(\hat{p} 2\) & Second sample proportion estimate \\
\hline stat.n1 & Sample size in data sequence one \\
\hline stat.n2 & Sample size in data sequence two \\
\hline
\end{tabular}
```

zInterval_2Samp

```

```

zInterval_2Samp \mp@subsup{\sigma}{1}{\prime},\mp@subsup{\sigma}{2}{\prime},List1,List2[,Freq1[,Freq2,
[CLevel]]]
(Data list input)
zInterval_2Samp }\mp@subsup{\sigma}{1}{},\mp@subsup{\sigma}{2}{},\overline{\textrm{x}}1,n1,\overline{\textrm{x}}2,n2[,CLevel]
(Summary stats input)

```

Computes a two－sample \(z\) confidence interval．A summary of results is stored in the stat．results
variable（page 178）．
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline \begin{tabular}{l} 
stat．CLower， \\
stat．CUpper
\end{tabular} & \begin{tabular}{l} 
Confidence interval containing confidence level probability of \\
distribution
\end{tabular} \\
\hline stat．\(\overline{\mathrm{x}} 1-\overline{\mathrm{x} 2}\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat．ME & Margin of error \\
\hline stat．\(\overline{\mathrm{x} 1, ~ s t a t . \bar{x} 2}\) & \begin{tabular}{l} 
Sample means of the data sequences from the normal random \\
distribution
\end{tabular} \\
\hline stat．\(\sigma x 1\), stat．\(\sigma x 2\) & Sample standard deviations for List 1 and List 2 \\
\hline stat．n1，stat．n2 & Number of samples in data sequences \\
\hline stat．r1，stat．r2 & \begin{tabular}{l} 
Known population standard deviations for data sequence List 1 and \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{zTest}
zTest \(\mu 0, \sigma\), List，\([\) Freq［，Hypoth］］
（Data list input）

\section*{zTest \(\mu 0, \sigma, \overline{\mathrm{x}}, n[\), Hypoth \(]\)}
（Summary stats input）
Performs a \(z\) test with frequency freqlist．A summary of results is stored in the stat．results variable（page 178）．

Test \(H_{0}: \mu=\mu 0\) ，against one of the following：
For \(\mathrm{H}_{\mathrm{a}}: \mu<\mu 0\) ，set Hypoth＜0
For \(\mathrm{H}_{\mathrm{a}}: \mu \neq \mu 0\)（default），set Hypoth \(=0\)
For \(\mathrm{H}_{\mathrm{a}}: \mu>\mu 0\) ，set Hypoth \(>0\)
For information on the effect of empty elements in a
list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
variable
\end{tabular} & Description \\
\hline stat．z & \((\overline{\mathrm{x}}-\mu 0) /(\sigma /\) sqrt（n）） \\
\hline stat．P Value & Least probability at which the null hypothesis can be rejected \\
\hline stat．\(\overline{\mathrm{x}}\) & Sample mean of the data sequence in List \\
\hline stat．sx & \begin{tabular}{l} 
Sample standard deviation of the data sequence．Only returned for Data \\
input．
\end{tabular} \\
\hline stat．n & Size of the sample \\
\hline
\end{tabular}

\section*{zTest＿1Prop}
zTest＿1Prop \(p 0, x, n[, H y p o t h]\)
Computes a one－proportion \(z\) test．A summary of results is stored in the stat．results variable（page 178）．
\(x\) is a non－negative integer．
Test \(\mathrm{H}_{0}: p=p 0\) against one of the following：
For \(\mathrm{H}_{\mathrm{a}}: p>p 0\) ，set Hypoth＞0
For \(\mathrm{H}_{\mathrm{a}}: p \neq p 0\)（default），set Hypoth \(=0\)
For \(\mathrm{H}_{\mathrm{a}}: p<p 0\) ，set Hypoth＜0
For information on the effect of empty elements in a
list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．p0 & Hypothesized population proportion \\
\hline stat．z & Standard normal value computed for the proportion \\
\hline stat．PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat．\(\hat{p}\) & Estimated sample proportion \\
\hline stat．n & Size of the sample \\
\hline
\end{tabular}

Computes a two－proportion \(z\) test．A summary of results is stored in the stat．results variable（page 178）．
\(x 1\) and \(x 2\) are non－negative integers．
Test \(\mathrm{H}_{0}: p 1=p 2\) ，against one of the following：
For \(\mathrm{H}_{\mathrm{a}}: p 1>p 2\) ，set Hypoth＞0
For \(\mathrm{H}_{\mathrm{a}}: p 1 \neq p 2\)（default），set Hypoth \(=0\)
For \(\mathrm{H}_{\mathrm{a}}: p<p 0\) ，set Hypoth \(<0\)
For information on the effect of empty elements in a list，see＂Empty（Void）Elements＂，page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat．z & Standard normal value computed for the difference of proportions \\
\hline stat．PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat．\(\hat{p} 1\) & First sample proportion estimate \\
\hline stat．\(\hat{p} 2\) & Second sample proportion estimate \\
\hline stat．\(\hat{p}\) & Pooled sample proportion estimate \\
\hline stat．n1，stat．n2 & Number of samples taken in trials 1 and 2 \\
\hline
\end{tabular}

\section*{zTest＿2Samp}

\section*{Catalogue＞国第}
zTest＿2Samp \(\sigma_{1}, \sigma_{\mathbf{2}}\) ，List1，List \(2[\), Freq1［，Freq2
［，Hypoth］］］
（Data list input）
zTest＿2Samp \(\sigma_{1}, \sigma_{2}, \overline{\mathrm{x}} 1, n 1, \overline{\mathrm{x}} 2, n 2[\), Hypoth \(]\)
（Summary stats input）
Computes a two－sample \(z\) test．A summary of results is stored in the stat．results variable（page 178）．

Test \(\mathrm{H}_{0}: \mu 1=\mu 2\) ，against one of the following：
For \(\mathrm{H}_{\mathrm{a}}: \mu 1<\mu 2\) ，set Hypoth＜0
For \(\mathrm{H}_{\mathrm{a}}: \mu 1 \neq \mu 2\)（default），set Hypoth＝0

For \(\mathrm{H}_{\mathrm{a}}: \mu 1>\mu 2\), Hypoth>0
For information on the effect of empty elements in a list, see "Empty (Void) Elements", page 255.
\begin{tabular}{|l|l|}
\hline Output variable & Description \\
\hline stat.z & Standard normal value computed for the difference of means \\
\hline stat.PVal & Smallest level of significance at which the null hypothesis can be rejected \\
\hline stat. \(\overline{\mathrm{x}} 1\), stat. \(\overline{\mathrm{X}} 2\) & Sample means of the data sequences in Listl and List 2 \\
\hline stat.sx1, stat.sx2 & Sample standard deviations of the data sequences in Listl and List 2 \\
\hline stat.n1, stat.n2 & Size of the samples \\
\hline
\end{tabular}

\section*{Symbols}
+ (add)
Expr \(1+\) Expr \(2 \Rightarrow\) exp
Returns the sum of th
List \(1+\) List \(2 \Rightarrow\) list
Matrix \(1+\) Matrix \(2 \Rightarrow\)
Returns a list (or mat
sums of correspondin
and List 2 (or Matrix
Dimensions of the ar
equal.
Expr + List \(1 \Rightarrow\) list
List \(1+\) Expr \(\Rightarrow\) list

Returns a list containing the sums of Expr and each element in List1.
Expr + Matrix \(1 \Rightarrow\) matrix
Matrix \(1+\) Expr \(\Rightarrow\) matrix
\(20+\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad\left[\begin{array}{cc}21 & 2 \\ 3 & 24\end{array}\right]\)

Returns a matrix with Expr added to each element on the diagonal of Matrixl. Matrixl must be square.

Note: Use .+ (dot plus) to add an expression to each element.
\begin{tabular}{|c|c|c|}
\hline - (subtract) & & \(\square\) key \\
\hline Expr \(1-\) Expr \(2 \Rightarrow\) expression & 6-2 & 4 \\
\hline Returns Exprl minus Expr2. & \(\pi-\frac{\pi}{6}\) & \(\frac{5 \cdot \pi}{6}\) \\
\hline List \(1-\) List \(2 \Rightarrow\) list & \(\left\{22, \pi, \frac{\pi}{2}\right\}-\left\{10,5, \frac{\pi}{2}\right\}\) & \(\{12, \pi-5,0\}\) \\
\hline & \(\left[\begin{array}{ll}3 & 4\end{array}\right]-\left[\begin{array}{ll}1 & 2\end{array}\right]\) & \(\left[\begin{array}{ll}2 & 2\end{array}\right]\) \\
\hline
\end{tabular}

Subtracts each element in List2 (or Matrix2) from the corresponding element in Listl (or Matrixl), and returns the results.

Dimensions of the arguments must be equal.
Expr-Listl \(\Rightarrow\) list
List 1 - Expr \(\Rightarrow\) list
\begin{tabular}{ll}
\hline \(15-\{10,15,20\}\) & \(\{5,0,-5\}\) \\
\(\{10,15,20\}-15\) & \(\{-5,0,5\}\) \\
\hline
\end{tabular}

Subtracts each Listl element from Expr or subtracts Expr from each List1 element, and returns a list of the results.
Expr - Matrix \(1 \Rightarrow\) matrix
Matrix \(1-\operatorname{Expr} \Rightarrow\) matrix
Expr - Matrixl returns a matrix of Expr times the identity matrix minus
Matrixl. Matrixl must be square.
Matrix 1 - Expr returns a matrix of Expr times the identity matrix subtracted from Matrix 1. Matrixl must be square.

Note: Use .- (dot minus) to subtract an expression from each element.

\section*{-(multiply)}
\(20-\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad\left[\begin{array}{cc}19 & -2 \\ -3 & 16\end{array}\right]\)

Expr \(1 \cdot\) Expr \(2 \Rightarrow\) expression
Returns the product of the two arguments.
List \(1 \cdot\) List \(2 \Rightarrow\) list
Returns a list containing the products of the corresponding elements in Listl and List2.

Dimensions of the lists must be equal.
Matrix \(1 \cdot\) Matrix \(2 \Rightarrow\) matrix
Returns the matrix product of Matrix 1 and Matrix2.

The number of columns in Matrixl must equal the number of rows in Matrix2.

Expr \(\cdot\) Listl \(\Rightarrow\) list
\(\overline{\pi \cdot\{4,5,6\}} \quad\{4 \cdot \pi, 5 \cdot \pi, 6 \cdot \pi\}\)

List \(1 \cdot\) Expr \(\Rightarrow\) list
Returns a list containing the products of Expr and each element in List1.

Expr \(\bullet\) Matrix \(\Rightarrow\) matrix
Matrix \(1 \cdot\) Expr \(\Rightarrow\) matrix
Returns a matrix containing the products of Expr and each element in Matrix1.
\begin{tabular}{lc}
\hline\(\left[\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right] \cdot 0.01\) & {\(\left[\begin{array}{lll}0.01 & 0.02 \\
0.03 & 0.04\end{array}\right]\)} \\
\hline\(\lambda \cdot\) identity (3) & {\(\left[\begin{array}{lll}\lambda & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \lambda\end{array}\right]\)} \\
\hline
\end{tabular}

Note: Use .•(dot multiply) to multiply an expression by each element.

\section*{(divide)}
\begin{tabular}{|c|c|}
\hline & \(\dagger\) key \\
\hline 2 & \multirow[t]{2}{*}{0.57971} \\
\hline 3.45 & \\
\hline \(x^{3}\) & \multirow[t]{2}{*}{\(x^{2}\)} \\
\hline \(x\) & \\
\hline \{1,2,3\} & \multirow[t]{2}{*}{\(\left\{0.25, \frac{2}{5}, \frac{1}{2}\right\}\)} \\
\hline \{4,5,6\} & \\
\hline
\end{tabular}

Returns a list containing the quotients of List 1 divided by List 2 .

Dimensions of the lists must be equal.
Expr/Listl \(\Rightarrow\) list
List \(1 /\) Expr \(\Rightarrow\) list
Returns a list containing the quotients of Expr divided by Listl orListl divided by Expr.
Matrix1/Expr \(\Rightarrow\) matrix
Returns a matrix containing the quotients of Matrix / Expr.

Matrix \(1 /\) Value \(\Rightarrow\) matrix

Note: Use ./ (dot divide) to divide an expression by each element.
\begin{tabular}{|c|c|c|}
\hline \(\wedge\) (power) & & A key \\
\hline Expr 1 ^ Expr \(2 \Rightarrow\) expression & \(4^{2}\) & 16 \\
\hline List 1 ^ List \(2 \Rightarrow\) list & \(\{a, 2, c\}\{1, b, 3\}\) & \(\left\{a, 2^{b}, c^{3}\right\}\) \\
\hline
\end{tabular}

Returns the first argument raised to the power of the second argument.

Note: See also Exponent template, page
1.

For a list, returns the elements in List1 raised to the power of the corresponding elements in List2.

In the real domain, fractional powers that have reduced exponents with odd denominators use the real branch versus the principal branch for complex mode.

Expr \({ }^{\wedge}\) List \(1 \Rightarrow\) list
Returns Expr raised to the power of the elements in List1.

List1 ^ Expr \(\Rightarrow\) list
Returns the elements in Listl raised to
\(p^{\{a, 2,-3\}}\left\{p^{a}, p^{2}, \frac{1}{p^{3}}\right\}\) the power of Expr.
squareMatrixl ^ integer \(\Rightarrow\) matrix
Returns squareMatrixl raised to the integer power.
squareMatrixl must be a square matrix.
If integer \(=-1\), computes the inverse matrix.
If integer < - 1 , computes the inverse matrix to an appropriate positive power.
\(\left.\begin{array}{l}{\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{2}} \\ {\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}} \\ {\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-2}} \\ {\left[\begin{array}{cc}7 & 10 \\ 15 & 22\end{array}\right]} \\ \frac{3}{2} \\ \frac{-1}{2}\end{array}\right]\)

Expr12 \({ }^{2}\) expression
Returns the square of the argument.
List \(\mathbf{1 2} \Rightarrow\) list
Returns a list containing the squares of the elements in Listl.
squareMatrix \(12 \Rightarrow\) matrix

Returns the matrix square of squareMatrixl. This is not the same as calculating the square of each element. Use .^2 to calculate the square of each element.
.+ (dot add)
Matrixl .+ Matrix2 \(\Rightarrow\) matrix
Expr.+ Matrix \(1 \Rightarrow\) matrix
Matrix 1.+Matrix2 returns a matrix that is the sum of each pair of corresponding elements in Matrixl and Matrix2.

Expr . + Matrixl returns a matrix that is the sum of Expr and each element in Matrixl.

\section*{.- (dot subt.)}

Matrix1 .- Matrix \(2 \Rightarrow\) matrix
Expr .- Matrix \(1 \Rightarrow\) matrix
Matrix1.- Matrix2 returns a matrix that is the difference between each pair of corresponding elements in Matrixl and Matrix2.

Expr.- Matrixl returns a matrix that is the difference of Expr and each element in Matrixl.
\(\frac{4^{2}}{\substack{\hline 2,4,6\}^{2} \\\left[\begin{array}{lll}2 & 4 & 6 \\ 3 & 5 & 7 \\ 4 & 6 & 8\end{array}\right] \\ \hline\left[\begin{array}{lll}2 & 4 & 6 \\ 3 & 5 & 7 \\ 4 & 6 & 8\end{array}\right] .{ }^{2} \\ \hline}}\)

16
-(dot mult.)
Matrix1 ••Matrix \(2 \Rightarrow\) matrix
Expr \(\cdot \cdot\) Matrixl \(\Rightarrow\) matrix
Matrix 1• Matrix2 returns a matrix that
\begin{tabular}{ll}
{\(\left[\begin{array}{ll}a & 2 \\
b & 3\end{array}\right] \cdot\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\)} & {\(\left[\begin{array}{cc}a \cdot c & 8 \\
5 \cdot b & 3 \cdot d\end{array}\right]\)} \\
\hline\(x \cdot \cdot\left[\begin{array}{ll}a & b \\
c & d\end{array}\right]\) & {\(\left[\begin{array}{ll}a \cdot x & b \cdot x \\
c \cdot x & d \cdot x\end{array}\right]\)}
\end{tabular} is the product of each pair of corresponding elements in Matrixl and Matrix2.

Expr ••Matrix1 returns a matrix containing the products of Expr and each element in Matrixl.

\section*{./ (dot divide)}

Matrix1./Matrix2 \(\Rightarrow\) matrix
Expr./Matrixl \(\Rightarrow\) matrix
Matrix1 ./Matrix2 returns a matrix that is the quotient of each pair of corresponding elements in Matrixl and Matrix2.

Expr ./Matrixl returns a matrix that is the quotient of Expr and each element in Matrixl.
\(\left.\begin{array}{ll}{\left[\begin{array}{ll}a & 2 \\ b & 3\end{array}\right] \cdot\left(\left[\begin{array}{ll}c & 4 \\ 5 & d\end{array}\right]\right.} \\ \hline x \cdot\left(\left[\begin{array}{ll}c & 4 \\ 5 & d\end{array}\right]\right.\end{array}\right) \quad\left[\begin{array}{ll}\frac{a}{c} & \frac{1}{2} \text { key } \\ \frac{b}{5} & \frac{3}{d}\end{array}\right]\)
keys

\section*{.^ (dot power)}

Matrix .^ Matrix \(^{\boldsymbol{A}} \Rightarrow\) matrix
Expr.^Matrixl \(\Rightarrow\) matrix
Matrix1.^ Matrix2 returns a matrix where each element in Matrix2 is the exponent for the corresponding element in Matrixl.

Expr .^ Matrixl returns a matrix where each element in Matrixl is the exponent for Expr.
\(\square \wedge\) keys
\begin{tabular}{ll}
{\(\left[\begin{array}{ll}a & 2 \\
b & 3\end{array}\right] \wedge\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\)} & {\(\left[\begin{array}{ll}a^{c} & 16 \\
b^{5} & 3^{d}\end{array}\right]\)} \\
\(x \wedge\left[\begin{array}{ll}c & 4 \\
5 & d\end{array}\right]\) & {\(\left[\begin{array}{ll}x^{c} & x^{4} \\
x^{5} & x^{d}\end{array}\right]\)}
\end{tabular}
\begin{tabular}{l|rr|}
\hline - (negate) & (-) key \\
- Expr \(1 \Rightarrow\) expression & -2.43 & -2.43 \\
- List \(1 \Rightarrow\) list & \(-\{-1,0.4,1.2 \mathrm{E} 19\}\) & \(\{1,-0.4,-1.2 \mathrm{E} 19\}\) \\
- Matrix \(1 \Rightarrow\) matrix & \(-a \cdot-b\) & \(a \cdot b\)
\end{tabular}

Returns the negation of the argument.
For a list or matrix, returns all the elements negated.

If the argument is a binary or hexadecimal integer, the negation gives the two's complement.

In Bin base mode:
Important: Zero, not the letter O.
```

Ob100101
Ob1111111111111111111111111111111'

```

To see the entire result, press \(\boldsymbol{\Delta}\) and then use 4 and to move the cursor.

\section*{\% (percent)}

Expr \(1 \% \Rightarrow\) expression
List \(1 \% \Rightarrow\) list
Matrix \(1 \% \Rightarrow\) matrix

\section*{argument \\ Returns 100}

For a list or matrix, returns a list or matrix with each element divided by 100.
= (equal)
Expr \(1=\) Expr \(2 \Rightarrow\) Boolean expression
List \(1=\) List \(2 \Rightarrow\) Boolean list
Matrix \(1=\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Expr1 is determined to be equal to Expr2.

Returns false if Exprl is determined to not be equal to Expr2.

Example function that uses maths test symbols: \(=, \neq,<, \leq,>, \geq\)

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.

\section*{\(\neq\) (not equal)}

Expr \(1 \neq\) Expr \(2 \Rightarrow\) Boolean expression
See "=" (equal) example.

List \(1 \neq\) List \(2 \Rightarrow\) Boolean list
Matrix \(1 \neq\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be not equal to Expr2.

Returns false if Exprl is determined to be equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
\# (not equal)
Note: You can insert this operator from the keyboard by typing /=
\(<\) (less than)

Expr1<Expr \(2 \Rightarrow\) Boolean expression See "=" (equal) example.

List1<List2 \(\Rightarrow\) Boolean list
Matrix1<Matrix2 \(\Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be less than Expr2.

Returns false if Expr1 is determined to be greater than or equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

\section*{\(\leq\) (less or equal)}

Expr \(1 \leq\) Expr \(2 \Rightarrow\) Boolean expression
List \(1 \leq\) List \(2 \Rightarrow\) Boolean list
Matrix1 \(\leq\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be less than or equal to Expr2.

Returns false if Expr1 is determined to be greater than Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing <=

Expr \(1>\) Expr \(2 \Rightarrow\) Boolean expression
List \(1>\) List \(2 \Rightarrow\) Boolean list
Matrix \(1>\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be greater than Expr2.

Returns false if Exprl is determined to be less than or equal to Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.
\(\geq\) (greater or equal)

Expr \(1 \geq\) Expr \(2 \Rightarrow\) Boolean expression
List \(1 \geq\) List \(2 \Rightarrow\) Boolean list
Matrix \(1 \geq\) Matrix \(2 \Rightarrow\) Boolean matrix
Returns true if Exprl is determined to be greater than or equal to Expr2.

Returns false if Expr1 is determined to be less than Expr2.

Anything else returns a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing >=
\begin{tabular}{|c|c|c|}
\hline \(\Rightarrow\) (logical implication) & & ctrı \(=\) key \\
\hline \multirow[t]{2}{*}{BooleanExpr1 \(\Rightarrow\) BooleanExpr 2 returns Boolean expression} & \(5>3\) or \(3>5\) & true \\
\hline & \(5>3 \Rightarrow 3>5\) & false \\
\hline \multirow[t]{2}{*}{BooleanList \(1 \Rightarrow\) BooleanList2 returns Boolean list} & 3 or 4 & 7 \\
\hline & \(3 \Rightarrow 4\) & -4 \\
\hline \multirow[t]{2}{*}{BooleanMatrix1 \(\Rightarrow\) BooleanMatrix2 returns Boolean matrix} & \(\{1,2,3\}\) or \(\{3,2,1\}\) & \(\{3,2,3\}\) \\
\hline & \(\{1,2,3\} \Rightarrow\{3,2,1\}\) & \(\{-1,-1,-3\}\) \\
\hline
\end{tabular}

Integer \(1 \Rightarrow\) Integer 2 returns Integer
Evaluates the expression not <argument1> or <argument2> and returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing =>
\(\Leftrightarrow\) (logical double implication,
XNOR) XNOR)
BooleanExpr \(1 \Leftrightarrow\) BooleanExpr 2 returns Boolean expression

BooleanList1 \(\Leftrightarrow\) BooleanList2 returns Boolean list

BooleanMatrix1 \(\Leftrightarrow\) BooleanMatrix2 returns Boolean matrix

Integer \(1 \Leftrightarrow\) Integer 2 returns Integer
Returns the negation of an XOR Boolean operation on the two arguments. Returns true, false, or a simplified form of the equation.

For lists and matrices, returns comparisons element by element.

Note: You can insert this operator from the keyboard by typing <=>
! (factorial)

Expr1! \(\Rightarrow\) expression
List \(1!\Rightarrow\) list
Matrix \(1!\Rightarrow\) matrix
\begin{tabular}{lr}
\hline \(5!\) & 120 \\
\hline\((\{5,4,3\}\}!\) & \(\{120,24,6\}\) \\
\hline\(\left.\left(\begin{array}{ll}1 & 2 \\
3 & 4\end{array}\right]\right)!!\) & {\(\left[\begin{array}{cc}1 & 2 \\
6 & 24\end{array}\right]\)}
\end{tabular}

Returns the factorial of the argument.
For a list or matrix, returns a list or matrix of factorials of the elements.
\begin{tabular}{lll} 
\& (append) & ctrı keys \\
String1 \& String2 \(\Rightarrow\) string & "Hello "\&"Nick" & "Hello Nick"
\end{tabular}

Returns a text string that is String2 appended to String1.

\section*{\(d\) () (derivative)}
\(d(\) Expr1, Var \([\), Order \(]) \Rightarrow\) expression
\(d(\) List \(1, \operatorname{Var}[\), Order \(]) \Rightarrow\) list
\(d(\) Matrix \(1, \operatorname{Var}[\), Order \(]) \Rightarrow\) matrix
Returns the first derivative of the first argument with respect to variable Var.

Catalogue > 国
\(\frac{d}{d x}(f(x) \cdot g(x)) \quad \frac{d}{d x}(f(x)) \cdot g(x)+\frac{d}{d x}(g(x)) \cdot f(x)\)
\begin{tabular}{lr}
\(\frac{d}{d y}\left(\frac{d}{d x}\left(x^{2} \cdot y^{3}\right)\right)\) & \(6 \cdot y^{2} \cdot x\) \\
\(\frac{d}{d x}\left\{\left\{x^{2}, x^{3}, x^{4}\right\}\right\}\) & \(\left\{2 \cdot x, 3 \cdot x^{2}, 4 \cdot x^{3}\right\}\)
\end{tabular}

Order, if included, must be an integer. If the order is less than zero, the result will be an anti-derivative.

Note: You can insert this function from the keyboard by typing derivative (...).
\(d()\) does not follow the normal evaluation mechanism of fully simplifying its arguments and then applying the function definition to these fully simplified arguments. Instead, \(d\) () performs the following steps:
1. Simplify the second argument only to the extent that it does not lead to a non-variable.
2. Simplify the first argument only to the extent that it does recall any

\section*{\(d\) () (derivative)}
stored value for the variable determined by step 1.
3. Determine the symbolic derivative of the result of step 2 with respect to the variable from step 1.

If the variable from step 1 has a stored value or a value specified by the constraint ("|") operator, substitute that value into the result from step 3.

Note: See also First derivative, page 5;
Second derivative, page 6; or
Nth derivative, page 6.
\begin{tabular}{ll}
\(\int()\) (integral) & Catalogue \(>\) 国 \(]_{2}^{2}\) \\
\(\int(\) Expr \(1, \operatorname{Var}[\),Lower,Upper \(]) \Rightarrow\) & \(\frac{b^{3}}{3}-\frac{a^{3}}{3}\) \\
expression & \(\int_{a}^{2} \mathrm{~d} x\) \\
\(\int(\) Expr \(1, \operatorname{Var}[\), Constant \(]) \Rightarrow\) expression &
\end{tabular}

Returns the integral of Exprl with respect to the variable Var from Lower to Upper.

Note: See also Definite or Indefinite integral template, page 6.

Note: You can insert this function from the keyboard by typing integral (...) .
If Lower and Upper are omitted, returns an anti-derivative. A symbolic constant of integration is omitted unless you provide the Constant argument.
\begin{tabular}{lr}
\(\int x^{2} \mathrm{~d} x\) & \(\frac{x^{3}}{3}\) \\
\hline \(\int\left(a \cdot x^{2}, x, c\right)\) & \(\frac{a \cdot x^{3}}{3}+c\)
\end{tabular}

Equally valid anti-derivatives might differ by a numeric constant. Such a constant might be disguised-particularly when an anti-derivative contains logarithms or inverse trigonometric functions.
Moreover, piecewise constant expressions are sometimes added to make an anti-derivative valid over a larger interval than the usual formula.
\(\int()\) (integral)
() returns itself for pieces of Exprl that it cannot determine as an explicit finite combination of its built-in functions and operators.

When you provide Lower and Upper, an attempt is made to locate any discontinuities or discontinuous derivatives in the interval Lower \(<\) Var < Upper and to subdivide the interval at those places.

For the Auto setting of the Auto or Approximate mode, numerical integration is used where applicable when an anti-derivative or a limit cannot be determined.

For the Approximate setting, numerical integration is tried first, if applicable. Anti-derivatives are sought only where such numerical integration is inapplicable or fails.
\[
\int b \cdot e^{-x^{2}}+\frac{a}{x^{2}+a^{2}} \mathrm{~d} x \quad b \cdot \int e^{-x^{2}} \mathrm{~d} x+\tan ^{-1}\left(\frac{x}{a}\right)
\]

Note: To force an approximate result,
Handheld: Press atrl enter.
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\oplus}\) : Press \(\mathscr{\not D}+\) Enter.
iPad \({ }^{\oplus}\) : Hold enter, and select \(\approx\).
\[
e^{1} e^{-x^{2}} d x
\]
\(\int()\) can be nested to do multiple integrals. Integration limits can depend on integration variables outside them.

Note: See also nInt(), page 123.
\(\sqrt{ }()\) (square root)
ctril \(x^{2}\) keys
\(\sqrt{ }(\) Expr 1\() \Rightarrow\) expression
\(\sqrt{ }(\) List 1\() \Rightarrow\) list
\begin{tabular}{lr}
\(\sqrt{4}\) & 2 \\
\(\sqrt{\{9, a, 4\}}\) & \(\{3, \sqrt{a}, 2\}\)
\end{tabular}

Returns the square root of the argument.

For a list, returns the square roots of all the elements in List1.

Note: You can insert this function from the keyboard by typing sqrt (...)

Note: See also Square root template, page 1.

\section*{П() (prodSeq)}

Catalogue > 国
\(\Pi(\) Expr1, Var, Low, High) \(\Rightarrow\) expression

Note: You can insert this function from the keyboard by typing prodSeq (...).

Evaluates Expr1 for each value of Var from Low to High, and returns the product of the results.

Note: See also Product template (П), page 5.
\(\Pi(\) Expr 1, Var, Low, Low-1) \(\Rightarrow 1\)
\(\Pi(\) Expr1, Var, Low, High \() \Rightarrow 1 / \Pi\) (Expr1, Var, High+1, Low-1) if High < Low-1

The product formulas used are derived from the following reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation for Computer Science. Reading, Massachusetts: AddisonWesley, 1994.

\(\Sigma(\) Expr1, Var, Low, High \() \Rightarrow\) expression

Note: You can insert this function from the keyboard by typing sumSeq (...).

Evaluates Expr1 for each value of Var from Low to High, and returns the sum of the results.

Note: See also Sum template, page 5.
\(\Sigma(\) Expr1, Var, Low, Low-1) \(\Rightarrow 0\)
\(\Sigma(\) Expr1, Var,Low, High \() \Rightarrow \mu\)
\(\Sigma(\) Expr1, Var, High + 1, Low-1) if High <Low-1

The summation formulas used are derived from the following reference:

Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation for Computer Science. Reading, Massachusetts: Addison-
\begin{tabular}{cc}
\hline\(\sum_{n=1}^{5}\left(\frac{1}{n}\right)\) & \(\frac{137}{60}\) \\
\hline\(\sum_{k=1}^{n}\left(k^{2}\right)\) & \(\frac{n \cdot(n+1) \cdot(2 \cdot n+1)}{6}\) \\
\hline\(\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}\right)\) & \(\frac{\pi^{2}}{6}\) \\
\hline 3 \\
\(\sum_{k=4}^{3}(k)\) & 0 \\
\hline
\end{tabular}
 Wesley, 1994.

Catalogue > 国
\(\overline{\Sigma \operatorname{Int}(1,3,12,4.75,20000,, 12,12)} \quad-213.48\)
\(\operatorname{\Sigma Int(NPmt1,~NPmt2,~N,~I,~PV~,[Pmt],~}\) [FV], [PpY], [CpY], [PmtAt], \([\) roundValue \(]) \Rightarrow\) value

VInt(NPmt1,NPmt2,amortTable) \(\Rightarrow\) value

Amortization function that calculates the sum of the interest during a specified range of payments.

NPmt1 and NPmt2 define the start and end boundaries of the payment range.
\(N, I, P V, P m t, F V, P p Y, C p Y\), and \(P m t A t\) are described in the table of TVM arguments, page 197.
- If you omit Pmt, it defaults to Pmt=tvmPmt
( \(N, I, P V, F V, P p Y, C p Y, P m t A t)\).
- If you omit \(F V\), it defaults to \(F V=0\).
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.
\(\operatorname{Int}(\) NPmt1,NPmt2,amortTable) calculates the sum of the interest based on amortization table amortTable. The amortTable argument must be a matrix in the form described under amortTbl(), page 8.

Note: See also \(\Sigma \operatorname{Prn}()\), below, and \(\operatorname{Bal}()\), page 17.
\begin{tabular}{l}
\hline\(t b l:=\operatorname{amortTbl}(12,12,4.75,20000,, 12,12)\) \\
\(\qquad\left[\begin{array}{cccc}0 & 0 . & 0 . & 20000 . \\
1 & -77.49 & -1632.43 & 18367.6 \\
2 & -71.17 & -1638.75 & 16728.8 \\
3 & -64.82 & -1645.1 & 15083.7 \\
4 & -58.44 & -1651.48 & 13432.2 \\
5 & -52.05 & -1657.87 & 11774.4 \\
6 & -45.62 & -1664.3 & 10110.1 \\
7 & -39.17 & -1670.75 & 8439.32 \\
8 & -32.7 & -1677.22 & 6762.1 \\
9 & -26.2 & -1683.72 & 5078.38 \\
10 & -19.68 & -1690.24 & 3388.14 \\
11 & -13.13 & -1696.79 & 1691.35 \\
12 & -6.55 & -1703.37 & -12.02\end{array}\right]\) \\
\hline \(\operatorname{Int}(1,3, t b l)\)
\end{tabular}

Catalogue > [9-2]
\(\overline{\Sigma \operatorname{Prn}(1,3,12,4.75,20000,12,12)}-4916.28\)
\begin{tabular}{l}
\hline\(t b l:=a \operatorname{amortTbl}(12,12,4.75,20000,, 12,12)\) \\
{\(\left[\begin{array}{cccc}0 & 0 . & 0 . & 20000 . \\
1 & -77.49 & -1632.43 & 18367.57 \\
2 & -71.17 & -1638.75 & 16728.82 \\
3 & -64.82 & -1645.1 & 15083.72 \\
4 & -58.44 & -1651.48 & 13432.24 \\
5 & -52.05 & -1657.87 & 11774.37 \\
6 & -45.62 & -1664.3 & 10110.07 \\
7 & -39.17 & -1670.75 & 8439.32 \\
8 & -32.7 & -1677.22 & 6762.1 \\
9 & -26.2 & -1683.72 & 5078.38 \\
10 & -19.68 & -1690.24 & 3388.14 \\
11 & -13.13 & -1696.79 & 1691.35 \\
12 & -6.55 & -1703.37 & -12.02\end{array}\right]\)} \\
\hline\(\Sigma \operatorname{Prn}(1,3, t b l)\)
\end{tabular}
- If you omit \(F V\), it defaults to \(F V=0\).
- The defaults for PpY, CpY, and PmtAt are the same as for the TVM functions.
roundValue specifies the number of decimal places for rounding. Default=2.

इPrn(NPmt1,NPmt2,amortTable) calculates the sum of the principal paid based on amortization table amortTable. The amortTable argument must be a matrix in the form described under amortTbl(), page 8.

Note: See also \(\Sigma \operatorname{lnt}()\), above, and \(\operatorname{Bal()}\), page 17.
\begin{tabular}{lcc} 
\# (indirection) & ctrl & nal keys \\
\# varNameString & \(\#\left(" x " \& " y " \& " z^{\prime}\right)\) & \(x y z\) \\
\hline
\end{tabular}

Refers to the variable whose name is varNameString. This lets you use strings to create variable names from within a function.

Creates or refers to the variable xyz .
\begin{tabular}{lr}
\hline \(10 \rightarrow r\) & 10 \\
\hline "r" \(\rightarrow\) s1 & "r" \\
\hline \#s1 & 10
\end{tabular}

Returns the value of the variable ( \(r\) ) whose name is stored in variable s1.
\begin{tabular}{llc} 
E (scientific notation) & & EE key \\
\cline { 2 - 3 } mantissaEexponent & 23000. & 23000. \\
\hline Enters a number in scientific notation. & \(2300000000 .+4.1 \mathrm{E} 15\) & 4.1 E 15 \\
\hline The number is interpreted as \\
mantiss \(a \times 10\) exponent. & \(3 \cdot 10^{4}\) & 30000 \\
\hline
\end{tabular}

Hint: If you want to enter a power of 10 without causing a decimal value result, use \(10^{\wedge}\) integer.

Note: You can insert this operator from the computer keyboard by typing @E. for example, type \(2.3 @ \mathrm{E} 4\) to enter 2.3E4.
g (gradian)
Expr \(1 \mathrm{~g} \Rightarrow\) expression
In Degree, Gradian or Radian mode:
List \(1 \mathbf{g} \Rightarrow\) list

Matrixlg \(\Rightarrow\) matrix

This function gives you a way to specify a gradian angle while in the Degree or Radian mode.

In Radian angle mode, multiplies Expr1 by \(\pi / 200\).

In Degree angle mode, multiplies Expr1 by \(\mathrm{g} / 100\).

In Gradian mode, returns Expr1 unchanged.

Note: You can insert this symbol from the computer keyboard by typing @g.
\(\cos \left(\left\{0,100^{9}, 200^{g}\right\}\right) \quad\{1,0,-1\}\)

\section*{r(radian)}

Expr \(1 \mathrm{r} \Rightarrow\) expression
List \(1 \mathbf{r} \Rightarrow\) list

Matrix \(1 \mathbf{r} \Rightarrow\) matrix
This function gives you a way to specify a radian angle while in Degree or Gradian mode.

In Degree angle mode, multiplies the argument by \(180 / \pi\).

In Radian angle mode, returns the argument unchanged.

In Gradian mode, multiplies the argument by \(200 / \pi\).

Hint: Use \(r\) if you want to force radians in a function definition regardless of the mode that prevails when the function is used.

Note: You can insert this symbol from the computer keyboard by typing @r.

In Degree, Gradian or Radian angle mode:
\(\cos \left(\frac{\pi}{4^{r}}\right) \quad \frac{\sqrt{2}}{2}\)
\(\cos \left\{\left\{0 r, \frac{\pi}{12} r,-(\pi)^{r}\right\}\right\} \quad\left\{1, \frac{(\sqrt{3}+1) \cdot \sqrt{2}}{4},-1\right\}\)

Expr \(1^{\circ} \Rightarrow\) expression
List \(1^{\circ} \Rightarrow\) list
Matrix \({ }^{\circ} \Rightarrow\) matrix
This function gives you a way to specify a degree angle while in Gradian or Radian mode.

In Radian angle mode, multiplies the argument by \(\pi / 180\).

In Degree angle mode, returns the argument unchanged.

In Gradian angle mode, multiplies the argument by 10/9.

Note: You can insert this symbol from the computer keyboard by typing @d.

In Degree, Gradian or Radian angle mode:
\(\cos \left(45^{\circ}\right) \quad \frac{\sqrt{2}}{2}\)

In Radian angle mode:
Note: To force an approximate result,
Handheld: Press ctri enter.
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\circledR}\) : Press \(\mathscr{H}+E n t e r\).
iPad \({ }^{\circledR}\) : Hold enter, and select \(\approx\).
\(\cos \left(\left\{0, \frac{\pi}{4}, 90^{\circ}, 30.12^{\circ}\right\}\right)\)
\(\{1 ., 0.707107,0 ., 0.864976\}\)

○, ', " (degree/minute/second)
dd \({ }^{\circ} m m\) 'ss.ss' \({ }^{\prime} \Rightarrow\) expression
\(d d \mathrm{~A}\) positive or negative number \(m m\) A non-negative number
Ss.ss A non-negative number
Returns \(d d+(\mathrm{mm} / 60)+(\) ss.ss \(/ 3600)\).
This base-60 entry format lets you:
- Enter an angle in degrees/minutes/seconds without regard to the current angle mode.
- Enter time as hours/minutes/seconds.

Note: Follow ss. with two apostrophes
("), not a quote symbol (").

In Degree angle mode:
\begin{tabular}{lr}
\hline \(25^{\circ} 13^{\prime} 17.5^{\prime \prime}\) & 25.2215 \\
\hline \(25^{\circ} 30^{\prime}\) & \(\frac{51}{2}\) \\
\hline
\end{tabular}

\section*{\(\angle\) (angle)}
\[
\text { ctrl } ® \text { keys }
\]
[Radius, \(\angle\) 日_Angle \(] \Rightarrow\) vector (polar input)
\([\) Radius,\(\angle\) 日_Angle,Z_Coordinate \(] \Rightarrow\) vector
(cylindrical input)

In Radian mode and vector format set to: rectangular
\(\left.\begin{array}{lllll}\hline 5 & \angle 60^{\circ} & \angle 45^{\circ}\end{array}\right]\left[\begin{array}{lll}\frac{5 \cdot \sqrt{2}}{4} & \frac{5 \cdot \sqrt{6}}{4} & \frac{5 \cdot \sqrt{2}}{2}\end{array}\right]\)
\([\) Radius,\(\angle\) 日_Angle,\(\angle\) \(\theta\) _Angle \(] \Rightarrow\) vector (spherical input)

Returns coordinates as a vector depending on the Vector Format mode setting: rectangular, cylindrical, or spherical.

Note: You can insert this symbol from the computer keyboard by typing @<.
(Magnitude \(\angle\) Angle) \(\Rightarrow\) complexValue (polar input)

Enters a complex value in ( \(\mathrm{r} \angle \theta\) ) polar form. The Angle is interpreted according to the current Angle mode setting.

\section*{' (prime)}
cylindrical
\[
\left[\begin{array}{lll}
5 \angle 60^{\circ} & \angle 45^{\circ}
\end{array}\right] \quad\left[\frac{5 \cdot \sqrt{2}}{2}<\frac{\pi}{3} \frac{5 \cdot \sqrt{2}}{2}\right]
\]
spherical
\[
\left[\begin{array}{lll}
5 & \angle 60^{\circ} & \angle 45^{\circ}
\end{array}\right] \quad\left[\begin{array}{lll}
5 & \angle \frac{\pi}{3} & <\frac{\pi}{4}
\end{array}\right]
\]

In Radian angle mode and Rectangular complex format:
\[
5+3 \cdot i-\left(10<\frac{\pi}{4}\right) \quad 5-5 \cdot \sqrt{2}+(3-5 \cdot \sqrt{2}) \cdot i
\]

Note: To force an approximate result,
Handheld: Press ctrl enter.
Windows \({ }^{\circledR}\) : Press Ctrl+Enter.
Macintosh \({ }^{\oplus}\) : Press \(\mathscr{\not}+E n t e r\).
iPad \({ }^{\circledR}\) : Hold enter, and select \(\approx\).

\section*{variable'}
variable''
Enters a prime symbol in a differential equation. A single prime symbol denotes a 1st-order differential equation, two prime symbols denote a 2nd-order, and
\[
\begin{array}{r}
\text { ?!• key } \\
\text { deSolve }\left(y^{\prime \prime}=y^{\frac{-1}{2}} \text { and } y(0)=0 \text { and } y^{\prime}(0)=0, t, y\right) \\
\frac{2 \cdot y^{4}}{3}=t
\end{array}
\]
\begin{tabular}{lr} 
& \begin{tabular}{r} 
See "Empty (Void)
\end{tabular} \\
_ (underscore as an empty element) \\
Elements," page 255.
\end{tabular}
\[
\text { Elements," page } 255 .
\]
\begin{tabular}{|c|c|c|c|}
\hline _ (underscore as unit designator) & & ctrl & keys \\
\hline Expr_Unit & 3._m\_ft & 9.84252 & \\
\hline
\end{tabular}

Designates the units for an Expr. All unit names must begin with an underscore.

You can use pre-defined units or create your own units. For a list of pre-defined units, open the Catalogue and display the Unit Conversions tab. You can select unit names from the Catalogue or type the unit names directly.

\section*{Variable_}

When Variable has no value, it is treated as though it represents a complex number. By default, without the _ , the variable is treated as real.

If Variable has a value, the _ is ignored and Variable retains its original data type.

Note: You can store a complex number to a variable without using _ . However, for best results in calculations such as cSolve() and cZeros(), the _ is recommended.

Note: You can find the conversion symbol, in the Catalogue. Click \(\sqrt{\int \Sigma}\), and then click Maths Operators.

Assuming \(z\) is undefined:
\begin{tabular}{lr}
\hline \(\operatorname{real}(z)\) & \(z\) \\
\hline \(\operatorname{real}\left(z_{-}\right)\) & \(\operatorname{real}\left(z_{-}\right)\) \\
\hline \(\operatorname{imag}(z)\) & 0 \\
\hline \(\operatorname{imag}\left(z_{-}\right)\) & \(\operatorname{imag}\left(z_{-}\right)\)
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline - (convert) & & ctrl keys \\
\hline Expr_Unit1 __Unit2 \(\Rightarrow\) Expr_Unit2 & 3._mıft & 9.84252 - ft \\
\hline
\end{tabular}

Converts an expression from one unit to another.

The _ underscore character designates the units. The units must be in the same category, such as Length or Area.

For a list of pre-defined units, open the Catalogue and display the Unit Conversions tab:
- You can select a unit name from the list.
- You can select the conversion operator, from the top of the list.

You can also type unit names manually. To type "_" when typing unit names on the handheld, press \(\operatorname{ctrl} \square\).

Note: To convert temperature units, use tmpCnv() and \(\Delta \operatorname{tmpCnv}()\). The conversion operator does not handle temperature units.
\(10^{\wedge}()\) Catalogue > 国
10^ \((\) Exprl \() \Rightarrow\) expression
\(\mathbf{1 0}^{\text {^ }}\) (List 1\() \Rightarrow\) list
Returns 10 raised to the power of the argument.

For a list, returns 10 raised to the power of the elements in Listl.

10^(squareMatrixl) \(\Rightarrow\) squareMatrix
Returns 10 raised to the power of squareMatrixl. This is not the same as calculating 10 raised to the power of each element. For information about the calculation method, refer to \(\cos ()\).
\begin{tabular}{lr}
\hline \(10^{1.5}\) & 31.6228 \\
\hline \(10^{\{0,-2,2, a\}}\) & \(\left\{1, \frac{1}{100}, 100,10^{a}\right\}\) \\
\hline
\end{tabular}
squareMatrixl must be diagonalizable.
The result always contains floating-point numbers.
\(\left[\begin{array}{ccc}1 & 5 & 3 \\ 4 & 2 & 1 \\ 6 & -2 & 1\end{array}\right]\)
10

Expr | BooleanExpr1[and BooleanExpr2]...

\section*{Expr | BooleanExpr1[ orBooleanExpr2]...}

The constraint ("|") symbol serves as a binary operator. The operand to the left of | is an expression. The operand to the right of | specifies one or more relations that are intended to affect the simplification of the expression. Multiple relations after | must be joined by logical "and" or "or" operators.

The constraint operator provides three basic types of functionality:
- Substitutions
- Interval constraints
- Exclusions

Substitutions are in the form of an equality, such as \(x=3\) or \(y=\sin (x)\). To be most effective, the left side should be a simple variable. Expr \(\mid\) Variable \(=\) value will substitute value for every occurrence of Variable in Expr.
Interval constraints take the form of one or more inequalities joined by logical "and" or "or" operators. Interval constraints also permit simplification that otherwise might be invalid or not computable.
\begin{tabular}{lr}
\hline\(x+1 \mid x=3\) & 4 \\
\hline\(x+y \mid x=\sin (y)\) & \(\sin (y)+y\) \\
\hline\(x+y \mid \sin (y)=x\) & \(x+y\)
\end{tabular}4
\(x+y\)

\section*{| (constraint operator)}

Exclusions use the "not equals" (/= or \(\neq\) ) relational operator to exclude a specific value from consideration. They are used primarily to exclude an exact solution when using cSolve(), cZeros(), fMax(), fMin(), solve(), zeros(), and so on.
\(\rightarrow\) (store)
solve \(\left(x^{2}-1=0, x\right) \mid x \neq 1 \quad x=-1\)

Expr \(\rightarrow\) Var
List \(\rightarrow\) Var
Matrix \(\rightarrow\) Var
Expr \(\rightarrow\) Function(Param1,...)
List \(\rightarrow\) Function(Param1,...)
Matrix \(\rightarrow\) Function(Param1,...)
If the variable Var does not exist, creates it and initializes it to Expr, List, or Matrix.

If the variable Var already exists and is not locked or protected, replaces its contents with Expr, List, or Matrix.

Hint: If you plan to do symbolic computations using undefined variables, avoid storing anything into commonly used, one-letter variables such as \(a, b, c\), \(x, y, z\), and so on.

Note: You can insert this operator from the keyboard by typing =: as a shortcut. For example, type pi/4 =: myvar.

Var \(:=\) Expr
Var := List
Var := Matrix
Function(Param1,...) := Expr
Function(Param1,...) := List
Function(Param1,...) := Matrix
If variable Var does not exist, creates Var and initializes it to Expr, List, or Matrix.

If Var already exists and is not locked or protected, replaces its contents with Expr, List, or Matrix.

Hint: If you plan to do symbolic computations using undefined variables, avoid storing anything into commonly used, one-letter variables such as \(a, b, c\), \(x, y, z\), and so on.

\section*{© (comment)}
© \([\) text \(]\)
© processes text as a comment line, allowing you to annotate functions and programs that you create.
© can be at the beginning or anywhere in the line. Everything to the right of ©, to the end of the line, is the comment.

Note for entering the example: For instructions on entering multi-line programme and function definitions, refer to the Calculator section of your product guidebook.
\begin{tabular}{lr}
\hline myvar \(:=\frac{\pi}{4}\) & \(\frac{\pi}{4}\) \\
\hline\(y l(x):=2 \cdot \cos (x)\) & Done \\
\hline lst \(5:=\{1,2,3,4\}\) & \(\{1,2,3,4\}\) \\
\hline matg: \(=\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right]\) & {\(\left[\begin{array}{lll}1 & 2 & 3 \\
4 & 5 & 6\end{array}\right]\)}
\end{tabular}
str \(1:=\) "Hello"
"Hello"

Define \(g(n)=\) Func
© Declare variables
Local i,result
result:=0
For \(i, 1, n, 1\) ©Loop \(n\) times
result: \(=\) result \(+i^{2}\)
EndFor
Return result
EndFunc
Done
\(g(3) \quad 14\)

Ob, Oh
Ob binaryNumber
Oh hexadecimalNumber

0 B keys, 0 Heys
In Dec base mode:
\[
0 \mathrm{~b} 10+0 \mathrm{hF}+10
\]27

Denotes a binary or hexadecimal
number, respectively. To enter a binary or hex number, you must enter the Ob or Oh prefix regardless of the Base mode. Without a prefix, a number is treated as decimal (base 10).

Results are displayed according to the Base mode.

In Bin base mode:
0b10 \(+0 \mathrm{hF}+10 \quad 0 \mathrm{~b} 11011\)

In Hex base mode:
\(0 \mathrm{~b} 10+0 \mathrm{hF}+10\)
0h1B

\section*{TI-Nspire \({ }^{\text {TM }}\) CX II - Draw Commands}

This is a supplemental document for the TI-Nspire \({ }^{\text {TM }}\) Reference Guide and the TINspire \({ }^{T M}\) CAS Reference Guide. All TI-Nspire \({ }^{T M}\) CX II commands will be incorporated and published in version 5.1 of the TI-Nspire \({ }^{T M}\) Reference Guide and the TI-Nspire \({ }^{T M}\) CAS Reference Guide.

\section*{Graphics Programming}

New commands have been added on TI-Nspire \({ }^{\text {TM }}\) CX II Handhelds and TI-Nspire \({ }^{\text {TM }}\) desktop applications for graphics programming.

The TI-Nspire \({ }^{\text {TM }}\) CX II Handhelds will switch into this graphics mode while executing graphics commands and switch back to the context in which the program was executed after completion of the program.

The screen will display "Running..." in the top bar while the program is being executed. It will show "Finished" when the program completes. Any key-press will transition the system out of the graphics mode.
- The transition to graphics mode is triggered automatically when one of the Draw (graphics) commands is encountered during execution of the TI-Basic program.
- This transition will only happen when executing a program from calculator; in a document or calculator in scratchpad.
- The transition out of graphics mode happens upon termination of the program.
- The graphics mode is only available on the TI-Nspire \({ }^{\text {TM }}\) CX II Handhelds and the desktop TI-Nspire \({ }^{\text {TM }}\) CX II Handhelds view. This means it is not available in the computer document view on the desktop nor on iOS.
- If a graphics command is encountered while executing a TI-Basic program from the incorrect context, an error message is displayed and the TI-Basic program is terminated.

\section*{Graphics Screen}

The graphics screen will contain a header at the top of the screen that cannot be written to by graphics commands.

The graphics screen drawing area will be cleared (colour \(=255,255,255\) ) when the graphics screen is initialized.
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Graphics \\
Screen
\end{tabular} & Default \\
\hline Height & 212 \\
\hline Width & 318 \\
\hline Colour & white: \(255,255,255\) \\
\hline
\end{tabular}

\section*{Default View and Settings}
- The status icons in the top bar (battery status, press-to-test status, network indicator etc.) will not be visible while a graphics program is running.
- Default drawing colour: Black \((0,0,0)\)
- Default pen style - normal, smooth
- Thickness: 1 (thin), 2 (normal), 3 (thickest)
- Style: 1 (smooth), 2 (dotted), 3 (dashed)
- All drawing commands will use the current colour and pen settings; either default values or those which were set via TI-Basic commands.
- Text font is fixed and cannot be changed.
- Any output to the graphics screen will be drawn within a clipping window which is the size of the graphics screen drawing area. Any drawn output that extends outside of this clipped graphics screen drawing area will not be drawn. No error message will be displayed.
- All \(x, y\) coordinates specified for drawing commands are defined such that 0,0 is at the top left corner of the graphics screen drawing area.
- Exceptions:
- DrawText uses the coordinates as the bottom left corner of the bounding box for the text.
- SetWindow uses the bottom left corner of the screen
- All parameters for the commands can be provided as expressions that evaluate to a number which is then rounded to the nearest integer.

\section*{Graphics Screen Errors Messages}

If the validation fails, an error message will display.
\begin{tabular}{|c|c|c|}
\hline Error Message & Description & View \\
\hline Error Syntax & If the syntax checker finds any syntax errors, it displays an error message and tries to position the cursor near the first error so you can correct it. &  \\
\hline Error Too few arguments & The function or command is missing one or more arguments & \begin{tabular}{l}
Error \\
Too few arguments \\
The function or command is missing one or more \\
arguments. \\
OK
\end{tabular} \\
\hline Error Too many arguments & The function or command contains and excessive number of arguments and cannot be evaluated. & \begin{tabular}{l}
Error \\
Too many arguments \\
The function or command contains an excessive number of arguments and cannot be evaluated. \\
OK
\end{tabular} \\
\hline Error Invalid data type & An argument is of the wrong data type. & \begin{tabular}{l}
Error \\
Invalid data type \\
An argument is of the wrong data type.
\end{tabular} \\
\hline
\end{tabular}

\section*{Invalid Commands While in Graphics Mode}

Some commands are not allowed once the program switches to graphics mode. If these commands are encountered while in graphics mode an error will be displayed and the program will be terminated.
\begin{tabular}{ll}
\hline \begin{tabular}{l} 
Disallowed \\
Command
\end{tabular} & Error Message \\
\hline Request & Request cannot be executed in graphics mode \\
\hline RequestStr & RequestStr cannot be executed in graphics mode \\
\hline Text & Text cannot be executed in graphics mode \\
\hline
\end{tabular}

The commands that print text to the calculator - disp and dispAt - will be supported commands in the graphics context. The text from these commands will be sent to the Calculator screen (not on Graphics) and will be visible after the program exits and the system switches back to the Calculator app

\section*{Clear}

Clear \(x, y\), width, height
Clears entire screen if no parameters are specified.
If \(x, y\), width and height are specified, the rectangle defined by the parameters will be cleared.

\section*{Clear}

Clears entire screen

Clear 10,10,100,50
Clears a rectangle area with top left corner on \((10,10)\) and with width 100, height 50

\section*{D}

DrawArc

\section*{Catalogue > [2]}

CXII
DrawArc \(x, y\), width, height, startAngle, arcAngle DrawArc 20,20,100,100,0,90
Draw an arc within the defined bounding rectangle with the provided start and arc angles.
\(x, y\) : upper left coordinate of bounding rectangle width, height: dimensions of bounding rectangle The "arc angle" defines the sweep of the arc.

These parameters can be provided as expressions that evaluate to a number which is then rounded to the nearest integer.


DrawArc 50, 50, 100, 100, 0, 180
Finished
\(\bigcirc\)

See Also: FillArc
\begin{tabular}{ll} 
DrawCircle & Catalogue \(>\) \\
DrawCircle \(x, y\), radius & \\
\(x, y\) : coordinate of centre & \\
radius: radius of the circle &
\end{tabular}

See Also: FillCircle

DrawLine

DrawLine \(x 1, y 1, x 2, y 2\)
DrawLine 10,10,150,200
Draw a line from \(x 1, y 1, x 2, y 2\).
Expressions that evaluate to a number which is then rounded to the nearest integer.

Screen bounds: If the specified coordinates causes any part of the line to be drawn outside of the graphics screen, that part of the line will be clipped
 and no error message will be displayed.

\section*{DrawPoly}

Catalogue > 国
CXII
The commands have two variants:
DrawPoly xlist, ylist
or
DrawPoly \(x 1, y 1, x 2, y 2, x 3, y 3 \ldots x n, y n\)
Note: DrawPoly xlist, ylist
Shape will connect \(x 1, y 1\) to \(x 2, y 2, x 2, y 2\) to \(x 3, y 3\) and so on.

Note: DrawPoly \(x 1, y 1, x 2, y 2, x 3, y 3 \ldots x n, y n\) \(x n, y n\) will NOT be automatically connected to \(x 1, y 1\).

Expressions that evaluate to a list of real floats xlist, ylist

Expressions that evaluate to a single real float \(x 1, y 1 \ldots x n, y n=\) coordinates for vertices of polygon

Note: DrawPoly: Input size dimensions (width/height) relative to drawn lines.
The lines are drawn in a bounding box around the specified coordinate and dimensions such that the actual size of the drawn polygon will be larger than the width and height.
See Also: FillPoly
xlist: \(=\{0,200,150,0\}\)
ylist: \(=\{10,20,150,10\}\)
DrawPoly xlist,ylist


DrawPoly
\(0,10,200,20,150,150,0,10\)


DrawRect \(x\), \(y\), width, height
\(x, y\) : upper left coordinate of rectangle width, height: width and height of rectangle (rectangle drawn down and right from starting coordinate).

Note: The lines are drawn in a bounding box around the specified coordinate and dimensions such that the actual size of the drawn rectangle will be larger than the width and height indicated.

See Also: FillRect
\begin{tabular}{|c|c|}
\hline DrawText & Catalog \\
\hline DrawText \(x\), \(y\), exprOrString1 [,exprOrString2]... & DrawText 50,50,"Hello World" \\
\hline \(x, y\) : coordinate of text output & Finsted \\
\hline Draws the text in exprOrString at the specified \(x, y\) coordinate location. & Hello World \\
\hline The rules for exprOrString are the same as for Disp DrawText can take multiple arguments. & \\
\hline
\end{tabular}

FillArc

FillArc \(x, y\) ，width，height startAngle，arcAngle

FillArc 50，50，100，100，0，180


The＂arc angle＂defines the sweep of the arc

\section*{FillCircle}

\section*{Catalogue＞国異 \\ CXII}

FillCircle 150，150，40


Here！

FillPoly

Catalogue＞国
CXII
xlist：\(=\{0,200,150,0\}\)
ylist：\(=\{10,20,150,10\}\)
FillPoly xlist，ylist


\footnotetext{
FillPoly
\(0,10,200,20,150,150,0,10\)
}
Running．．．

FillRect
Catalogue＞［⿴囗玉心
CXII
FillRect \(x\) ，\(y\) ，width，height
\(x, y\) ：upper left coordinate of rectangle
width，height：width and height of rectangle
Draw and fill a rectangle with the top left corner at the coordinate specified by \((x, y)\)

Default fill colour is black．The fill colour can be set by

FillRect 25，25，100，50
 the SetColor command

Note：The line and colour are specified by SetColor and SetPen
getPlatform()
Catalogue > 国
getPlatform() getPlatform()
"dt"
Returns:
"dt" on desktop software applications
"hh" on TI-Nspire \({ }^{\text {TM }}\) CX handhelds
"ios" on TI-Nspire \({ }^{\text {TM }}\) CX iPad \({ }^{\circledR}\) app
\begin{tabular}{|c|c|}
\hline PaintBuffer & Catalogue > 国运 CXII \\
\hline PaintBuffer & UseBuffer \\
\hline Paint graphics buffer to screen & For \(\mathrm{n}, 1,10\) \\
\hline \multirow[t]{7}{*}{This command is used in conjunction with UseBuffer to increase the speed of display on the screen when the program generates multiple graphical objects.} & \(\mathrm{x}:=\mathrm{randInt}(0,300)\)
\(\mathrm{y}:=\mathrm{randInt}(0,200)\)
radius \(:=r a n d I n t(10,50)\) \\
\hline & Wait 0.5 \\
\hline & DrawCircle \(x, y\),radius \\
\hline & EndFor \\
\hline & PaintBuffer \\
\hline & This program will display all the 10 circles at once. \\
\hline & If the "UseBuffer" command is removed, each circle will be displayed as it is drawn. \\
\hline
\end{tabular}

\footnotetext{
See Also: UseBuffer
}

\section*{PlotXY}

PlotXY \(x, y\), shape
\(x, y\) : coordinate to plot shape
shape : a number between 1 and 13 specifying the shape

1 - Filled circle
2 - Empty circle
3 - Filled square
4 - Empty square
5 - Cross
6 - Plus
7 - Thin
8 - medium point, solid
9 - medium point, empty
10 - larger point, solid
11 - larger point, empty
12 - largest point, solid
13 - largest point, empty

PlotXY 100,100,1


For \(n, 1,13\)
DrawText \(1+22^{*} n, 40, n\)
PlotXY 5+22*n,50,n
EndFor


\section*{SetColor}

\section*{Catalogue > 国}

CXII

\section*{SetColor}

Red-value, Green-value, Blue-value
Valid values for red, green and blue are between 0 and 255

Sets the colour for subsequent Draw commands

SetColor 255,0,0
DrawCircle 150,150,100


SetPen
Catalogue \(>\) [an
CXII

\section*{SetPen}
thickness, style
thickness: \(1<=\) thickness <= \(3 \mid 1\) is thinnest, 3 is thickest
style: \(1=\) Smooth, 2 = Dotted, 3 = Dashed
Sets the pen style for subsequent Draw commands

SetPen 3, 3
DrawCircle 150,150,50

\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{SetWindow} & Catalogue \(>\) [abl \\
\hline & \\
\hline SetWindow & SetWindow 0,160,0,120 \\
\hline xMin, xMax, yMin, yMax & will set the output window to have 0,0 in the bottom left corner with a width of \\
\hline Establishes a logical window that maps to the & 160 and a height of 120 \\
\hline graphics drawing area. All parameters are required. & DrawLine 0,0,100,100 \\
\hline If the part of drawn object is outside the window, the & SetWindow 0,160,0,120 \\
\hline output will be clipped (not shown) and no error & SetPen 3,3 \\
\hline message is displayed. & DrawLine 0,0,100,100 \\
\hline
\end{tabular}

If \(x \min\) is greater than or equal to \(x m a x\) or \(y m i n\) is greater than or equal to ymax, an error message is shown.

Any objects drawn before a SetWindow command will not be re-drawn in the new configuration.

To reset the window parameters to the default, use:


SetWindow 0,0,0,0
\begin{tabular}{|c|c|}
\hline UseBuffer & \begin{tabular}{l}
Catalogue > [国 \\
CXII
\end{tabular} \\
\hline UseBuffer & UseBuffer \\
\hline Draw to an off screen graphics buffer instead of screen (to increase performance) & \[
\begin{aligned}
& \text { For } n, 1,10 \\
& x:=\operatorname{randInt}(0,300)
\end{aligned}
\] \\
\hline This command is used in conjunction with PaintBuffer to increase the speed of display on the screen when the program generates multiple graphical objects. & ```
y:=randInt(0,200)
radius:=randInt(10,50)
Wait 0.5
``` \\
\hline With UseBuffer, all the graphics are displayed only after the next PaintBuffer command is executed. & DrawCircle \(x, y\),radius EndFor \\
\hline UseBuffer only needs to be called once in the program i.e. every use of PaintBuffer does not need a corresponding UseBuffer & \begin{tabular}{l}
PaintBuffer \\
This program will display all the 10 circles at once. \\
If the "UseBuffer" command is removed, each circle will be displayed as it is drawn.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
See Also: PaintBuffer
}

\section*{Empty (Void) Elements}

When analyzing real-world data, you might not always have a complete data set. TI-Nspire \({ }^{\text {TM }}\) CAS Software allows empty, or void, data elements so you can proceed with the nearly complete data rather than having to start over or discard the incomplete cases.

You can find an example of data involving empty elements in the Lists \& Spreadsheet chapter, under "Graphing spreadsheet data."

The delVoid() function lets you remove empty elements from a list. The isVoid() function lets you test for an empty element. For details, see delVoid(), page 49, and isVoid(), page 95.

Note: To enter an empty element manually in a maths expression, type "_" or the keyword void. The keyword void is automatically converted to a "_" symbol when the expression is evaluated. To type "_" on the handheld, press \(\quad \square\) trrl \(\triangle\).

\section*{Calculations involving void elements}

The majority of calculations involving a void input will produce a void result. See special cases below.
\begin{tabular}{lr}
\hline\(|-|\) & - \\
\hline \(\operatorname{gcd}\left(100, _\right)\) & - \\
\hline \(3+_\) & - \\
\hline\(\{5,, 10\}-\{3,6,9\}\) & \(\{2,, 1\}\) \\
\hline
\end{tabular}

\section*{List arguments containing void elements}

The following functions and commands ignore (skip) void elements found in list arguments.
count, countlf, cumulativeSum, freqTable\list, frequency, max, mean, median, product, stDevPop, stDevSamp, sum, sumlf, varPop and varSamp, as well as regression calculations, OneVar, TwoVar and FiveNumSummary statistics, confidence intervals and stat tests

SortA and SortD move all void elements within the first argument to the bottom.
\begin{tabular}{lr}
\hline sum \((\{2, \ldots, 3,5,6.6\})\) & 16.6 \\
\hline median \((\{1,2,,-,, 3\})\) & 2 \\
\hline cumulativeSum \((\{1,2,, 4,5\})\) & \(\{1,3,-7,12\}\) \\
\hline cumulativeSum \(\left(\left[\begin{array}{ll}1 & 2 \\
3 & - \\
5 & 6\end{array}\right]\right.\)
\end{tabular}
\begin{tabular}{lr}
\hline\(\{5,4,3,, 1\} \rightarrow\) list1 & \(\{5,4,3,, 1\}\) \\
\hline\(\{5,4,3,2,1\} \rightarrow\) list2 & \(\{5,4,3,2,1\}\) \\
\hline SortA list 1, list 2 & Done \\
\hline list 1 & \(\{1,3,4,5\}\}\), \\
\hline list 2 & \(\{1,3,4,5,2\}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \(\{1,2,3, \ldots, 5\} \rightarrow\) list1 & \{1,2,3,_,5\} \\
\hline \(\{1,2,3,4,5\} \rightarrow\) list2 & \{1,2,3,4,5\} \\
\hline SortD list1,list2 & Done \\
\hline list1 & \{5,3,2,1,_\} \\
\hline list2 & \{5,3,2,1,4\} \\
\hline \multicolumn{2}{|l|}{l1: \(=\{1,2,3,4,5\}: 12:=\{2,-3,5,6.6\}\)} \\
\hline & \{2,_, \(3,5,6.6\}\) \\
\hline LinRegMx 11, 12 & Done \\
\hline \multicolumn{2}{|l|}{stat.Resid} \\
\hline \multicolumn{2}{|l|}{\(\{0.434286, \ldots,-0.862857,-0.011429,0.44\}\)} \\
\hline stat.XReg & \{1.,_,3.,4.5. \} \\
\hline stat.YReg & \{2.,_,3.,5.,6.6\} \\
\hline stat.FreqReg & \{1.,, 1.,1., 1. \(\}\) \\
\hline
\end{tabular}

An omitted category in regressions introduces a void for the corresponding element of the residual.

A frequency of 0 in regressions introduces a void for the corresponding element of the residual.
\begin{tabular}{|c|c|}
\hline \(\underline{l 1}:=\{1,3,4,5\}: 12:=\{2,3,5,6.6\}\) & \{2,3,5,6.6 \} \\
\hline \multicolumn{2}{|l|}{cat:=\{"M","M","F","F"\}: incl:=\{"F"\}} \\
\hline & \{ "F" \} \\
\hline LinRegMx 11, l2,1, cat,incl & Done \\
\hline stat.Resid & _,_, \(0 ., 0\). \\
\hline stat.XReg & \{_,-,4.,5.\} \\
\hline stat.YReg & \{_,_,5.,6.6\} \\
\hline stat.FreqReg & \{_,-,1.,1.\} \\
\hline
\end{tabular}
\begin{tabular}{lr}
\hline\(l 1:=\{1,3,4,5\}: l 2:=\{2,3,5,6.6\}\) & \(\{2,3,5,6.6\}\) \\
\hline LinRegMx \(11, l 2,\{1,0,1,1\}\) & Done \\
\hline stat.Resid \(\quad\{0.069231,,-0.276923,0.207692\}\) \\
\hline stat.XReg & \(\{1 .,,, 4 ., 5\}\). \\
\hline stat.YReg & \(\{2 .,, 5 ., 6.6\}\) \\
\hline stat.FreqReg & \(\{1 .,, 1 ., 1\}\). \\
\hline
\end{tabular}

\section*{Shortcuts for Entering Maths Expressions}

Shortcuts let you enter elements of maths expressions by typing instead of using the Catalogue or Symbol Palette. For example, to enter the expression \(\sqrt{6}\), you can type sqrt (6) on the entry line. When you press enter, the expression sqrt (6) is changed to \(\sqrt{6}\). Some shortrcuts are useful from both the handheld and the computer keyboard. Others are useful primarily from the computer keyboard.

From the Handheld or Computer Keyboard
\begin{tabular}{ll}
\hline To enter this: & Type this shortcut: \\
\hline\(\pi\) & pi \\
\hline\(\theta\) & theta \\
\hline\(\infty\) & infinity \\
\hline\(\leq\) & \(<=\) \\
\hline\(\geq\) & \(>=\) \\
\hline\(\neq\) & /= \\
\hline\(\Rightarrow\) (logical implication) & \(=>\) \\
\hline \begin{tabular}{ll}
dd \(\Leftrightarrow\) (logical double \\
implication, XNOR)
\end{tabular} & \(<=>\) \\
\hline\(\rightarrow\) (store operator) & abs (...) \\
\hline\(\| \mid\) (absolute value) & sqrt (...) \\
\hline\(\sqrt{()}\) & derivative (...) \\
\hline\(d()\) & integral (...) \\
\hline \(\int()\) & sumSeq (...) \\
\hline\(\Sigma()(\) Sum template) & prodSeq (...) \\
\hline\(\Pi()\) (Product template) & arcsin (...), arccos (...), \(\ldots\) \\
\hline \(\sin ^{-1}()\), cos \({ }^{-1}(), \ldots\) & deltaList (...) \\
\hline\(\Delta\) List() & deltaTmpCnv (...) \\
\hline\(\Delta\) tmpCnv() & \\
\hline
\end{tabular}

From the Computer Keyboard
\begin{tabular}{ll}
\hline To enter this: & Type this shortcut: \\
\hline \(\mathrm{c} 1, \mathrm{c} 2, \ldots\) (constants) & @c1, @c2, \(\ldots\) \\
\hline \begin{tabular}{l}
\(\mathrm{n} 1, \mathrm{n} 2, \ldots\) (integer \\
constants)
\end{tabular} & @n1, @n2,.. \\
\hline\(i\) (imaginary constant) & @i \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline To enter this: & Type this shortcut: \\
\hline e (natural log base e) & @ \\
\hline E (scientific notation) & @E \\
\hline T (transpose) & @t \\
\hline \({ }^{r}\) (radians) & @r \\
\hline \({ }^{\circ}\) (degrees) & @d \\
\hline g (gradians) & @g \\
\hline \(\angle\) (angle) & @< \\
\hline - (conversion) & @> \\
\hline Decimal, DapproxFraction() and so on. & @>Decimal, @>approxFraction() and so on. \\
\hline
\end{tabular}

\section*{EOS \({ }^{\text {TM }}\) (Equation Operating System) Hierarchy}

This section describes the Equation Operating System (EOS \({ }^{\text {TM }}\)) that is used by the TI-Nspire \({ }^{\text {TM }}\) CAS maths and science learning technology. Numbers, variables and functions are entered in a simple, straightforward sequence. EOS \({ }^{T M}\) software evaluates expressions and equations using parenthetical grouping and according to the priorities described below.

Order of Evaluation
\begin{tabular}{|c|c|}
\hline Level & Operator \\
\hline 1 & Parentheses (), brackets [], braces \{ \} \\
\hline 2 & Indirection (\#) \\
\hline 3 & Function calls \\
\hline 4 & Post operators: degrees-minutes-seconds (\({ }^{\circ}\), '," \()\), factorial (!), percentage (\%), radian (\({ }^{\mathrm{r}}\)), subscript ([]), transpose (\({ }^{\mathrm{T}}\)) \\
\hline 5 & Exponentiation, power operator (^) \\
\hline 6 & Negation (-) \\
\hline 7 & String concatenation (\&) \\
\hline 8 & Multiplication (*), division (/) \\
\hline 9 & Addition (+), subtraction (-) \\
\hline 10 & Equality relations: equal (\(=\)), not equal (\(\neq\) or \(/=\)), less than (\(<\)), less than or equal (\(\leq\) or \(<=\)), greater than (\(>\)), greater than or equal (\(\geq\) or \(>=\)) \\
\hline 11 & Logical not \\
\hline 12 & Logical and \\
\hline 13 & Logical or \\
\hline 14 & xor, nor, nand \\
\hline 15 & Logical implication (\(\Rightarrow\)) \\
\hline 16 & Logical double implication, XNOR (\(\Leftrightarrow\)) \\
\hline 17 & Constraint operator ("|") \\
\hline 18 & Store (\(\rightarrow\)) \\
\hline
\end{tabular}

\section*{Parentheses, Brackets and Braces}

All calculations inside a pair of parentheses, brackets, or braces are evaluated first. For example, in the expression \(4(1+2)\), EOS \(^{\text {TM }}\) software first evaluates the portion of the expression inside the parentheses, \(1+2\), and then multiplies the result, 3 , by 4 .

The number of opening and closing parentheses, brackets and braces must be the same within an expression or equation. If not, an error message is displayed that indicates
the missing element. For example, (1+2)/(3+4 will display the error message "Missing)."

Note: Because the TI-Nspire \({ }^{\text {TM }}\) CAS software allows you to define your own functions, a variable name followed by an expression in parentheses is considered a "function call" instead of implied multiplication. For example \(a(b+c)\) is the function a evaluated \(b y b+c\). To multiply the expression \(b+c\) by the variable \(a\), use explicit multiplication: \(a *(b+c)\).

\section*{Indirection}

The indirection operator (\#) converts a string to a variable or function name. For example, \(\#(" x\) " \(\& " y\) " \(\& " z\) ") creates the variable name \(x y z\). Indirection also allows the creation and modification of variables from inside a programme. For example, if \(10 \rightarrow r\) and " r " \(\rightarrow \mathrm{s} 1\), then \#s1=10.

\section*{Post Operators}

Post operators are operators that come directly after an argument, such as 5 !, \(25 \%\), or \(60^{\circ} 15^{\prime} 45^{\prime \prime}\). Arguments followed by a post operator are evaluated at the fourth priority level. For example, in the expression \(4 \wedge 3!\) ! 3 ! is evaluated first. The result, 6 , then becomes the exponent of 4 to yield 4096.

\section*{Exponentiation}

Exponentiation (\(\wedge\)) and element-by-element exponentiation (.^) are evaluated from right to left. For example, the expression \(2^{\wedge} 3^{\wedge} 2\) is evaluated the same as \(2^{\wedge}\left(3^{\wedge} 2\right)\) to produce 512 . This is different from \(\left(2^{\wedge} 3\right)^{\wedge} 2\), which is 64 .

\section*{Negation}

To enter a negative number, press (-) followed by the number. Post operations and exponentiation are performed before negation. For example, the result of \(-x 2\) is a negative number, and \(-92=-81\). Use parentheses to square a negative number such as \((-9)^{2}\) to produce 81.

\section*{Constraint ("|")}

The argument following the constraint ("|") operator provides a set of constraints that affect the evaluation of the argument preceding the operator.

\section*{TI-Nspire CX II - TI-Basic Programming Features}

\section*{Auto-indentation in Programming Editor}

The TI-Nspire \({ }^{\text {TM }}\) program editor now auto-indents statements inside a block command. Block commands are If/Endlf, For/EndFor, While/EndWhile, Loop/EndLoop, Try/EndTry

The editor will automatically prepend spaces to program commands inside a block command. The closing command of the block will be aligned with the opening command.

The example below shows auto-indentation in nested block commands.
\begin{tabular}{|c|c|}
\hline 41.21 .31 .4 * Doc & rad \(\square \times\) \\
\hline autoindent & 77 \\
\hline Define autoindent ()\(=\) & \(\bullet\) \\
\hline Prgm & \\
\hline For \(n, 1,10\) & \\
\hline DrawLine \(n, n, n \cdot 10, n \cdot 10\) & \\
\hline While \(n<5\) & \\
\hline \[
\begin{aligned}
& \text { FillCircle } n \cdot 25, n \cdot 5, n \cdot 10 \\
& n:=n+1
\end{aligned}
\] & \\
\hline EndWhile & \\
\hline EndFor & \\
\hline EndPrgm & - \\
\hline
\end{tabular}

Code fragments that are copied and pasted will retain the original indentation.
Opening a program created in an earlier version of the software will retain the original indentation.

Improved Error Messages for TI-Basic
Errors
\begin{tabular}{|l|l|}
\hline Error Condition & New message \\
\hline Error in condition statement (If/While) & \begin{tabular}{l}
A conditional statement did not resolve to \\
TRUE or FALSE \\
NOTE: With the change to place the cursor on \\
the line with the error, we no longer need to \\
specify if the error is in an "If" statement or a \\
"While" statement.
\end{tabular} \\
\hline Missing Endlf & \begin{tabular}{l}
Expected EndIf but found a different end \\
statement
\end{tabular} \\
\hline Missing EndFor & \begin{tabular}{l}
Expected EndFor but found a different end \\
statement
\end{tabular} \\
\hline Missing EndWhile & \begin{tabular}{l}
Expected EndWhile but found a different end \\
statement
\end{tabular} \\
\hline Missing EndLoop & \begin{tabular}{l}
Expected EndLoop but found a different end \\
statement
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Error Condition & New message \\
\hline Missing EndTry & \begin{tabular}{l}
Expected EndTry but found a different end \\
statement
\end{tabular} \\
\hline "Then" omitted after If <condition> & Missing If..Then \\
\hline "Then" omitted after Elself <condition> & Then missing in block: Elself. \\
\hline \begin{tabular}{l}
When "Then", "Else" and "Elself" were \\
encountered outside of control blocks
\end{tabular} & \begin{tabular}{l}
Else invalid outside of blocks: If..Then..EndIf or \\
Try..EndTry
\end{tabular} \\
\hline \begin{tabular}{l}
"Elself" appears outside of "If..Then..Endlf" \\
block
\end{tabular} & Elself invalid outside of block: If..Then..EndIf \\
\hline "Then" appears outside of "If....EndIf" block & Then invalid outside of block: If..EndIf \\
\hline
\end{tabular}

\section*{Syntax Errors}

In case commands that expect one or more arguments are called with an incomplete list of arguments, a "Too few argument error" will be issued instead of "syntax" error

\begin{tabular}{|l|l|}
\hline Current behaviour & New CX II behaviour \\
\hline & \\
\hline & \\
\hline
\end{tabular}

Note: When an incomplete list of arguments is not followed by a comma, the error message is: "too few arguments". This is the same as previous releases.
\begin{tabular}{|c|c|c|}
\hline (1.14 1.2 & -Doc & rad \(\square \times\) \\
\hline \multicolumn{3}{|l|}{LU m} \\
\hline \multicolumn{3}{|l|}{Eror} \\
\hline \multicolumn{3}{|l|}{Too tew arguments} \\
\hline \multicolumn{3}{|l|}{The function or command is missing one or more arguments.} \\
\hline & OK & \\
\hline
\end{tabular}

\section*{Constants and Values}

The following table lists the constants and their values that are available when performing unit conversions. They can be typed in manually or selected from the Constants list in Utilities > Unit Conversions (Handheld: Press 3).
\begin{tabular}{|c|c|c|}
\hline Constant & Name & Value \\
\hline _c & Speed of light & 299792458 _m/_s \\
\hline _Cc & Coulomb constant & 8987551787.3682 _m/_F \\
\hline _Fc & Faraday constant & 96485.33289 _coul/_mol \\
\hline _g & Acceleration of gravity & 9.80665 _m/_s \({ }^{2}\) \\
\hline _Gc & Gravitational constant & \(6.67408 \mathrm{E}-11\) _m \({ }^{3} / \mathrm{kg} / \mathrm{s}^{2}\) \\
\hline _h & Planck's constant & \(6.626070040 \mathrm{E}-34\) _J _s \\
\hline _k & Boltzmann's constant & \(1.38064852 \mathrm{E}-23\) _J/_ \({ }^{\circ} \mathrm{K}\) \\
\hline _ \(\mu 0\) & Permeability of a vacuum & \(1.2566370614359 \mathrm{E}-6\) _N/_A \({ }^{2}\) \\
\hline _ \(\mu \mathrm{b}\) & Bohr magneton & \(9.274009994 E-24 . J\) _m²/_Wb \\
\hline _Me & Electron rest mass & \(9.10938356 \mathrm{E}-31\) _kg \\
\hline _M \(\mu\) & Muon mass & \(1.883531594 \mathrm{E}-28\) _kg \\
\hline _Mn & Neutron rest mass & 1.674927471E-27 _kg \\
\hline _Mp & Proton rest mass & \(1.672621898 \mathrm{E}-27\) _kg \\
\hline _Na & Avogadro's number & 6.022140857 E 23 /_mol \\
\hline _q & Electron charge & \(1.6021766208 \mathrm{E}-19\) _coul \\
\hline _Rb & Bohr radius & \(5.2917721067 \mathrm{E}-11\) _m \\
\hline _Rc & Molar gas constant & 8.3144598 _J/_mol/_ \({ }^{\circ} \mathrm{K}\) \\
\hline _Rdb & Rydberg constant & 10973731.568508/_m \\
\hline _Re & Electron radius & \(2.8179403227 \mathrm{E}-15\) _m \\
\hline _u & Atomic mass & 1.660539040E-27_kg \\
\hline _Vm & Molar volume & \(2.2413962 \mathrm{E}-2\) _m³/_mol \\
\hline _ع0 & Permittivity of a vacuum & \(8.8541878176204 \mathrm{E}-12\) _F/_m \\
\hline _ \(\sigma\) & Stefan-Boltzmann constant & \(5.670367 \mathrm{E}-8\) _W/_m²/_ \({ }^{\text {K }}{ }^{4}\) \\
\hline _ф0 & Magnetic flux quantum & \(2.067833831 \mathrm{E}-15\) _Wb \\
\hline
\end{tabular}

\section*{Error Codes and Messages}

When an error occurs, its code is assigned to variable errCode. User-defined programs and functions can examine errCode to determine the cause of an error. For an example of using errCode, See Example 2 under the Try command, page 193.

Note: Some error conditions apply only to TI-Nspire \({ }^{T M}\) CAS products, and some apply only to TI-Nspire \({ }^{\text {TM }}\) products.
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 10 & A function did not return a value \\
\hline 20 & \begin{tabular}{l}
A test did not resolve to TRUE or FALSE. \\
Generally, undefined variables cannot be compared. For example, the test If \(a<b\) will cause this error if either \(a\) or \(b\) is undefined when the If statement is executed.
\end{tabular} \\
\hline 30 & Argument cannot be a folder name. \\
\hline 40 & Argument error \\
\hline 50 & \begin{tabular}{l}
Argument mismatch \\
Two or more arguments must be of the same type.
\end{tabular} \\
\hline 60 & Argument must be a Boolean expression or integer \\
\hline 70 & Argument must be a decimal number \\
\hline 90 & Argument must be a list \\
\hline 100 & Argument must be a matrix \\
\hline 130 & Argument must be a string \\
\hline 140 & \begin{tabular}{l}
Argument must be a variable name. \\
Make sure that the name: \\
- does not begin with a digit \\
- does not contain spaces or special characters \\
- does not use underscore or period in invalid manner \\
- does not exceed the length limitations \\
See the Calculator section in the documentation for more details.
\end{tabular} \\
\hline 160 & Argument must be an expression \\
\hline 165 & Batteries too low for sending or receiving Install new batteries before sending or receiving. \\
\hline 170 & Bound \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline & The lower bound must be less than the upper bound to define the search interval. \\
\hline 180 & \begin{tabular}{l}
Break \\
 programme execution.
\end{tabular} \\
\hline 190 & \begin{tabular}{l}
Circular definition \\
This message is displayed to avoid running out of memory during infinite replacement of variable values during simplification. For example, \(a+1->a\), where \(a\) is an undefined variable, will cause this error.
\end{tabular} \\
\hline 200 & \begin{tabular}{l}
Constraint expression invalid \\
For example, solve \(\left(3 x^{\wedge} 2-4=0, x\right) \mid x<0\) or \(x>5\) would produce this error message because the constraint is separated by "or" instead of "and."
\end{tabular} \\
\hline 210 & \begin{tabular}{l}
Invalid Data type \\
An argument is of the wrong data type.
\end{tabular} \\
\hline 220 & Dependent limit \\
\hline 230 & \begin{tabular}{l}
Dimension \\
A list or matrix index is not valid. For example, if the list \(\{1,2,3,4\}\) is stored in \(L 1\), then L1[5] is a dimension error because L1 only contains four elements.
\end{tabular} \\
\hline 235 & Dimension Error. Not enough elements in the lists. \\
\hline 240 & \begin{tabular}{l}
Dimension mismatch \\
Two or more arguments must be of the same dimension. For example, [1,2]+ \([1,2,3]\) is a dimension mismatch because the matrices contain a different number of elements.
\end{tabular} \\
\hline 250 & Divide by zero \\
\hline 260 & \begin{tabular}{l}
Domain error \\
An argument must be in a specified domain. For example, rand(0) is not valid.
\end{tabular} \\
\hline 270 & Duplicate variable name \\
\hline 280 & Else and Elself invalid outside of If...EndIf block \\
\hline 290 & EndTry is missing the matching Else statement \\
\hline 295 & Excessive iteration \\
\hline 300 & Expected 2 or 3-element list or matrix \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 310 & The first argument of nSolve must be an equation in a single variable. It cannot contain a non-valued variable other than the variable of interest. \\
\hline 320 & \begin{tabular}{l}
First argument of solve or cSolve must be an equation or inequality \\
For example, solve (\(3 x^{\wedge} 2-4, x\)) is invalid because the first argument is not an equation.
\end{tabular} \\
\hline 345 & Inconsistent units \\
\hline 350 & Index out of range \\
\hline 360 & Indirection string is not a valid variable name \\
\hline 380 & \begin{tabular}{l}
Undefined Ans \\
Either the previous calculation did not create Ans, or no previous calculation was entered.
\end{tabular} \\
\hline 390 & Invalid assignment \\
\hline 400 & Invalid assignment value \\
\hline 410 & Invalid command \\
\hline 430 & Invalid for the current mode settings \\
\hline 435 & Invalid guess \\
\hline 440 & \begin{tabular}{l}
Invalid implied multiply \\
For example, \(x(x+1)\) is invalid; whereas, \(x^{*}(x+1)\) is the correct syntax. This is to avoid confusion between implied multiplication and function calls.
\end{tabular} \\
\hline 450 & Invalid in a function or current expression Only certain commands are valid in a user-defined function. \\
\hline 490 & Invalid in Try..EndTry block \\
\hline 510 & Invalid list or matrix \\
\hline 550 & \begin{tabular}{l}
Invalid outside function or programme \\
A number of commands are not valid outside a function or programme. For example, Local cannot be used unless it is in a function or programme.
\end{tabular} \\
\hline 560 & Invalid outside Loop..EndLoop, For..EndFor, or While..EndWhile blocks For example, the Exit command is valid only inside these loop blocks. \\
\hline 565 & Invalid outside programme \\
\hline 570 & \begin{tabular}{l}
Invalid pathname \\
For example, \var is invalid.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 575 & Invalid polar complex \\
\hline 580 & \begin{tabular}{l}
Invalid programme reference \\
Programs cannot be referenced within functions or expressions such as \(1+\mathrm{p}(\mathrm{x})\) where \(p\) is a programme.
\end{tabular} \\
\hline 600 & Invalid table \\
\hline 605 & Invalid use of units \\
\hline 610 & Invalid variable name in a Local statement \\
\hline 620 & Invalid variable or function name \\
\hline 630 & Invalid variable reference \\
\hline 640 & Invalid vector syntax \\
\hline 650 & \begin{tabular}{l}
Link transmission \\
A transmission between two units was not completed. Verify that the connecting cable is connected firmly to both ends.
\end{tabular} \\
\hline 665 & Matrix not diagonalisable \\
\hline 670 & \begin{tabular}{l}
Low Memory \\
1. Delete some data in this document \\
2. Save and close this document \\
If 1 and 2 fail, pull out and re-insert batteries
\end{tabular} \\
\hline 672 & Resource exhaustion \\
\hline 673 & Resource exhaustion \\
\hline 680 & Missing (\\
\hline 690 & Missing) \\
\hline 700 & Missing " \\
\hline 710 & Missing] \\
\hline 720 & Missing \} \\
\hline 730 & Missing start or end of block syntax \\
\hline 740 & Missing Then in the If..Endlf block \\
\hline 750 & Name is not a function or programme \\
\hline 765 & No functions selected \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 780 & No solution found \\
\hline 800 & \begin{tabular}{l}
Non-real result \\
For example, if the software is in the Real setting, \(\sqrt{ }(-1)\) is invalid. \\
To allow complex results, change the "Real or Complex" Mode Setting to RECTANGULAR or POLAR.
\end{tabular} \\
\hline 830 & Overflow \\
\hline 850 & \begin{tabular}{l}
programme not found \\
A programme reference inside another programme could not be found in the provided path during execution.
\end{tabular} \\
\hline 855 & Rand type functions not allowed in graphing \\
\hline 860 & Recursion too deep \\
\hline 870 & Reserved name or system variable \\
\hline 900 & \begin{tabular}{l}
Argument error \\
Median-median model could not be applied to data set.
\end{tabular} \\
\hline 910 & Syntax error \\
\hline 920 & Text not found \\
\hline 930 & \begin{tabular}{l}
Too few arguments \\
The function or command is missing one or more arguments.
\end{tabular} \\
\hline 940 & \begin{tabular}{l}
Too many arguments \\
The expression or equation contains an excessive number of arguments and cannot be evaluated.
\end{tabular} \\
\hline 950 & Too many subscripts \\
\hline 955 & Too many undefined variables \\
\hline 960 & \begin{tabular}{l}
Variable is not defined \\
No value is assigned to variable. Use one of the following commands: \\
- sto \(\rightarrow\) \\
- := \\
- Define \\
to assign values to variables.
\end{tabular} \\
\hline 965 & Unlicensed OS \\
\hline 970 & Variable in use so references or changes are not allowed \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 980 & Variable is protected \\
\hline 990 & \begin{tabular}{l}
Invalid variable name \\
Make sure that the name does not exceed the length limitations
\end{tabular} \\
\hline 1000 & Window variables domain \\
\hline 1010 & Zoom \\
\hline 1020 & Internal error \\
\hline 1030 & Protected memory violation \\
\hline 1040 & Unsupported function. This function requires Computer Algebra System. Try TI-Nspire \({ }^{\text {TM }}\) CAS. \\
\hline 1045 & Unsupported operator. This operator requires Computer Algebra System. Try TI-Nspire \({ }^{\text {TM }}\) CAS. \\
\hline 1050 & Unsupported feature. This operator requires Computer Algebra System. Try TI-Nspire \({ }^{\text {TM }}\) CAS. \\
\hline 1060 & Input argument must be numeric. Only inputs containing numeric values are allowed. \\
\hline 1070 & Trig function argument too big for accurate reduction \\
\hline 1080 & Unsupported use of Ans.This application does not support Ans. \\
\hline 1090 & \begin{tabular}{l}
Function is not defined. Use one of the following commands: \\
- Define \\
- := \\
- sto \(\rightarrow\) \\
to define a function.
\end{tabular} \\
\hline 1100 & \begin{tabular}{l}
Non-real calculation \\
For example, if the software is in the Real setting, \(\sqrt{ }(-1)\) is invalid. \\
To allow complex results, change the "Real or Complex" Mode Setting to RECTANGULAR or POLAR.
\end{tabular} \\
\hline 1110 & Invalid bounds \\
\hline 1120 & No sign change \\
\hline 1130 & Argument cannot be a list or matrix \\
\hline 1140 & \begin{tabular}{l}
Argument error \\
The first argument must be a polynomial expression in the second argument. If the second argument is omitted, the software attempts to select a default.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Error code & Description \\
\hline 1150 & \begin{tabular}{l}
Argument error \\
The first two arguments must be polynomial expressions in the third argument. If the third argument is omitted, the software attempts to select a default.
\end{tabular} \\
\hline 1160 & \begin{tabular}{l}
Invalid library pathname \\
A pathname must be in the form \(x x x \backslash y y y\), where: \\
- The \(x x x\) part can have 1 to 16 characters. \\
- The yyy part can have 1 to 15 characters. \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1170 & \begin{tabular}{l}
Invalid use of library pathname \\
- A value cannot be assigned to a pathname using Define, \(:=\), or sto \(\rightarrow\). \\
- A pathname cannot be declared as a Local variable or be used as a parameter in a function or programme definition.
\end{tabular} \\
\hline 1180 & \begin{tabular}{l}
Invalid library variable name. \\
Make sure that the name: \\
- Does not contain a period \\
- Does not begin with an underscore \\
- Does not exceed 15 characters \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1190 & \begin{tabular}{l}
Library document not found: \\
- Verify library is in the MyLib folder. \\
- Refresh Libraries. \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1200 & \begin{tabular}{l}
Library variable not found: \\
- Verify library variable exists in the first problem in the library. \\
- Make sure library variable has been defined as LibPub or LibPriv. \\
- Refresh Libraries. \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline 1210 & \begin{tabular}{l}
Invalid library shortcut name. \\
Make sure that the name: \\
- Does not contain a period \\
- Does not begin with an underscore \\
- Does not exceed 16 characters \\
- Is not a reserved name \\
See the Library section in the documentation for more details.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Error code & Description \\
\hline 1220 & \begin{tabular}{l}
Domain error: \\
The tangentLine and normalLine functions support real-valued functions only.
\end{tabular} \\
\hline 1230 & \begin{tabular}{l}
Domain error. \\
Trigonometric conversion operators are not supported in Degree or Gradian \\
angle modes.
\end{tabular} \\
\hline 1250 & \begin{tabular}{l}
Argument Error \\
Use a system of linear equations. \\
Example of a system of two linear equations with variables x and y: \\
\(3 x+7 y=5\) \\
\(2 y-5 x=-1\)
\end{tabular} \\
\hline 1260 & \begin{tabular}{l}
Argument Error: \\
The first argument of nfMin or nfMax must be an expression in a single variable. \\
It cannot contain a non-valued variable other than the variable of interest.
\end{tabular} \\
\hline 1270 & \begin{tabular}{l}
Argument Error \\
Order of the derivative must be equal to 1 or 2.
\end{tabular} \\
\hline 1280 & \begin{tabular}{l}
Argument Error \\
Use a polynomial in expanded form in one variable.
\end{tabular} \\
\hline 1390 & \begin{tabular}{l}
Argument Error \\
Use a polynomial in one variable.
\end{tabular} \\
\hline 1380 & \begin{tabular}{l}
Argument Error \\
The coefficients of the polynomial must evaluate to numeric values.
\end{tabular} \\
\hline Argument error: \\
Aested calls to domain() function are not allowed.
\end{tabular}

\section*{Warning Codes and Messages}

You can use the warnCodes() function to store the codes of warnings generated by evaluating an expression. This table lists each numeric warning code and its associated message. For an example of storing warning codes, see warnCodes(), page 202.
\begin{tabular}{|c|c|}
\hline Warning code & Message \\
\hline 10000 & \begin{tabular}{l}
Operation might introduce false solutions. \\
When applicable, try using graphical methods to verify the results.
\end{tabular} \\
\hline 10001 & Differentiating an equation may produce a false equation. \\
\hline 10002 & \begin{tabular}{l}
Questionable solution \\
When applicable, try using graphical methods to verify the results.
\end{tabular} \\
\hline 10003 & \begin{tabular}{l}
Questionable accuracy \\
When applicable, try using graphical methods to verify the results.
\end{tabular} \\
\hline 10004 & \begin{tabular}{l}
Operation might lose solutions. \\
When applicable, try using graphical methods to verify the results.
\end{tabular} \\
\hline 10005 & cSolve might specify more zeroes. \\
\hline 10006 & \begin{tabular}{l}
Solve may specify more zeroes. \\
When applicable, try using graphical methods to verify the results.
\end{tabular} \\
\hline 10007 & \begin{tabular}{l}
More solutions may exist. Try specifying appropriate lower and upper bounds and/or a guess. \\
Examples using solve(): \\
- solve(Equation, Var=Guess)|lowBound<Var<upBound \\
- solve(Equation, Var)|lowBound<Var<upBound \\
- solve(Equation, Var=Guess) \\
When applicable, try using graphical methods to verify the results.
\end{tabular} \\
\hline 10008 & Domain of the result might be smaller than the domain of the input. \\
\hline 10009 & Domain of the result might be larger than the domain of the input. \\
\hline 10012 & Non-real calculation \\
\hline 10013 & \(\infty^{\wedge} 0\) or undef \({ }^{\wedge} 0\) replaced by 1 \\
\hline 10014 & undef \(\wedge^{\wedge} 0\) replaced by 1 \\
\hline 10015 & \(1^{\wedge} \infty\) or \(1^{\wedge}\) undef replaced by 1 \\
\hline 10016 & \(1^{\wedge}\) undef replaced by 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l}
Warning \\
code
\end{tabular} & Message \\
\hline 10017 & Overflow replaced by \(\infty\) or \(-\infty\) \\
\hline 10018 & Operation requires and returns 64 bit value. \\
\hline 10019 & Resource exhaustion, simplification might be incomplete. \\
\hline 10020 & Trig function argument too big for accurate reduction. \\
\hline 10021 & \begin{tabular}{l}
Input contains an undefined parameter. \\
Result might not be valid for all possible parameter values.
\end{tabular} \\
\hline 10022 & Specifying appropriate lower and upper bounds might produce a solution. \\
\hline 10023 & Scalar has been multiplied by the identity matrix. \\
\hline 10024 & Result obtained using approximate arithmetic. \\
\hline 10025 & Equivalence cannot be verified in EXACT mode. \\
\hline 10026 & \begin{tabular}{l}
Constraint might be ignored. Specify constraint in the form " \(\backslash\) " 'Variable \\
MathTestSymbol Constant' or a conjunct of these forms, for example ' \(x<3\) and \(\mathrm{x}>-\) \\
\(12 '\)
\end{tabular} \\
\hline
\end{tabular}

\section*{General Information}

\section*{Online Help}
education.ti.com/eguide
Select your country for more product information.

\section*{Contact TI Support}
education.ti.com/ti-cares
Select your country for technical and other support resources.

\section*{Service and Warranty Information}
education.ti.com/warranty
Select your country for information about the length and terms of the warranty or about product service.

Limited Warranty. This warranty does not affect your statutory rights.
Texas Instruments Incorporated
12500 TI Blvd.
Dallas, TX 75243

\section*{Index}
\begin{tabular}{|c|c|c|c|}
\hline & & , , unit designation & 233 \\
\hline \multicolumn{4}{|l|}{- -} \\
\hline -, subtract & 213 & |, constraint operator & 236 \\
\hline \multicolumn{4}{|l|}{!} \\
\hline \multirow[t]{2}{*}{!, factorial} & 224 & & \\
\hline & & ' minute notation & 232 \\
\hline " & & \({ }^{\prime}\), prime & 233 \\
\hline \multirow[t]{2}{*}{", second notation} & 232 & & \\
\hline & & +, add & 213 \\
\hline \#, indirection & 230 & & \\
\hline \multirow[t]{2}{*}{\#, indirection operator} & 260 & & \\
\hline & & =, equal & 219 \\
\hline \% & & \#, not equal & 220 \\
\hline \multirow[t]{2}{*}{\%, percent \(\ldots \ldots \ldots \ldots\)} & 219 & & \\
\hline & & >, greater than & 222 \\
\hline \multirow[t]{2}{*}{\&, append} & 224 & & \\
\hline & & \(\Pi\), product & 227 \\
\hline \multirow[t]{3}{*}{*, multiply} & 214 & & \\
\hline & & \(\Sigma()\), sum & 228 \\
\hline & & \(\sum \operatorname{lnt}()\) & 228 \\
\hline .-, dot subtraction & 217 & \(\sum \operatorname{Prn}()\) & 229 \\
\hline .*, dot multiplication & 218 & & \\
\hline ./, dot division & 218 & & \\
\hline .^, dot power & 218 & & \\
\hline . + , dot addition & 217 & \(\checkmark\), square root & 226 \\
\hline / & & \(\angle\) & \\
\hline /, divide & 215 & \(\angle\) (angle) & 232 \\
\hline : & & & \\
\hline :=, assign & 238 & f, integral & 225 \\
\hline \multirow[t]{2}{*}{\(\wedge^{\wedge-1}\), reciprocal \(\ldots \ldots \ldots \ldots\). \({ }^{\boldsymbol{n}}\)} & & & \\
\hline & 235 & \(\leq\), less than or equal & 221 \\
\hline
\end{tabular}
\(\wedge\), power 216 5
, unit designation 33
minute notation 232
', prime 33
, equal220
\(\sum \operatorname{lnt}()\) 228.*, dot multiplication218
218
.+, dot addition215238
\(\geq\), greater than or equal 222-
- convert units 234
-approxFraction() 14
-Base10, display as decimal integer 19
-Base16, display as hexadecimal 19
-Base2, display as binary 17
cos, display in terms of cosine 30
- Cylind, display as cylindrical vector 43
-DD, display as decimal angle 46
-Decimal, display result as decimal 46
-DMS, display as degree/minute/second 55
exp, display in terms of e 64
-Grad, convert to gradian angle 87
-Polar, display as polar vector 134
-Rad, convert to radian angle 144
-Rect, display as rectangular vector 147
-sin, display in terms of sine 168
-Sphere, display as spherical vector 176
\(\Rightarrow\)\(\Rightarrow\), logical implication 223, 257
\(\rightarrow\), store variable 237
\(\Leftrightarrow\)
\(\Leftrightarrow\), logical double implication 223, 257
©
©, comment 238
\({ }^{\circ}\), degree notation 232
\({ }^{\circ}\), degrees/minutes/seconds 232
0
Ob, binary indicator 238
Oh, hexadecimal indicator 238
\(10^{\wedge}()\), power of ten 235
2
2-sample F Test 76
A
abs(), absolute value 8
absolute value
template for 3-4
add, + 213
amortisation table, amortTbl() 8, 17
amortTbl(), amortisation table 8, 17
and, Boolean operator 9
angle(), angle 10
angle, angle() 10
ANOVA, one-way variance analysis 10
ANOVA2way, two-way variance analysis 11
Ans, last answer 13
answer (last), Ans 13
append, \& 224
approx(), approximate 13, 15
approximate, approx() 13, 15
approxRational() 14
arc length, arcLen() 15
\(\arccos (), \cos ^{-1}()\) 14
\(\operatorname{arccosh}(), \cosh ^{-1}()\) 14
\(\operatorname{arccot}(), \cot ^{-1}()\) 14
\(\operatorname{arccoth}(), \operatorname{coth}^{-1}()\) 14
\(\operatorname{arccsc}(), \csc ^{-1}()\) 15
\(\operatorname{arccsch}(), \operatorname{csch}^{-1}()\) 15
arcLen(), arc length 15
\(\operatorname{arcsec}(), \sec ^{-1}()\) 15
\(\operatorname{arcsech}(), \operatorname{sech}^{-1}()\) 15
\(\arcsin (), \sin ^{-1}()\) 15
\(\operatorname{arcsinh}(), \sinh ^{-1}()\) 15
\(\arctan (), \tan ^{-1}()\) 15
\(\operatorname{arctanh}(), \tanh ^{-1}()\) 16
arguments in TVM functions 197
augment(), augment/concatenate 16
augment/concatenate, augment() 16
average rate of change, avgRC() 16
\(\operatorname{avgRC}()\), average rate of change 16
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{B}} & zeros, cZeros() & 43 \\
\hline & & conj(), complex conjugate constant & 28 \\
\hline display, -Base2 & 17 & in solve() & 173 \\
\hline indicator, 0b & 238 & constants & \\
\hline binomCdf() & 20, 93 & in cSolve() & 40 \\
\hline binomPdf() & 20 & in cZeros() & 44 \\
\hline Boolean operators & & in deSolve() & 50 \\
\hline \(\Rightarrow\) & 223, 257 & in solve() & 175 \\
\hline \(\Leftrightarrow\) & 223 & in zeros() & 206 \\
\hline and & 9 & shortcuts for & 257 \\
\hline nand & 120 & constraint operator "|" & 236 \\
\hline nor & 124 & constraint operator, order of & \\
\hline not & 126 & evaluation & 259 \\
\hline or & 130 & construct matrix, constructMat() & 28 \\
\hline \multirow[t]{4}{*}{xor \(\ldots \ldots \ldots \ldots \ldots\).} & \multirow[t]{2}{*}{203} & constructMat(), construct matrix & 28 \\
\hline & & convert & \\
\hline & & - Grad & 87 \\
\hline & \multirow[b]{2}{*}{70} & - Rad & 144 \\
\hline Cdf() & & units & 234 \\
\hline ceiling(), ceiling & -21. 21 & copy variable or function, CopyVar & 29 \\
\hline ceiling, ceiling() & 21, 36 & correlation matrix, corrMat() & 29 \\
\hline centralDiff() & 21 & corrMat(), correlation matrix & 29 \\
\hline cFactor(), complex factor & 22 & \(\cos ^{-1}\), arccosine & 31 \\
\hline char(), character string & 23 & \(\cos ()\), cosine & 30 \\
\hline \begin{tabular}{l}
character string, char() \\
characters
\end{tabular} & 23 & \(\cosh ^{-1}()\), hyperbolic arccosine & 33 \\
\hline \multirow[t]{2}{*}{```
characters
 numeric code, ord()
 string, char()
```} & 132 & \(\cosh ()\), hyperbolic cosine cosine & 32 \\
\hline & 23 & display expression in terms of & 30 \\
\hline charPoly( ) & 23 & cosine, \(\cos ()\)........................ & 30 \\
\hline \multirow[t]{2}{*}{clear error, ClrErr} & & \(\cot ^{-1}()\), arccotangent & 34 \\
\hline & 25 & \(\cot ()\), cotangent ..................... & 33 \\
\hline Clear & 243 & cotangent, cot() ...................... & 33 \\
\hline ClearAZ & 25 & coth \(^{-1}()\), hyperbolic arccotangent & 34 \\
\hline ClrErr, clear error & 25 & coth( ), hyperbolic cotangent .... & 34 \\
\hline \multirow[t]{3}{*}{colDim( ), matrix column dimension} & 26 & count days between dates, dbd() & 45 \\
\hline & 26 & count items in a list conditionally, & \\
\hline & 26 & count items in a list conditionally, & \\
\hline \[
\text { combinations, } \mathrm{nCr}()
\] & 121 & countif() & 35 \\
\hline \multicolumn{2}{|l|}{comDenom( ), common} & count items in a list, count( ) ........ & 35
35 \\
\hline denominator & 26 &  & 35 \\
\hline comment, © & 238 & countif( ), conditionally count items & 35 \\
\hline common denominator, comDenom( & & & 35
36 \\
\hline ) ............................. & 26 & cross product, crossP( ) & 36 \\
\hline completeSquare( ), complete square & 27 & crossP( ), cross product .............. & 36 \\
\hline complex & & \(\csc ^{-1}()\), inverse cosecant & 37 \\
\hline conjugate, conj( ) & 28 & \(\csc ()\), cosecant ......... & 37 \\
\hline factor, cFactor( ) & 22 & \(\operatorname{csch}^{-1}()\), inverse hyperbolic cosecant & 38 \\
\hline solve, cSolve( ) & 38 & \(\operatorname{csch}()\), hyperbolic cosecant & 38 \\
\hline
\end{tabular}
naryindicator, Ob238binomPdf( )20
\(\Rightarrow\)223nand120not126
or203
ceiling( ), ceiling21, 36
centralDiff( )22
char( ), character string ..... 23characters
numeric code, ord( )23
charPoly() ..... 23Clear243
ClearAZ
25
colAugment2626
combinations, nCr()26
comment, ©26
completeSquare( ), complete square
28
factor, cFactor( )38
conj( ), complex conjugate ..... 28
zeros, cZeros( ) ..... 3
in solve( ) ..... 173
in cSolve( ) ..... 40
in ..... 44in solve()175
in zeros( ) ..... 206
constraint operator "|" ..... 236
constraint operator, order of evaluation ..... 259
construct matrix, constructMat( ) ..... 28convert
-Grad ..... 87units234
copy variable or function, CopyVar ..... 29corrMat( ), correlation matrix29
\(\cos ^{-1}\), arccosine ..... 31\(\cosh ^{-1}()\), hyperbolic arccosine33
cosh( ), hyperbolic cosine ..... 32
display expression in terms of ..... 30
cosine, \(\cos (\) ) ..... 30
cot( ), cotangent ..... 33
cotangent, cot( ) ..... 33coth( ), hyperbolic cotangent34
count days between dates, dbd() ..... 45
countif( ) ..... 35
count items in a list, count( ) ..... 35countif( ), conditionally count itemsin a list35
cPolyRoots() ..... 36
crosp(), cross produ() ..... 36\(\csc ^{-1}()\), inverse cosecant37
\(\csc ()\), cosecant ..... 37
\(\operatorname{csch}()\), hyperbolic cosecant ..... 38
cSolve( ), complex solve ..... 38
cubic regression, CubicReg ..... 41
CubicReg, cubic regression ..... 41
cumulative sum, cumulativeSum( )42
cumulativeSum( ), cumulative sum42
cycle, Cycle ..... 42
Cycle, cycle ..... 42
cylindrical vector display, Cylind ..... 43
cZeros( ), complex zeros ..... 43
D
d( ), first derivative ..... 224
days between dates, dbd() ..... 45
dbd( ), days between dates ..... 45
decimal
angle display, \(-D D\) ..... 46
integer display, -Base10 ..... 19
Define ..... 46
Define LibPriv ..... 47
Define LibPub ..... 48
define, Define ..... 46
Define, define ..... 46
defining
private function or programme ..... 47
public function or programme ..... 48
definite integral
template for ..... 6
degree notation, \({ }^{\circ}\) ..... 232
degree/minute/second display,
-DMS ..... 55
degree/minute/second notation ..... 232
delete
void elements from list ..... 49
deleting
variable, DelVar ..... 49
deltaList() ..... 48
deltaTmpCnv() ..... 49
DelVar, delete variable ..... 49
delVoid( ), remove void elements ..... 49
denominator ..... 26
derivative or nth derivative template for ..... 6
derivative() ..... 49
derivatives
first derivative, \(\mathrm{d}(\) ) ..... 224
numeric derivative, nDeriv( ) ..... 122-123
numeric derivative, nDerivative(
) ..... 122
deSolve( ), solution ..... 50
det( ), matrix determinant ..... 52
diag( ), matrix diagonal ..... 52
dim( ), dimension ..... 52
dimension, \(\operatorname{dim}()\) ..... 52
Disp, display data ..... 53, 160
DispAt ..... 53
display as
binary, -Base2 ..... 17
cylindrical vector, Cylind ..... 43
decimal angle, \(\rightarrow\) D ..... 46
decimal integer, -Base10 ..... 19
degree/minute/second, - DMS ..... 55
hexadecimal, -Base16 ..... 19
polar vector, - Polar ..... 134
rectangular vector, - Rect ..... 147
spherical vector, \(\sim\) Sphere ..... 176
display data, Disp ..... 53, 160
distribution functions
binomCdf( ) ..... 20, 93
binomPdf( ) ..... 20
invNorm( ) ..... 94
invt() ..... 94
Invz²() ..... 92
normCdf() ..... 126
normPdf( ) ..... 126
poissCdf( ) ..... 133
poissPdf() ..... 134
tCdf() ..... 187
tPdf() ..... 192
\(\chi^{2} 2 w a y()\) ..... 23
\(\chi^{2} \mathrm{Cdf}()\) ..... 24
\(\chi^{2}\) GOF() ..... 24
\(\chi^{2} P d f()\) ..... 25
divide, / ..... 215
domain function, domain( ) ..... 56
domain( ), domain function ..... 56
dominant term, dominantTerm() ..... 56
dominantTerm( ), dominant term ..... 56
dot
addition, .+ ..... 217
division, ./ ..... 218
multiplication, .* ..... 218
power, .^ ..... 218
product, dotP( ) ..... 58
subtraction, ..... 217
\(\operatorname{dotP}()\), dot product ..... 58
draw ..... 244-246
e exponent
template for 2
e to a power, \(\mathrm{e}^{\wedge}(\) ) ........................ 58,65
e, display expression in terms of 64
E, exponent 230
\(\mathrm{e}^{\wedge}()\), e to a power58
eff( ), convert nominal to effective rate59
effective rate, eff( ) ..... 59
eigenvalue, eigVI( ) ..... 60
eigenvector, eigVc( ) ..... 59
eigVc( ), eigenvector ..... 59
eigVI( ), eigenvalue ..... 60
else if, Elself ..... 60
else, Else ..... 88
Elself, else if ..... 60
empty (void) elements ..... 255
end
for, EndFor73
function, EndFunc ..... 77
if, EndIf ..... 88
loop, EndLoop ..... 110
try, EndTry ..... 193
while, EndWhile ..... 203
end function, EndFunc ..... 77
end if, EndIf ..... 88
end loop, EndLoop ..... 110
end while, EndWhile ..... 203
EndTry, end try ..... 193
EndWhile, end while ..... 203
EOS (Equation Operating System) ..... 259
equal, = ..... 219
Equation Operating System (EOS) ..... 259
error codes and messages ..... 265, 273
errors and troubleshooting
clear error, ClrErr ..... 25
pass error, PassErr ..... 133
euler( ), Euler function ..... 61
evaluate polynomial, polyEval( ) ..... 136
evaluation, order of ..... 259
exact( ), exact ..... 64
exact, exact( ) ..... 64
exclusion with "|" operator ..... 236
exit, Exit ..... 64
Exit, exit ..... 64
\(\exp ()\), e to a power ..... 65
exp-list( ), expression to list ..... 65
expand( ), expand ..... 66
expand, expand() ..... 66
exponent, E ..... 230
exponential regession, ExpReg ..... 67
exponents
template for ..... 1
expr( ), string to expression ..... 67, 108
ExpReg, exponential regession ..... 67
expressions
expression to list, exp-ist( ) ..... 65
string to expression, expr( ) ..... 67, 108
F
factor( ), factor ..... 68
factor, factor( ) ..... 68
factorial, ! ..... 224
fill ..... 247-248
Fill, matrix fill ..... 70
financial functions, tvmFV( ) ..... 195
financial functions, tvml() ..... 196
financial functions, tvmN( ) ..... 196
financial functions, tvmPmt() ..... 196
financial functions, tvmPV( ) ..... 197
first derivative template for ..... 5
FiveNumSummary ..... 71
floor( ), floor ..... 71
floor, floor( ) ..... 71
fMax( ), function maximum ..... 72
fMin( ), function minimum ..... 73
For ..... 73
for, For ..... 73
For, for ..... 73
format string, format( ) ..... 74
format( ), format string ..... 74
fpart( ), function part ..... 74
fractions
propFrac ..... 140
template for ..... 1
freqTable( ) ..... 75
frequency() ..... 76
Frobenius norm, norm( ) ..... 125
Func, function ..... 77
Func, programme function ..... 77
functions
maximum, fMax( ) ..... 72
minimum, fMin( ) ..... 73
part, fpart( ) ..... 74
programme function, Func ..... 77
user-defined ..... 46
functions and variables copying ..... 29
g, gradians ..... 230
\(\operatorname{gcd}()\), greatest common divisor ..... 78
geomCdf( ) ..... 78
geomPdf( ) ..... 78
Get ..... 79, 249
get/returndenominator, getDenom( )80
number, getNum( ) ..... 85
variables injformation,getVarInfo( )83, 86
getDenom( ), get/return denominator ..... 80
getKey() ..... 80
getLangInfo( ), get/return language information ..... 83
getLockInfo( ), tests lock status of variable or variable group ..... 84
getMode( ), get mode settings ..... 84
getNum( ), get/return number ..... 85
GetStr ..... 85
getType( ), get type of variable ..... 86
getVarInfo( ), get/return variables information ..... 86
go to, Goto ..... 87
Goto, go to ..... 87
gradian notation, g ..... 230
greater than or equal, \(\geq\) ..... 222
greater than, > ..... 222
greatest common divisor, gcd( ) ..... 78
groups, locking and unlocking ..... 107, 200
groups, testing lock status ..... 84
H
hexadecimal
display, Base16 ..... 19
indicator, Oh ..... 238
hyperbolic
arccosine, \(\cosh ^{-1}()\) ..... 33
arcsine, \(\sinh ^{-1}()\) ..... 170
arctangent, \(\tanh ^{-1}()\) ..... 186
cosine, cosh( ) ..... 32
sine, \(\sinh (\) ) ..... 170
Gtangent, tanh()185

\section*{I}
identity matrix, identity( )
identity matrix, identity( ) ..... 88
identity( ), identity matrix ..... 88
if, If ..... 88
If, if ..... 88
ifFn( ) ..... 89
imag( ), imaginary part ..... 90
imaginary part, imag( ) ..... 90
ImpDif( ), implicit derivative ..... 90
implicit derivative, Impdif( ) ..... 90
indefinite integral
template for ..... 6
indirection operator (\#) ..... 260
indirection, \# ..... 230
input, Input ..... 90
Input, input ..... 90
inString( ), within string ..... 91
int( ), integer ..... 91
intDiv( ), integer divide ..... 91
integer divide, intDiv( ) ..... 91
integer part, iPart( ) ..... 94
integer, int( ) ..... 91
integral, \(\int\) ..... 225
interpolate( ), interpolate ..... 92
inverse cumulative normal distribution (invNorm() ..... 94
inverse, \({ }^{\wedge-1}\) ..... 235
invF( ) ..... 92
invNorm( ), inverse cumulative normal distribution) ..... 94
invt( ) ..... 94
\(\operatorname{lnv} \chi^{2}()\) ..... 92
iPart( ), integer part ..... 94
irr( ), internal rate of return internal rate of return, irr( ) ..... 94
isPrime( ), prime test ..... 95
isVoid( ), test for void ..... 95
L
label, Lbl ..... 96
language
get language information ..... 83
Lbl, label ..... 96
Icm, least common multiple ..... 96
least common multiple, Icm ..... 96
left( ), left ..... 96
left, left( ) ..... 96
length of string ..... 52
less than or equal, \(\leq\) ..... 221
LibPriv ..... 47
LibPub ..... 48
librarycreate shortcuts to objects97
libShortcut( ), create shortcuts tolibrary objects97
limit\(\lim ()\)98
limit() ..... 98
template for ..... 6
limit( ) or lim( ), limit ..... 98
linear regression, LinRegAx ..... 99
linear regression, LinRegBx ..... 98, 100
LinRegBx, linear regression ..... 98
LinRegMx, linear regression ..... 99
LinRegtIntervals, linear regression ..... 100
LinRegtTest ..... 102
linSolve() ..... 103
list to matrix, listmat( ) ..... 104
list, conditionally count items in ..... 35
list, count items in ..... 35
listmat( ), list to matrix ..... 104
lists
augment/concatenate, augment()16
cross product, crossP( ) ..... 36
cumulative sum, cumulativeSum () ..... 42
differences in a list, \(\Delta\) list( ) ..... 104
dot product, dotP( ) ..... 58
empty elements in ..... 255
expression to list, exp-list( ) ..... 65
list to matrix, listmat( ) ..... 104
matrix to list, mat-list( ) ..... 112
maximum, \(\max ()\) ..... 112
mid-string, mid() ..... 114
minimum, \(\min (\) ) ..... 115
new, newList( ) ..... 122
product, product() ..... 139
sort ascending, SortA ..... 176
sort descending, SortD ..... 176
summation, sum( ) ..... 182
In( ), natural logarithm ..... 104
LnReg, logarithmic regression ..... 105
local variable, Local ..... 106
local, Local ..... 106
Local, local variable ..... 106
Lock, lock variable or variable group ..... 107
locking variables and variable groups ..... 107
Log
template for ..... 2
logarithmic regression, LnReg ..... 105
logarithms ..... 104
logical double implication, \(\Leftrightarrow\) ..... 223
logical implication, \(\Rightarrow\) ..... 223, 257
logistic regression, Logistic ..... 108
logistic regression, LogisticD ..... 109
Logistic, logistic regression ..... 108
LogisticD, logistic regression ..... 109
loop, Loop ..... 110
Loop, loop ..... 110
LU, matrix lower-upperdecomposition111

\section*{M}
mat-list( ), matrix to list ..... 112
matricesaugment/concatenate, augment()16
column dimension, colDim( ) ..... 26
column norm, colNorm( ) ..... 26
cumulative sum, cumulativeSum () ..... 42
determinant, det() ..... 52
diagonal, diag() ..... 52
dimension, dim() ..... 52
dot addition, .+ ..... 217
dot division, ./ ..... 218
dot multiplication,.* ..... 218
dot power, .^ ..... 218
dot subtraction, .- ..... 217
eigenvalue, eigVI( ) ..... 60
eigenvector, eigVc( ) ..... 59
filling, Fill ..... 70
identity, identity( ) ..... 88
list to matrix, listmat() ..... 104
lower-upper decomposition, LU ..... 111
matrix to list, mat-list( ) ..... 112
maximum, max( ) ..... 112
minimum, \(\min (\) ) ..... 115
new, newMat() ..... 122
product, product( ) ..... 139
QR factorization, QR ..... 141
random, randMat() ..... 146
reduced row echelon form, rref( ) ..... 158
row addition, rowAdd( ) ..... 157
row dimension, rowDim( ) ..... 157
row echelon form, ref( ) ..... 148
row multiplication and addition,mRowAdd( )117
row norm, rowNorm( ) ..... 157
row operation, mRow( ) ..... 117
row swap, rowSwap( ) ..... 158
submatrix, subMat( ) ..... 181, 183
summation, sum( ) ..... 182
transpose, T ..... 183
matrix ( \(1 \times 2\) )
template for ..... 4
matrix \((2 \times 1)\)
template for ..... 4
matrix \((2 \times 2)\) template for ..... 4
matrix ( \(m \times n\) )template for4
matrix to list, mat-tist( ) ..... 112
max( ), maximum ..... 112
maximum, \(\max ()\) ..... 112
mean( ), mean ..... 112
mean, mean( ) ..... 112
median( ), median ..... 113
median, median( ) ..... 113
medium-medium line regression, MedMed ..... 114
MedMed, medium-medium line regression ..... 114
mid-string, mid() ..... 114
mid( ), mid-string ..... 114
\(\min ()\), minimum ..... 115
minimum, \(\min ()\) ..... 115
minute notation, ' ..... 232
mirr( ), modified internal rate of return ..... 116
mixed fractions, using propFrac() with ..... 140
mod( ), modulo ..... 116
mode settings, getMode( ) ..... 84
modes ..... 163
modified internal rate of return, mirr () ..... 116
modulo, mod( ) ..... 116
mRow( ), matrix row operation ..... 117
mRowAdd( ), matrix rowmultiplication and addition117
Multiple linear regression \(t\) test ..... 119
multiply, * ..... 214
MultReg ..... 117
MultRegIntervals( ) ..... 118
MultRegTests( ) ..... 119
N
nand, Boolean operator ..... 120
natural logarithm, \(\ln (\) ) ..... 104
nCr() , combinations ..... 121
nDerivative( ), numeric derivative ..... 122
negation, entering negative
numbers ..... 260
net present value, \(n p v()\) ..... 128
new
list, newList( ) ..... 122
matrix, newMat( ) ..... 122
newList( ), new list ..... 122
newMat( ), new matrix ..... 122
nfMax( ), numeric function maximum ..... 122
nfMin( ), numeric function minimum ..... 123
nInt( ), numeric integral ..... 123
nom ), convert effective to nominal rate ..... 124
nominal rate, nom( ) ..... 124
nor, Boolean operator ..... 124
norm( ), Frobenius norm ..... 125
normal distribution probability, normCdf( ) ..... 126
normal line, normalLine( ) ..... 126
normalLine( ) ..... 126
normCdf( ) ..... 126
normPdf( ) ..... 126
not equal, \(\neq\) ..... 220
not, Boolean operator ..... 126
\(n \operatorname{Pr}(\) ), permutations ..... 127
npv( ), net present value ..... 128
nSolve( ), numeric solution ..... 128
nth root
template for ..... 2
numeric
derivative, nDeriv( ) ..... 122-123
derivative, nDerivative( ) ..... 122
integral, nInt( ) ..... 123
solution, nSolve( ) ..... 128

\section*{objects}
create shortcuts to library97
one-variable statistics, OneVar ..... 129
OneVar, one-variable statistics ..... 129
operators order of evaluation ..... 259
or (Boolean), or ..... 130
or, Boolean operator ..... 130
ord( ), numeric character code ..... 132
P
\(P \leadsto R x()\), rectangular \(x\) coordinate ..... 132
\(P \leadsto\) Ry( ), rectangular y coordinate ..... 132
pass error, PassErr ..... 133
PassErr, pass error ..... 133
Pdf() ..... 75
percent, \% ..... 219
permutations, \(n \operatorname{Pr}(\) ) ..... 127
piecewise function (2-piece) template for ..... 2
piecewise function ( N -piece) template for ..... 3
piecewise() ..... 133
poissCdf( ) ..... 133
poissPdf( ) ..... 134
polar
coordinate, \(\mathrm{R} \sim \operatorname{Pr}(\) ) ..... 144
coordinate, \(\mathrm{R} \sim \mathrm{P} \theta(\) ) ..... 143
vector display, \(\boldsymbol{\sim}\) Polar ..... 134
polyCoef() ..... 135
polyDegree() ..... 135
polyEval( ), evaluate polynomial ..... 136
polyGcd() ..... 136-137
polynomials
evaluate, polyEval( ) ..... 136
random, randPoly( ) ..... 146
PolyRoots() ..... 137
power of ten, 10^() ..... 235
power regression, ..... PowerReg ... 137-138, 150, 152, 188
power, ^ ..... 216
PowerReg, power regression ..... 138
Prgm, define programme ..... 139
prime number test, isPrime( ) ..... 95
prime,' ..... 233
probability densiy, normPdf( ) ..... 126
prodSeq() ..... 139
product( ), product ..... 139
product, \(\Pi\) () ..... 227
template for ..... 5
product, product( ) ..... 139
programmes and programming display I/O screen, Disp ..... 160
programming
define programme, Prgm ..... 139
display data, Disp ..... 53, 160
pass error, PassErr ..... 133
programs
defining private library ..... 47
defining public library ..... 48
programs and programming clear error, ClrErr ..... 25
display I/O screen, Disp ..... 53
end try, EndTry ..... 193
try, Try ..... 193
proper fraction, propFrac ..... 140
propFrac, proper fraction ..... 140
Q
QR factorization, QR ..... 141
QR, QR factorization ..... 141
quadratic regression, QuadReg ..... 141
QuadReg, quadratic regression ..... 141
quartic regression, QuartReg ..... 142
QuartReg, quartic regression ..... 142
R
R , radian ..... 231
\(R=\operatorname{Pr}()\), polar coordinate ..... 144
\(R \sim P \theta\) ( ), polar coordinate ..... 143
radian, R ..... 231
rand( ), random number ..... 145
randBin, random number ..... 145
randlnt( ), random integer ..... 145
randMat( ), random matrix ..... 146
randNorm( ), random norm ..... 146
random
matrix, randMat( ) ..... 146
norm, randNorm( ) ..... 146
number seed, RandSeed ..... 147
polynomial, randPoly() ..... 146
random sample ..... 146
randPoly( ), random polynomial ..... 146
randSamp() ..... 146
RandSeed, random number seed ..... 147
real( ), real ..... 147
real, real( ) ..... 147
reciprocal, \(\wedge^{\wedge-1}\) ..... 235
rectangular-vector display, -Rect ..... 147
rectangular \(x\) coordinate, \(P-R x()\) ..... 132
rectangular y coordinate, \(\mathrm{P}-\mathrm{Ry}()\) ..... 132
reduced row echelon form, rref( ) ..... 158
ref( ), row echelon form ..... 148
RefreshProbeVars ..... 149
regressions
cubic, CubicReg ..... 41
exponential, ExpReg ..... 67
linear regression, LinRegAx ..... 99
linear regression, LinRegBx ..... 98, 100
logarithmic, LnReg ..... 105
Logistic ..... 108
logistic, Logistic ..... 109
medium-medium line, MedMed ..... 114
MultReg ..... 117
power regression,
PowerRe
g 137-138, 150, 152, 188
quadratic, QuadReg ..... 141
quartic, QuartReg ..... 142
sinusoidal, SinReg ..... 171
remain( ), remainder ..... 150
remainder, remain( ) ..... 150
remove
void elements from list ..... 49
Request ..... 150
RequestStr ..... 152
result
display in terms of cosine ..... 30
display in terms of e ..... 64
display in terms of sine ..... 168
result values, statistics ..... 179
results, statistics ..... 178
return, Return ..... 153
Return, return ..... 153
right( ), right ..... 153
right, right( ) ..... 27, 61, 92, 153-154, 202
rk23( ), Runge Kutta function ..... 154
rotate( ), rotate ..... 155
rotate, rotate( ) ..... 155
round( ), round ..... 156
round, round( ) ..... 156
row echelon form, ref( ) ..... 148
rowAdd( ), matrix row addition ..... 157
rowDim( ), matrix row dimension ..... 157
rowNorm( ), matrix row norm ..... 157
rowSwap( ), matrix row swap ..... 158
rref( ), reduced row echelon form ..... 158
S
\(\sec ^{-1}()\), inverse secant ..... 159
sec( ), secant ..... 158
\(\operatorname{sech}^{-1}()\), inverse hyperbolic secant ..... 159
sech( ), hyperbolic secant ..... 159
second derivative template for ..... 6
second notation, " ..... 232
seq( ), sequence ..... 160
seqGen() ..... 161
seqn() ..... 161
sequence, seq() ..... 160-161
series( ), series ..... 162
series, series( ) ..... 162
set
mode, setMode( ) ..... 163
setMode( ), set mode ..... 163
settings, get current ..... 84
shift( ), shift ..... 165
shift, shift( ) ..... 165
sign( ), sign ..... 166
sign, sign( ) ..... 166
simult( ), simultaneous equations ..... 167
simultaneous equations, simult( ) ..... 167
\(\sin ^{-1}()\), arcsine ..... 169
\(\sin ()\), sine ..... 168
sine
display expression in terms of ..... 168
sine, \(\sin ()\) ..... 168
\(\sinh ^{-1}()\), hyperbolic arcsine ..... 170
sinh( ), hyperbolic sine ..... 170
SinReg, sinusoidal regression ..... 171
sinusoidal regression, SinReg ..... 171
solution, deSolve( ) ..... 50
solve( ), solve ..... 172
solve, solve( ) ..... 172
SortA, sort ascending ..... 176
SortD, sort descending ..... 176
sorting
ascending, SortA ..... 176
descending, SortD ..... 176
spherical vector display, -Sphere ..... 176
sqrt( ), square root ..... 177
square roottemplate for1
square root, V ( )
177, 226
standard deviation, stdDev( ) ...179-180, 200
stat.results .................................. 178
stat.values ................................. 179
statistics
combinations, \(\mathrm{nCr}(\) ) ............... 121
factorial, ! .............................. 224
mean, mean( ) ...................... 112
median, median( ) ................. 113
one-variable statistics, OneVar . 129
permutations, \(n \operatorname{Pr}(\) ) ............... 127
random norm, randNorm( ) .... 146
random number seed, RandSeed

147
standard deviation, stdDev(
) ....................179-180, 200
two-variable results, TwoVar ... 197
variance, variance( ) ............... 200
stdDevPop( ), population standard
deviation .................... 179
stdDevSamp( ), sample standard deviation

180
Stop command ........................... 181
store variable \((\rightarrow\) ) ........................ 237
storing
symbol, \& ............................. 238
string
dimension, \(\operatorname{dim}()\)................... 52
length
52
string( ), expression to string ........ 181
strings
append, \& ............................ 224
character code, ord( ) ............. 132
character string, char( ) .......... 23
expression to string, string( ) ... 181
format, format( ) .................... 74
formatting ............................. 74
indirection, \# ........................ 230
left, left( ) ............................ . 96
mid-string, mid( ) ................... 114
right, right( ) .... 27, 61, 92, 153-154, 202
rotate, rotate( ) ..................... 155
shift, shift( ) .......................... 165
string to expression, expr( ) .... 67, 108
using to create variable names . 260
within, InString ...................... 91
student-t distribution probability,
tCdf( ) .......................... 187
student-t probability density, tPdf( ) 192
subMat( ), submatrix .................. 181, 183
submatrix, subMat( ) ................... 181, 183
substitution with "|" operator ...... 236
subtract, - .................................... 213
sum of interest payments ............ 228
sum of principal payments ........... 229
sum( ), summation ..................... 182
sum, \(\Sigma(\) ) .......................................... 228
template for .............................. 5
sumlf( ) ........................................ . . 182
summation, sum( ) ........................ 182
sumSeq() ........................................ 183
system of equations (2-equation) template for 3
system of equations ( N -equation) template for 3

\section*{T}
t test, tTest ................................. . 194
T, transpose ................................ 183
\(\tan ^{-1}()\), arctangent \(\ldots \ldots \ldots \ldots \ldots . . .\).
\(\tan ()\), tangent ............................. 184
tangent line, tangentLine( ) ........... 185
tangent, \(\tan ()\).............................. 184
tangentLine( ) .............................. 185
\(\tanh ^{-1}()\), hyperbolic arctangent ..... 186
tanh( ), hyperbolic tangent ........... 185
Taylor polynomial, taylor( ) .......... 187
taylor( ), Taylor polynomial .......... 187
tCdf( ), studentt distribution probability .................... 187
tCollect( ), trigonometric collection . 187
templates
absolute value ........................ 3-4
definite integral ........................ 6
derivative or nth derivative ..... 6
e exponent ............................... 2
exponent .................................. 1
first derivative ...................... 5
fraction ................................. 1
indefinite integral .................. 6
limit .................................. 6
Log \(\ldots . . . . . . . . . . . . . . . . . . . . . . . . .\).
matrix \((1 \times 2) \ldots \ldots . \ldots . . . . . .\).
matrix \((2 \times 1) \ldots \ldots \ldots \ldots . . . .\).
matrix \((2 \times 2) \ldots \ldots . . . . . . . . . .\).
matrix \((m \times n) \ldots \ldots \ldots . . . . . .\).
nth root ................................. 2
piecewise function (2-piece) ..... 2
piecewise function ( N -piece) ..... 3
product, П( ) ..... 5
second derivative ..... 6
square root ..... 1
sum, ¿() ..... 5
system of equations (2- equation) ..... 3
system of equations ( N - equation) ..... 3
test for void, isVoid( ) ..... 95
Test_2S, 2-sample F test ..... 76
tExpand( ), trigonometric expansion ..... 188
Text command ..... 188
time value of money, Future Value ..... 195
time value of money, Interest ..... 196
time value of money, number of payments ..... 196
time value of money, payment amount ..... 196
time value of money, present value ..... 197
tInterval, t confidence interval ..... 189
tInterval_2Samp, twosample t
confidence interval ..... 190
tmpCnv() ..... 191
tPdf( ), studentt probability density ..... 192
trace( ) ..... 192
transpose, T ..... 183
trigonometric collection, tCollect( ) ..... 187
trigonometric expansion, tExpand( ) ..... 188
Try, error handling command ..... 193
tTest, t test ..... 194
tTest_2Samp, two-sample t test ..... 195
TVM arguments ..... 197
tvmFV() ..... 195
tvml() ..... 196
tvmN() ..... 196
tvmPmt() ..... 196
tvmPV() ..... 197
two-variable results, TwoVar ..... 197
TwoVar, two-variable results ..... 197
U
underscore, ..... 233
unit vector, unitV() ..... 199
units
convert ..... 234
unitV( ), unit vector ..... 199
unLock, unlock variable or variable group ..... 200
unlocking variables and variable groups ..... 200
user-defined functions ..... 46
user-defined functions and programs ..... 47-48
v
variablecreating name from a characterstring260
variable and functionscopying29
variables
clear all single-letter ..... 25
delete, DelVar ..... 49
local, Local ..... 106
variables, locking and unlocking .84, 107, 200
variance, variance( ) ..... 200
varPop( ) ..... 200
varSamp( ), sample variance ..... 200
vectors
cross product, crossP( ) ..... 36
cylindrical vector display,43
dot product, \(\operatorname{dotP}(\) ) ..... 58
unit, unitV( ) ..... 199
void elements ..... 255
void elements, remove ..... 49
void, test for ..... 95
W
Wait command ..... 201
warnCodes( ), Warning codes ..... 202
warning codes and messages ..... 273
when( ), when ..... 202
when, when( ) ..... 202
while, While ..... 203
While, while ..... 203
with, ..... 236
within string, inString( ) ..... 91
X
\(x^{2}\), square ..... 217
XNOR ..... 223
xor, Boolean exclusive or ..... 203
zeroes( ), zeroes ..... 204
zeroes, zeroes( ) ..... 204
zInterval, z confidence interval ..... 207
zInterval_1Prop, one-proportion z confidence interval ..... 207
zInterval_2Prop, two-proportion z confidence interval ..... 208
zInterval_2Samp, two-sample z confidence interval ..... 208
zTest ..... 209
zTest_1Prop, one-proportion z test ..... 210
zTest_2Prop, two-proportion z test ..... 210
zTest_2Samp, two-sample z test ..... 211
\(\Delta\)
\(\Delta\) list( ), list difference ..... 104
\(\Delta \mathrm{tmpCnv}()\) ..... 191
X
\(\chi^{2} 2 w a y\) ..... 23
\(\chi^{2}\) Cdf() ..... 24
\(\chi^{2}\) GOF ..... 24
\(\chi^{2} \operatorname{Pdf}()\) ..... 25```


[^0]:    In Radian angle mode:

[^1]:[^2]:    $e^{\{1,1 ., 0.5\}} \quad\{e, 2.71828,1.64872\}$

