KEY	New Content	2012 Mathematical studies SL	2012 Math	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation				Mathematics: analys	sis & approaches
	SL Content Additional HL Content		5	SL Content	Additional HL Content	

		AHL1.9		
	SL 1.1* Operations with numbers in the form $a \times 10^k$ where $1 \le a < 10$ and k is an integer.	Laws of logarithms: $\log_a xy = \log_a x + \log_a y$ $\log_a \frac{x}{y} = \log_a x - \log_a y$ $\log_a x^m = m \log_a x$ for $a, x, y > 0$	SL 1.1* Operations with numbers in the form $a \times 10^k$ where $1 \le a < 10$ and k is an integer.	AHL 1.10 Counting principles, including permutations and combinations. Extension of the binomial theorem to fractional and negative indices, ie., $(a+b)^n$, $n\in\mathbb{Q}$.
Topic 1: Algebra	SL1.2* Arithmetic sequences and series. Use of the formulae for the <i>n</i> th term and the sum of the first <i>n</i> terms of the sequence.	AHL 1.10	SL1.2* Arithmetic sequences and series. Use of the formulae for the <i>n</i> th term and the sum of the first <i>n</i> terms of the sequence.	AHL 1.11
	Use of sigma notation for sums of arithmetic sequences. Applications. Analysis, interpretation and prediction where a model is not perfectly arithmetic in real-life.	Simplifying expressions, both numerically and algebraically, involving rational exponents.	Use of sigma notation for sums of arithmetic sequences. Applications. Analysis, interpretation and prediction where a model is not perfectly arithmetic in real-life.	Partial fractions.
	SL 1.3* Geometric sequences and series. Use of the formulae for the nth term and the sum of the first n terms of the sequence. Use of sigma notation for the sums of geometric sequences.	AHL 1.11 The sum of infinite geometric sequences.	SL 1.3* Geometric sequences and series. Use of the formulae for the nth term and the sum of the first n terms of the sequence. Use of sigma notation for the sums of geometric sequences.	AHL 1.12 Complex numbers: the number i , where $i^2=-1$ Cartesian form $z=a+bi$; the terms real part, imaginary part, conjugate, modulus and argument.
	SL 1.4* Financial applications of geometric sequences and series:	AHL 1.12 Complex numbers: the number i such that $i^2 = -1$. Cartesian form: $z = a + bi$; the terms real part, imaginary part, conjugate, modulus and argument. Calculate sums, differences, products, quotients, by hand and with technology. Calculating powers of complex numbers, in Cartesian form, with technology. The complex plane. Complex numbers as solutions to quadratic equations of the form $ax^2 + bx + c = 0$, $a \ne 0$, with real coefficients where $b^2 - 4ac < 0$	SL 1.4* Financial applications of geometric sequences and series: Compound interest Annual depreciation	The complex plane.

KEY	New Content	2012 Mathematical studies SL	2012 Mathe	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation			Mathematics: analysis & approaches		
	SL Content	Additional HL Co	ontent	9	SL Content	Additional HL Content

	AHL 1.13		
SL 1.5* Laws of exponents with integer exponents. Introduction to logarithms with base 10 and e. Numerical evaluation of logarithms using technology.	Modulus—argument (polar) form: $z = r(\cos\theta + i\sin\theta) = r\operatorname{cis}\theta$ Exponential form: $z = r\mathrm{e}^{\mathrm{i}\theta}$ Conversion between Cartesian, polar and exponential forms, by hand and with technology. Calculate products, quotients and integer powers in polar or exponential forms. Adding sinusoidal functions with the same frequencies but different phase shift angles.	SL 1.5* Laws of exponents with integer exponents. Introduction to logarithms with base 10 and e. Numerical evaluation of logarithms using technology.	AHL 1.14 Complex conjugate roots of quadratic and polynomial equations with real coefficients. De Moivre's theorem and its extension to rational exponents. Powers and roots of complex numbers.
	Geometric interpretation of complex numbers. AHL 1.14 Definition of a matrix: the terms element, row, column and		
SL 1.6	order for $m \times n$ matrices. Algebra of matrices: equality; addition; subtraction; multiplication by a scalar for $m \times n$ matrices.	SI 4.C	AHL 1.15
Approximation: decimal places, significant figures. Upper and lower bounds of rounded numbers.	Multiplication of matrices. Properties of matrix multiplication: associativity, distributivity and non-commutativity.	SL 1.6 Simple deductive proof, numerical and algebraic; how to lay out a left-hand side to right-hand side (LHS to RHS) proof.	Proof by mathematical induction Proof by contradiction;
Percentage errors.	Identity and zero matrices.	The symbols and notation for equality and identity.	Use of a counterexample to show that a statement is no
Estimation.	Determinants and inverses of n x n matrices with technology, and by hand for 2 x 2 matrices. Awareness that a system of linear equations can be written in the form $Ax = b$.		always true.
	Solution of the systems of equations using inverse matrix. AHL 1.15		
SL 1.7 Amortization and annuities using technology.	Eigenvalues and eigenvectors. Characteristic polynomial of 2 x 2 matrices.	SL 1.7 Laws of exponents with rational exponents.	AHL 1.16 Solutions of systems of linear equations (a maximum of three equations in three unknowns), including cases where the content of the
Amorazation and annuities asing technology.	Diagonalization of 2 x 2 matrices (restricted to the case where there are distinct real eigenvalues). Applications to powers of 2 x 2 matrices.	Laws of logarithms.	there is a unique solution, an infinite number of solutio or no solution(s).

KEY	New Content	2012 Mathematical studies SL	2012 Math	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation				Mathematics: analys	is & approaches
	SL Content	Additional HL Content		S	SL Content	Additional HL Content

			$\log_a xy = \log_a x + \log_a y$	
			$\log_a \frac{x}{y} = \log_a x - \log_a y$	
			$\log_a x^m = m \log_a x$	
			for $a, x, y > 0$	
			Change of base of a logarithm.	
			$\log_a x = \frac{\log_b x}{\log_b a}, \text{ for } a, b, x > 0$	
			Solving exponential equations, including using logarithms.	
	SL 1.8			
	Use technology to solve:		SL 1.8	
	Systems of linear equations in up to 3 variables		Sum of infinite convergent geometric sequences.	
	Polynomial equations			
			SL 1.9	
			The binomial theorem: expansion of $(a+b)^n, n \in \mathbb{N}$	
			Use of Pascal's triangle and ${}^{n}C_{r}$.	
			ose of rustal striangle and C_r .	
	SL 2.1*		SL 2.1*	
(0	Different forms of the equation of a straight line.	AHL 2.7	Different forms of the equation of a straight line.	AHL 2.12
2: Functions	Gradient; intercepts.	Composite functions in context.	Gradient; intercepts.	Polynomial functions, their graphs and equations; zeros, roots and factors.
2: Fun	Lines with gradients m_1 and m_2 .	The notation $(f \circ g)(x) = f(g(x))$	Lines with gradients m_1 and m_2 .	The factor and remainder theorems.
opic	Parallel lines $m_1 = m_2$.	Inverse function f^{-1} , including domain restriction.		Sum and product of the roots of polynomial equations.
ĭ	Parallel lines $m_1 = m_2$.	Finding an inverse function.	Parallel lines $m_1 = m_2$.	Contraction of the contraction o
	Perpendicular lines $m_1 \times m_2 = -1$.		Perpendicular lines $m_1 \times m_2 = -1$.	
	SL 2.2*		SL 2.2*	
	Concept of a function, domain, range and graph.	AHL2.8	Concept of a function, domain, range and graph.	
		Translations: $y = f(x) + b$; $y = f(x - a)$		
	$\Gamma_{i,i,j}$ at $\Gamma_{i,j}$		$\Gamma_{ij} = \Gamma_{ij} = \Gamma$	AUI 2 12
	Function notation, eg. $f(x)$, $v(t)$, $C(n)$.	Reflections: in the x axis $y = pf(x)$, and in the y axis	Function notation, eg. $f(x)$, $v(t)$, $C(n)$.	AHL 2.13 Rational functions of the form
n)	Function notation, eg. $f(x)$, $v(t)$, $C(n)$. The concept of a function as a mathematical model.		Function notation, eg. $f(x)$, $v(t)$, $C(n)$. The concept of a function as a mathematical model.	Rational functions of the form
n) . ge . noi		Reflections: in the x axis $y = pf(x)$, and in the y axis		
	The concept of a function as a mathematical model.	Reflections: in the x axis $y=pf(x)$, and in the y axis $y=f(-x)$ Vertical stretch with scale factor p: $y=pf(x)$	The concept of a function as a mathematical model.	Rational functions of the form
notation,	The concept of a function as a mathematical model. Informal concept that an inverse function reverses or undoes the effect of a function.	Reflections: in the x axis $y = pf(x)$, and in the y axis $y = f(-x)$	The concept of a function as a mathematical model. Informal concept that an inverse function reverses or undoes the effect of a function.	Rational functions of the form
	The concept of a function as a mathematical model. Informal concept that an inverse function reverses or	Reflections: in the x axis $y=pf(x)$, and in the y axis $y=f(-x)$ Vertical stretch with scale factor p: $y=pf(x)$	The concept of a function as a mathematical model. Informal concept that an inverse function reverses or	Rational functions of the form

KEY	New Content	2012 Mathematical studies SL	2012 Math	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation				Mathematics: analys	is & approaches
	SL Content	Additional HL Content		S	SL Content	Additional HL Content

	AHL 2.9		
SL2.3*	In addition to the models covered in the SL content the AHL content extends this to include modelling with the following functions:	SL2.3*	AHL 2.14
	Exponential models to calculate half-life;		
The graph of a function; its equation $y = f(x)$.	, , , , , , , , , , , , , , , , , , , ,	The graph of a function; its equation $y = f(x)$.	Odd and even functions.
Creating a sketch from information given or a context, including transferring a graph from screen to paper.	Natural logarithmic models: $f(x) = a + \ln x$	Creating a sketch from information given or a context, including transferring a graph from screen to paper.	Finding the inverse function $f^{-1}(x)$, including domain restriction.
Using technology to graph functions including their sums and differences.	Sinusoidal models: $f(x) = a \sin(b(x-c)) + d$	Using technology to graph functions including their sums and differences.	Self-inverse functions.
	Logistic models: $f(x) = \frac{L}{1 + Ce^{-kx}}$; $L, k, C > 0$		
	Piecewise models.		
	AHL 2.10		
SL 2.4*	Scaling very large or small numbers using logarithms;	SL 2.4*	AHL 2.15
Determine key features of graphs.	Linearizing data using logarithms to determine if the data	Determine key features of graphs.	Solutions of $g(x) \ge f(x)$, both graphically and
Finding the point of intersection of two curves or lines using technology.	has an exponential or a power relationship using best-fit straight lines to determine parameters	Finding the point of intersection of two curves or lines using technology.	analytically.
	Interpretation of log-log and semi-log graphs.		
SL2.5			
Modelling with the following functions:			
Linear models: $f(x) = mx + c$.			
Quadratic models: $f(x) = ax^2 + bx + c$; $a \ne 0$. Axis of			
symmetry, vertex, zeros and roots, intercepts on the x-axis and y-axis.			
Exponential growth and decay models:		SL 2.5	AHL 2.16
$f(x) = ka^x + c$		Composite functions	The graphs of the functions, $y = f(x) $ and $y = f(x)$
$f(x) = ka^{-x} + c$, (for $a > 0$)		Identity function	$y = \frac{1}{f(x)}, y = f(ax+b), y = [f(x)]^2$
$f(x) = ke^{rx} + c$		Identity function.	f(x)
Equation of a horizontal asymptote.		Finding the inverse function $f^{-1}(x)$	Solution of modulus equations and inequalities.
Direct/inverse variation: $f(x) = ax^n$, $n \in \mathbb{Z}$			
Direct/inverse variation: $f(x) = ax^n$, $n \in \mathbb{Z}$ The y-axis as a vertical asymptote when $n < 0$.			
Direct/inverse variation: $f(x) = ax^n$, $n \in \mathbb{Z}$ The y-axis as a vertical asymptote when $n < 0$. Cubic models: $f(x) = ax^3 + bx^2 + cx + d$ Sinusoidal models:			

KEY	New Content	2012 Mathematical studies SL	2012 Math	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation				Mathematics: analys	sis & approaches
	SL Content Additional HL Content		5	SL Content	Additional HL Content	

SL 2.6			
Modelling skills:			
Use the modelling process described in the "mathematical modelling" section of the guide to create, fit and use the theoretical models in section SL2.5 and their graphs;			
Develop and fit the model:			
Given a context, recognize and choose an appropriate model and possible parameters;		SL 2.6	
Determine a reasonable domain for a model. Find the parameters of a model: by setting up and solving equations simultaneously (using technology), by consideration of initial conditions or by substitution of points into a given function.		The quadratic function $f(x) = ax^2 + bx + c$: its graph, y -intercept $(0,c)$. Axis of symmetry. The form $f(x) = a(x-p)(x-q)$, x -intercepts $(p,0)$	
Test and reflect upon the model:		and(q,0) .	
Comment on the appropriateness and reasonableness of a model.		The form $f(x) = a(x-h)^2 + k$, vertex (h,k) .	
Justify the choice of a particular model: based on the shape of the data, properties of the curve and/or the context of the situation.			
Use the model:			
Reading, interpreting & making predictions based on the model.			
		SL 2.7	
	ļ ļ	Solution of quadratic equations and inequalities	
		The quadratic formula	
		The discriminant $\Delta = b^2 - 4ac$ and the nature of the roots, that is, two distinct real roots, two equal real roots, no real roots.	
		SL 2.8	
		The reciprocal function $f(x) = \frac{1}{x}, x \neq 0$: its graph and	
		self-inverse nature.	
		Rational functions of the form $f(x) = \frac{ax+b}{cx+d}$ and their	
		graphs. $cx + a$	
		Equations of vertical and horizontal asymptotes.	

KEY	New Content 2012 Mathematical studies SL		2012 Mathe	2012 Mathematics SL 2012 Mathematics HL 2012 Mathem		2012 Mathematics HL options
	Mathematics: applications & interpretation			Mathematics: analysis & approaches		
	SL Content Additional HL Conte		ontent	SL Content		Additional HL Content

or content	Additional TIE Content	3L Content	Additional TIE Content
		SL 2.9	
		Exponential functions and their graphs.	
		$f(x) = a^x, a > 0, f(x) = e^x$	
		Logarithmic functions and their graphs:	
		$f(x) = \log_a x, x > 0, f(x) = \ln x, x > 0$	
		SL 2.10	
		Solving equations, both graphically and analytically.	
		Use of technology to solve a variety of equations, including	
		those where there is no appropriate analytic approach.	
		Applications of graphing skills and solving equations that relate to real-life situations.	
		SL 2.11	
		Transformations of graphs.	
		Translations: $y = f(x) + b$; $y = f(x - a)$.	
		Reflections (in both axes): $y = -f(x)$; $y = f(-x)$.	
		Vertical stretch with scale factor p: $y = pf(x)$.	
		Horizontal stretch with scale factor $\frac{1}{x} : y = f(qx)$.	
		q	
		Composite transformations.	AHL 3.9
SL 3.1*		SL 3.1*	Definition of the reciprocal trigonometrical
The distance between two points in three-dimensional space, and their midpoint.	AHL 3.7	The distance between two points in three-dimensional space, and their midpoint.	ratios $\sec \theta, \csc \theta$ and $\cot \theta$.
Volume and surface area of three-dimensional solids	The definition of a radian and conversion between degrees and radians.	Volume and surface area of three-dimensional solids	Pythagorean identities: $1 + \tan^2 \theta = \sec^2 \theta$;
including right-pyramid, right cone, sphere, hemisphere and combinations of these solids.		including right-pyramid, right cone, sphere, hemisphere and combinations of these solids.	$1 + \cot^2 \theta = \csc^2 \theta.$
The size of an angle between two intersecting lines or	Using radians to calculate area of sector, length of arc.	The size of an angle between two intersecting lines or	The inverse functions $f(x) = \arcsin x$, $f(x) = \arccos(x)$,
Ø Detween a line and a plane.		between a line and a plane.	$f(x) = \arctan x$; their domains and ranges; their graphs.
SL 3.2*	AHL 3.8	SL 3.2*	
Use of sine, cosine and tangent ratios to find the sides and angles of right-angled triangles.	The definitions of $\cos\theta$ and $\sin\theta$ in terms of the unit circle.	Use of sine, cosine and tangent ratios to find the sides and angles of right-angled triangles.	AUI 2 40
<u>u</u>	The Pythagorean identity: $\cos^2 \theta + \sin^2 \theta = 1$	The sine rule: $a - b - c$	AHL 3.10 Compound angle identities.
The sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.	Definition of $\tan \theta$ as $\frac{\sin \theta}{\cos \theta}$	The sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.	
The cosine rule	0000	The cosine rule	Double angle identity for tan.
$a^{2} = b^{2} + c^{2} - 2bc \cos A; \cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}.$	Extension of the sine rule to the ambiguous case.	$a^2 = b^2 + c^2 - 2bc \cos A$; $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$.	
200	Graphical methods of solving trigonometric equations in a	200	

Graphical methods of solving trigonometric equations in a

KEY	New Content	2012 Mathematical studies SL	2012 Math	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation			Mathematics: analysis & approaches		
	SL Content	Additional HL C	ontent	5	SL Content	Additional HL Content

Area of a triangle as $\frac{1}{2}ab\sin C$.	finite interval.	Area of a triangle as $\frac{1}{2}ab\sin C$.	
SL 3.3* Applications of right and non-right-angled trigonometry including Pythagoras. Angles of elevation and depression. Construction of labelled diagrams from written statements.	AHL 3.9 Geometric transformations of points in two dimensions using matrices: reflections, horizontal and vertical stretches, enlargements, translations and rotations. Compositions of the above transformations. Geometric interpretation of the determinant of a transformation matrix.	SL 3.3* Applications of right and non-right-angled trigonometry including Pythagoras. Angles of elevation and depression. Construction of labelled diagrams from written statements.	AHL 3.11 Relationships between trigonometric functions and the symmetry properties of their graphs.
SL 3.4 The circle: length of an arc; area of a sector.	Concept of a vector and a scalar. Representation of vectors using directed line segments. Unit vectors; base vectors i, j, k . Components of a vector; column representation; $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 i + v_2 j + v_3 k$ The zero vector 0, the vector $-V$. Position vectors $\overrightarrow{OA} = a$. $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = b - a$ Rescaling and normalizing vectors.	SL 3.4 The circle: radian measure of angles; length of an arc; area of a sector.	Concept of a vector; position vectors; displacement vectors. Representation of vectors using directed line segments. Base vectors i, j, k . $v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = v_1 i + v_2 j + v_3 k$ Components of a vector: Algebraic and geometric approaches to the following: • the sum and difference of two vectors; • the zero vector 0 , the vector $-\mathbf{v}$; • multiplication by a scalar, $k\mathbf{v}$, parallel vectors; • magnitude of a vector, $ \mathbf{v} $; unit vectors, $\frac{\mathbf{v}}{ \mathbf{v} }$; • position vectors $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ • displacement vector $\overrightarrow{AB} = \mathbf{b} - \mathbf{a}$ Proofs of geometrical properties using vectors.
SL 3.5 Equations of perpendicular bisectors.	AHL 3.11 Vector equation of a line in two and three dimensions: $r = a + \lambda b$, where b is a direction vector of the line.	SL 3.5 Definition of $\cos\theta, \sin\theta$ in terms of the unit circle. Definition of $\tan\theta$ as $\frac{\sin\theta}{\cos\theta}$. Exact values of trigonometric ratios of $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$ and their multiples. Extension of the sine rule to the ambiguous case.	AHL 3.13 The definition of the scalar product of two vectors. The angle between two vectors Perpendicular vectors; parallel vectors.

KEY	New Content	2012 Mathematical studies SL	2012 Mathe	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation			Mathematics: analysis & approaches		
	SL Content	Additional HL Co	ontent	5	SL Content	Additional HL Content

SL 3.6	AUL 2.42		AHL 3.14
Voronoi diagrams; sites, vertices, edge, cells.	AHL 3.12	SL 3.6	
	Vector applications to kinematics	The Pythagorean identity $\cos^2 \theta + \sin^2 \theta = 1$.	Vector equation of a line in two and three dimensions:
Addition of a site to an existing Voronoi diagram.	Madelling linear metion with constant velocity in two and		$r = a + \lambda b$.
	Modelling linear motion with constant velocity in two and three dimensions.	Double angle identities for sine and cosine.	The could have seen a Process
Nearest neighbour interpolation.	three difficults.	The relationship between trigonometric ratios.	The angle between two lines.
Applications including the "toxic waste dump" problem.	Motion with variable velocity in two dimensions.	The relationship between trigonometric ratios.	Simple applications to kinematics.
	AHL 3.13		
	Definition and calculation of the scalar product of two	SL 3.7	
	vectors	The circular functions $\sin x$, $\cos x$ and $\tan x$; amplitude,	
			AUL 2.45
	The angle between two vectors; the acute angle between	their periodic nature, and their graphs	AHL 3.15
	two lines.	Composite functions of the form	Coincident, parallel, intersecting and skew lines,
		$f(x) = a\sin(b(x+c)) + d$	distinguishing between these cases.
	Definition and calculation of the vector product of two	, (,, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Points of intersection.
	vectors.	Transformations.	Foints of intersection.
	Geometric interpretation of $ v \times w $.		
		Real-life contexts.	
	Components of vectors.		
	AHL 3.14		
	Graph theory: Graphs, vertices, edges, adjacent vertices,	SL 3.8	
	adjacent edges, degree of a vertex	Solving trigonometric equations in a finite interval, both	AHL 3.16
		graphically and analytically.	The definition of the vector product of two vectors.
	Simple graphs; complete graphs; weighted graphs.	8.4664	
		Equations leading to quadratic equations in	Properties of the vector product.
	Directed graphs; indegree and outdegree of the vertices of	Equations leading to quadratic equations in	
	a directed graph.	$\sin x, \cos x$, or $\tan x$.	Geometric interpretation of $ v \times w $.
	Subgraphs; trees		
	AHL 3.15		AHL 3.17
	Adjacency matrices		Vector equations of a plane: $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$, where \mathbf{b}
	• Walks		$oldsymbol{c}$ are non-parallel vectors within the plane.
	 Number of k-length walks (or less than k-length walks) 		o are non-parametrication manners plants.
	between two vertices.		$r \cdot n = a \cdot n$, where n is a normal to the plane and a is
	Weighted adjacency tables		position vector of a point on the plane.
	 Construction of the transition matrix for strongly- 		Cartagian aquation of a plane and house
	connected, undirected or directed graphs.		Cartesian equation of a plane $ax + by + cz = d$.
	AHL 3.16		
	Tree and cycle algorithms with undirected graphs		
	Walks, trails, paths, circuits, cycles		
	Eulerian trails and circuits		
	Hamiltonian paths and cycles		AHL 3.18
	 Minimum spanning tree (MST) graph algorithms: 		Intersections of: a line with a plane, two planes, three
	Kruskal's and Prim's algorithms for finding minimum		planes.
	spanning trees.		
	 Chinese postman problem and algorithm for solution, 		Angle between: a line and a plane, two planes.
	to determine the shortest route around a weighted		
	graph with up to four odd vertices, going along each		
	edge at least once.		
	Travelling salesman problem to determine the		

KEY	New Content	2012 Mathematical studies SL	2012 Mathe	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation			Mathematics: analysis & approaches		
	SL Content Additional HL Content		S	SL Content	Additional HL Content	

		•	
	 Hamiltonian cycle of least weight in a weighted complete graph. Nearest neighbour algorithm for determining an upper bound for the travelling salesman problem. Deleted vertex algorithm for determining a lower bound for the travelling salesman problem. 		
SL 4.1* Concepts of population, sample, random sample, discrete and continuous data. Reliability of data sources and bias in sampling. Interpretation of outliers. Sampling techniques and their effectiveness.	 AHL4.12 Design of valid data collection methods, such as surveys and questionnaires. Selecting relevant variables from many variables. Choosing relevant and appropriate data to analyse. Categorizing numerical data in a χ² table and justifying the choice of categorisation. Choosing an appropriate number of degrees of freedom when estimating parameters from data when carrying out the χ² goodness of fit test. Definition of reliability and validity. Reliability tests. Validity tests. 	SL 4.1* Concepts of population, sample, random sample, discrete and continuous data. Reliability of data sources and bias in sampling. Interpretation of outliers. Sampling techniques and their effectiveness.	AHL 4.13 ■ Use of Bayes' theorem for a maximum of three event
 SL 4.2* Presentation of data (discrete and continuous): frequency distributions (tables). Histograms. Cumulative frequency; cumulative frequency graphs; use to find median, quartiles, percentiles, range and interquartile range (IQR). Production and understanding of box and whisker diagrams. 	 AHL 4.13 Non-linear regression; evaluation of least squares regression curves using technology; Sum of square residuals (SS_{res}) as a measure of fit for a model. The coefficient of determination (R²). Evaluation of R² using technology. 	 SL 4.2* Presentation of data (discrete and continuous): frequency distributions (tables). Histograms. Cumulative frequency; cumulative frequency graphs; use to find median, quartiles, percentiles, range and interquartile range (IQR). Production and understanding of box and whisker diagrams. 	 AHL 4.14 Variance of a discrete random variable. Continuous random variables and their probability density functions. Mode and median of continuous random variables. Mean, variance and standard deviation of both discretand continuous random variables. The effect of linear transformations of X.
 SL 4.3* Measures of central tendency (mean, median and mode). Estimation of mean from grouped data. Modal class. Measures of dispersion (interquartile range, standard deviation and variance). Effect of constant changes on the original data. Quartiles of discrete data. 	 AHL 4.14 Linear transformation of a single random variable; Expected value of linear combinations of n random variables. Variance of linear combinations of n independent random variables. x̄ as an unbiased estimate of μ. s²_{n-1} as an unbiased estimate of σ². 	 diagrams. SL 4.3* Measures of central tendency (mean, median and mode). Estimation of mean from grouped data. Modal class. Measures of dispersion (interquartile range, standard deviation and variance). Effect of constant changes on the original data. Quartiles of discrete data. 	
 SL 4.4* Linear correlation of bivariate data. Pearson's product-moment correlation coefficient, r. Scatter diagrams; lines of best fit, by eye, passing through the mean point. Equation of the regression line of y on x. Use of the equation of the regression line for prediction purposes. Interpret the meaning of the parameters, a and b, in a 	AHL 4.15 • A linear combination of n independent normal random variables is normally distributed. In particular, $X \sim \mathrm{N}(\mu,\sigma^2) \Rightarrow \overline{X} \sim \mathrm{N}\left(\mu,\frac{\sigma^2}{n}\right).$ • Central limit theorem.	 SL 4.4* Linear correlation of bivariate data. Pearson's product-moment correlation coefficient, r. Scatter diagrams; lines of best fit, by eye, passing through the mean point. Equation of the regression line of y on x. Use of the equation of the regression line for prediction purposes. Interpret the meaning of the parameters, a and b, in a 	

KEY	New Content	2012 Mathematical studies SL	2012 Math	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation			Mathematics: analysis & approaches		
	SL Content	Additional HL C	ontent	5	SL Content	Additional HL Content

linear regression $y = ax + b$		linear regression $y = ax + b$.	
SL 4.5* Concepts of trial, outcome, equally likely outcomes, relative frequency, sample space (U) and event. The probability of an event A is $P(A) = \frac{n(A)}{n(U)}$. The complementary events A and A' (not A). Expected number of occurrences.	AHL 4.16 Confidence intervals for the mean of a normal population.	SL 4.5* Concepts of trial, outcome, equally likely outcomes, relative frequency, sample space (U) and event. The probability of an event A is $P(A) = \frac{n(A)}{n(U)}$. The complementary events A and A' (not A). Expected number of occurrences.	
SL 4.6* Use of Venn diagrams, tree diagrams, sample space diagrams and tables of outcomes to calculate probabilities. Combined events: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Mutually exclusive events: $P(A \cap B) = 0$. Conditional probability: $P(A B) = \frac{P(A \cap B)}{P(B)}$. Independent events: $P(A \cap B) = P(A)P(B)$.	AHL 4.17 Poisson distribution, its mean and variance. Sum of two independent Poisson distributions has a Poisson distribution. AHL 4.18 Critical values and critical regions. Test for population mean for normal distribution. Test for proportion using binomial distribution. Test for population mean using Poisson distribution.	SL 4.6* Use of Venn diagrams, tree diagrams, sample space diagrams and tables of outcomes to calculate probabilities. Combined events: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. Mutually exclusive events: $P(A \cap B) = 0$. Conditional probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$. Independent events: $P(A \cap B) = P(A)P(B)$.	
Expected value (mean), $\operatorname{E}(X)$ for discrete data. Applications.	Use of technology to test the hypothesis that the population product moment correlation coefficient (ρ) is 0 for bivariate normal distributions. Type I and II errors including calculations of their probabilities. AHL 4.19 Transition matrices.	Expected value (mean), $\operatorname{E}(X)$ for discrete data. Applications.	
SL 4.8* Binomial distribution. Mean and variance of the binomial distribution.	Regular Markov chains. Initial state probability matrices. Calculation of steady state and long-term probabilities by repeated multiplication of the transition matrix or by solving a system of linear equations.	SL 4.8* Binomial distribution. Mean and variance of the binomial distribution.	

K	EY	New Content	2012 Mathematical studies SL	2012 Mathe	ematics SL	2012 Mathematics HL		2012 Mathematics HL options
		Mathematics: applications & interpretation			Mathematics: analysis & approaches			
		SL Content Additional HL Content		S	SL Content		Additional HL Content	

_			
SL 4.9* The normal distribution and curve. Properties of the normal distribution.		SL 4.9* The normal distribution and curve. Properties of the normal distribution.	
Diagrammatic representation. Normal probability calculations. Inverse normal calculations.		Diagrammatic representation. Normal probability calculations. Inverse normal calculations.	
SL 4.10 Spearman's rank correlation coefficient, r _s . Awareness of the appropriateness and limitations of Pearson's product moment correlation coefficient and Spearman's rank correlation coefficient, and the effect of outliers on each.		SL 4.10 Equation of the regression line of x on y . Use of this equation for prediction purposes.	
SL 4.11 Formulation of null and alternative hypotheses, H0 and H1. Significance levels. p-values.; Expected and observed frequencies. The χ^2 test for independence: contingency tables, degrees of freedom, critical value. The χ^2 goodness of fit test. The t-test. Use of the p-value to compare the means of two populations. Using one-tailed and two-tailed tests.		SL 4.11 Formal definition and use of the formulae: $P(A B) = \frac{P(A \cap B)}{P(B)} \text{ for conditional probabilities, and}$ $P(A B) = P(A) = P(A B') \text{ for independent events.}$	
SL 5.1* Introduction to the concept of a limit. Derivative interpreted as gradient function and as rate of	AHL 5.9 The derivatives of $\sin x$, $\cos x$, $\tan x$, e^x , $\ln x$, x^n where $n \in \mathbb{Q}$.	SL 4.12 Standardization of normal variables (z-values). Inverse normal calculations where mean and standard deviation are unknown. SL 5.1* Introduction to the concept of a limit. Derivative interpreted as gradient function and as rate of	AHL 5.12 Informal understanding of continuity and differentiability of a function at a point.
change.	The chain rule, product rule and quotient rules. Related rates of change.	change.	Understanding of limits (convergence and divergence). Definition of derivative from first principles

KEY	New Content	2012 Mathematical studies SL	2012 Mathe	ematics SL	2012 Mathematics HL	2012 Mathematics HL options
	Mathematics: applications & interpretation			Mathematics: analysis & approaches		
	SL Content	Additional HL Co	ontent	5	SL Content	Additional HL Content

			$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$
SL 5.2* Increasing and decreasing functions. Graphical interpretation of $f'(x) > 0$, $f'(x) = 0$, $f'(x) < 0$.	AHL 5.10 The second derivative. Use of second derivative test to distinguish between a maximum and a minimum point.	SL 5.2* Increasing and decreasing functions. Graphical interpretation of $f'(x) > 0, f'(x) = 0, f'(x) < 0$.	Higher derivatives. AHL 5.13 The evaluation of limits of the form $\lim_{x\to a} \frac{f(x)}{g(x)}$ and $\lim_{x\to \infty} \frac{f(x)}{g(x)}$ using l'Hôpital's Rule. Repeated use of l'Hôpital's rule.
SL 5.3* Derivative of $f(x) = ax^n$ is $f'(x) = anx^{n-1}$, $n \in \mathbb{Z}$ The derivative of functions of the form: $f(x) = ax^n + bx^{n-1} +, \text{ where } n \in \mathbb{Z} .$	AHL 5.11 Definite and indefinite integration of x^n where $n \in \mathbb{Q}$, including $n = -1$, $\sin x$, $\cos x$, $\frac{1}{\cos^2 x}$ and e^x . Integration by inspection, or substitution of the form $\int f(g(x))g'(x)dx$	SL 5.3* Derivative of $f(x) = ax^n$ is $f'(x) = anx^{n-1}$, $n \in \mathbb{Z}$ The derivative of functions of the form: $f(x) = ax^n + bx^{n-1} +, \text{ where } n \in \mathbb{Z} .$	AHL 5.14 Implicit differentiation. Related rates of change. Optimisation problems.
SL 5.4* Tangents and normals at a given point, and their equations.	AHL 5.12 Area of the region enclosed by a curve and the x -axis or y -axis in a given interval. volumes of revolution about the x -axis or y -axis.	SL 5.4* Tangents and normals at a given point, and their equations.	AHL 5.15 $ tan x, sec x, cosecx, cot x, a^x, log_a x, $ Derivatives of: $ arcsin x, arccos x, arctan x $ Indefinite integrals of the derivatives of any of the above functions. The composites of any of these with a linear function. Use of partial fractions to rearrange the integrand.
Introduction to integration as anti-differentiation of functions of the form $f(x) = ax^n + bx^{n-1} +$, where $n \in \mathbb{Z}, n \neq -1$. Definite integrals using technology. Areas between a curve $y = f(x)$ and the x-axis, where $f(x) > 0$. Anti-differentiation with a boundary condition to determine the constant term.	AHL 5.13 Kinematic problems involving displacement s , velocity v and acceleration a .	Introduction to integration as anti-differentiation of functions of the form $f(x) = ax^n + bx^{n-1} +$, where $n \in \mathbb{Z}, n \neq -1$. Definite integrals using technology. Areas between a curve $y = f(x)$ and the x-axis, where $f(x) > 0$. Anti-differentiation with a boundary condition to determine the constant term.	AHL 5.16 Integration by substitution. Integration by parts. Repeated integration by parts.
SL 5.6 Values of x where the gradient of a curve is zero. Solution of $f'(x) = 0$. Local maximum and minimum points.	AHL 5.14 Setting up a model/differential equation from a context. Solving by separation of variables	SL 5.6 Derivative of x^n ($n \in \mathbb{Q}$), $\sin x$, $\cos x$, e^x and $\ln x$. Differentiation of a sum and a multiple of these functions. The chain rule for composite functions. The product and quotient rules.	AHL 5.17 Area of the region enclosed by a curve and the y -axis in a given interval. Volumes of revolution about the x -axis or y -axis.

ŀ	KEY	New Content	2012 Mathematical studies SL	2012 Mathematics SL		2012 Mathematics HL	2012 Mathematics HL options
		Mathematics: applications & interpretation			Mathematics: analysis & approaches		
		SL Content Additional HL Content		9	SL Content	Additional HL Content	

SL 5.7 Optimization problems in context.	AHL 5.15 Slope fields and their diagrams.	SL 5.7 The second derivative. Graphical behaviour of functions, including the relationship between the graphs of f,f' and f'' .	AHL 5.18 First order differential equations. Numerical solution of $\frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y)$ using Euler's method. Variables separable. Homogeneous differential equation $\frac{\mathrm{d}y}{\mathrm{d}x} = f\left(\frac{y}{x}\right)$ using the substitution $y = vx$. Solution of $y' + P(x)y = Q(x)$, using the integrating factor.
SL 5.8 Approximating areas using the trapezoidal rule.	AHL 5.16 Euler's method for finding the approximate solution to first order differential equations. Numerical solution of $\frac{dy}{dx} = f(x,y)$. Numerical solution of the coupled system $\frac{dx}{dt} = f_1(x,y,t)$ and $\frac{dy}{dt} = f_2(x,y,t)$. AHL 5.17 Phase portrait for the solutions of coupled differential equations of the form: $\frac{dx}{dt} = ax + by$	SL 5.8 Local maximum and minimum points. Testing for maximum and minimum. Optimization. Points of inflexion with zero and non-zero gradients.	AHL 5.19 Maclaurin series to obtain expansions for e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$, $p \in \mathbb{Q}$. Use of simple substitution, products, integration and differentiation to obtain other series. Maclaurin series developed from differential equations.
	$\frac{dy}{dt} = cx + dy$ Qualitative analysis of future paths for distinct, real, complex and imaginary eigenvalues. Sketching trajectories and using phase portraits to identify key features such as equilibrium points, stable populations and saddle points.	SL 5.9 Kinematic problems involving displacement s, velocity v, acceleration a and total distance travelled. SL 5.10	
	AHL 5.18 Solutions of $\frac{d^2x}{dt^2} = f(x, \frac{dx}{dt}, t)$ by Euler's method.	Indefinite integral of x^n ($n \in \mathbb{Q}$), $\sin x, \cos x, \frac{1}{x}$, and e^x . The composites of any of these with the linear function $ax + b$. Integration by inspection (reverse chain rule) or by substitution for expressions of the form: $\int k g'(x) f(g(x)) \mathrm{d}x$	

KEY	New Content	2012 Mathematical studies SL	2012 Math	ematics SL	2012 Mathematics HL	2012 Mathematics HL options	
	Mathematics: applications & interpretation			Mathematics: analysis & approaches			
	SL Content	Additional HL C	Additional HL Content		SL Content	Additional HL Content	
	SL 5.11						
				Definite integrals, including analytical approach.			
				Areas between a curve $y = f(x)$ and the x-axis, where			
				f(x) can be positive or negative, without the use of			
				technology.			
				Areas between curves.			

K	EY	New Content	New Content 2012 Mathematical studies SL 2012 Mathematics SL		ematics SL	2012 Mathematics HL 2012 Mathematics HL options		
		Mathematics: applications & interpretation			Mathematics: analysis & approaches			
		SL Content Additional HL Content		S	SL Content		Additional HL Content	

	Comparison of Applications SL to MSSL	Comparison of Analysis SL to Mathematics SL	Comparison of Analysis HL to Mathematics HL core (2012 option in yellow)
10	- number sets (now prior knowledge)	- all vectors	- Poisson distribution
ions	- currency conversion	- volumes of revolution	
ract	- all logic (20 hours)		
Subtractions	- most set theory (some now prior knowledge)		
	+ sigma notation	+ simple deductive proof	+ extension of binomial theorem to fractional/negative powers
	+ amortization & annuities with technology (was unwritten in MSSL)	+ regression	+ partial fractions
	+ t test	+ x on y regression line equation	+ de Moivre's Theorem for rational exponents
	+ general probability distributions (was unwritten in MSSL)	+ more time on basics of number, functions, trig, calc	+ rational functions of quadratic/linear or linear/quadratic
ons	+ binomial distribution		+ graph of f(linear) function and [f]^2
Additions	+ more sophisticated correlation coefficient (Spearman's)		+ concepts in sampling
	+ extension of chi squared to best fit		+ concepts in displaying data
	+ equation of perpendicular bisectors (was unwritten in MSSL)		+ correlation and regression
	+ Voronoi diagrams		+ differential equations
	+ increased focus on functions as models and what models mean, trig models		+ Maclaurin series
	+ basic integration		