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	Overview
A transformation is a one to one function (also called a mapping) that maps points in the plane to points in the plane.  A transformation is called an isometry or rigid motion, if the distance between points is preserved (unchanged following the transformation)..  The following lesson is an investigation of the defining properties of three important basic transformations: translations, rotations, and reflections. Our objectives are to discover the definition of each of these transformations and to show that each is an isometry and therefore will map a triangle onto a congruent triangle.



	Mathematical Objectives
· Discover the definition of each of these transformations, to show that each is an isometry and therefore will map a triangle onto a congruent triangle. 
· Address Common Core State Standards for Mathematical Content.
G.CO.2 Represent transformations in the plane using, e.g., transparencies and geometry software; describe transformations as functions that take points in the plane as inputs and give other points as outputs.
G.CO.4 Develop definitions of rotations, reflections, and translations
G.CO.5 Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software.
G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure.

Vocabulary
· Mapping, isometry (rigid motion), translation, rotation, reflection, vector, image.

About the Lesson
· The estimated time for this activity is 30 to 45 minutes.
· Send the file Definitions_of_Transformations_Student.tns to student handheld devices. 
· This activity is designed to be student-centered with the teacher acting as a facilitator while students work cooperatively.  The student worksheet is intended to guide students through the activity and provide a place to record their answers.

TI-Nspire™ Navigator™ System (optional)
· Use Screen Capture to observe students’ work as they proceed through the activity.
· Use Live Presenter to have a student illustrate how he/she used a certain tool.
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TI-Nspire™ Technology Skills: 
· Download a TI-Nspire document
· Open a document
· Move between pages
· Grab and drag a point
· Labeling a point
· Transformation Menu
· Measurement Menu

Tech Tips: 
· Make sure the font size on your TI-Nspire handheld is set to Medium. 

Lesson Materials:
Student Activity
Definitions_of_Transformations_Student
TI-Nspire document 
Definitions_of_Transformations_Student.tns 

Extension Activity
Identifying_Transformations_ Student.



	ACTIVITY 1 – Translations

Problem 1.1 – Definition of a Translation

Open Definitions_of_Transformations_Student.tns and turn to Page 1.3. This page illustrates . 

1. Use the Points & Lines Menu to construct a vector .




2. Use the Transformation Menu to find the image of  under a translation through vectorand label the image . (Notation: .)

	[image: ]




	


3. Draw lines ,  and .  What appears to be true?

Answer: The lines appear to be parallel.

4. “Grab and drag” the point at the end of vector, , to change the translation. 
· Make a conjecture.




Answer: ,  and are parallel to vector v and to each other.

5. Measure the length of vector .  Record your measurements in the following table.

Various answers.









6. Measure the distance from point  to point ;  to ;  to .   Record your measurements in the following table.

Teacher Note: If the screen gets cluttered, you may wish to have students hide the lines/results from the previous investigation.





	
7. “Grab and drag” the point at the end of vector, , to change the position of the vector.  Record your measurements in the following table.  Various Answers.

	Position  of Vector v
	

	

	

	

	


	Position 1
	
	
	
	
	

	Position 2
	
	
	
	
	

	Position 3
	
	
	
	
	



· What do you observe? 





Answer: , ,  and  and the length of vector are the same for any position of .



8. Construct a point  anywhere in the plane and find its image  under . 
· 

What do you notice about the distance.  What if you change vector, ?


Answer: The distance  always equals the length of vector .


9. Using your own words write a definition of .






Answer:  Some variation on the actual definition - If  is any point in the plane then where vector  is equal to vector . That is, the length of vector  = length of vector  and they both have the same direction (ie parallel).



.
	Problem 1.2 – Properties of Translations






1. Measure line segments and.  What appears to be true?  Repeat for line segmentsand , and for line segments and .


Answer: Line segments and  appear to be the same length (i.e. are congruent.) 

2. “Grab and drag” the point at the end of vector, , to change the translation. What do you observe?
Make a conjecture.
Answer:  A line segment and its image appear to be congruent under a translation.







3. Measure angles and.  What appears to be true?  Repeat for anglesand , and for angles and .


Answer: Anglesand appear to have the same measure (i.e. are congruent.)


[bookmark: _GoBack]4. “Grab and drag” the point at the end of vector, , to change the translation. What do you observe?
Make a conjecture.
Answer:  An angle and its image appear to be congruent under a translation.

5. Make a conjecture about a triangle and its image under a translation.
Answer:  A triangle and its image appear to be congruent under a translation. (I.e. a translation is an isometry.)




	ACTIVITY  2 – Rotations
Problem 2.1 – Definition of Rotation



Turn to Page 2.2.  This page illustrates and an angle,.


1. Use the Points & Lines Menu to construct a point not on .




Note:  can actually be on , but to simplify the activity it was chosen not to be on .  This fact should be discussed following the activity.




2. Use the Transformation Menu and find the image of under a Rotation about P through angle, .  (Notation: .) 


3. Draw line segments  and . What appears to be true? Confirm your conjecture.

Answer: 


4. “Grab and drag” the open point on the angle and move it to several different positions to change the value of .  What do you observe?

Answer: is still true.





5. Repeat for line segments,  and  and then again for  and . Make a conjecture.


Answer:  and .




6. Measure , and . Record your measurements in the table below.


7. “Grab and drag” the open point on the angle and move it to several different positions to change the value of .   Record your measurements in the table below.



	Position of θ
	

	
m
	
m
	
m

	Position 1
	
	
	
	

	Position 2
	
	
	
	

	Position 3
	
	
	
	



	· Make a conjecture.

Answer: 




8. Construct a point  anywhere in the plane and find its image,  under . 
· 

What do you notice about the distances and ?

Answer: As before 

· 
What do you notice about the measure of ?

Answer: 


9. Find the image of pointunder . Make an observation.


Answer: The image of  is itself ( i.e.  is a fixed point.).


10. Using your own words write a definition of .






Answer: Some variation on the actual definition- If  is any point in the plane and θ is the measure of any angle then and if  is any other point in the plane  then and .



	Problem 2.2 – Properties of Rotations






1. Measure line segments and.  What appears to be true?  Repeat for line segmentsand , and for line segments and .


Answer: Line segments and  appear to be the same length (i.e. are congruent.)

2. “Grab and drag” the open point on the angle to change the value of θ.  Make a conjecture.
Answer:  A line segment and its image appear to be congruent under a rotation.







3. Measure angles and.  What appears to be true?  Repeat for anglesand , and for angles and .


Answer:  Angles and appear to be congruent under a rotation.


4. “Grab and drag” the open point on the angle to change the value of .  Make a conjecture.
Answer:  An angle and its image appear to be congruent under a rotation.


5. Make a conjecture about a triangle and its image under a rotation.
Answer:  A triangle and its image appear to be congruent under a rotation. (I.e. a rotation is an isometry.)




	Activity 3 – Reflections
Problem 3.1 – Definition of a Reflection


Turn to Page 3.2. This page illustrates .

1. Use the Points & Lines Menu to construct a line, . 




2. Use the Transformation Menu and find the image of  under a reflection over line, .  (Notation: .) 




3. Draw lines , and .  What appears to be true?






Answer: Lines , , and  appear to be parallel and line l appears to be the perpendicular bisector of line segments ,  and . 

4. “Grab and drag” the line, ,  to change the reflection. 
· Make a conjecture.



Answer: Line l appears to be the perpendicular bisector of line segments ,  and .
· How could you test your conjecture?
Answer: Measure the angles formed and the distances.





5. Construct a point  anywhere on line, , and find its image  under 
· What do you observe?


Answer: The image of  is itself ( i.e.  is a fixed point.).




6. Construct a point  anywhere in the plane and find its image  under 
· What do you observe?

Answer: Line l appears to be the perpendicular bisector of line segment 


7. Using your own words write a definition of 





Answer: Some variation on the actual definition -  Ifis any point in the plane such that  is on line l then  and if Q is any other point in the plane not on l then such that l is the perpendicular bisector of line segment .





	Problem 3.2 – Properties of Reflections


1. Measure line segments and.  
· What appears to be true? 


Answer: Line segments and  appear to be the same length (i.e. are congruent.)





Repeat for line segmentsand , and for line segments and .

2. “Grab and drag” the line, l, to change the reflection.
· Make a conjecture.
Answer:  A line segment and its image appear to be congruent under a reflection.







3. Measure angles and.  What appears to be true?  Repeat for anglesand , and for angles and .


Answer:  Angles and appear to be congruent under a reflection.

4. “Grab and drag” the line, l, to change the reflection.  
· Make a conjecture.
Answer:  An angle and its image appear to be congruent under a reflection.

5. Make a conjecture about a triangle and its image under a reflection.
Answer:  A triangle and its image appear to be congruent under a reflection. (I.e. a reflection is an isometry.)
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