
 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 1 education.ti.com

Unit 6: micro:bit with Python Skill Builder 2: Buttons and Gestures

In this lesson you will learn about using the micro:bit
buttons and gestures and then write a program to toss a
die and collect the values in a list to be transferred to a
data plot.
There are two parts to this lesson:

Part 1: Investigating buttons and gestures
Part 2: Using a button or gesture to generate
some data

Objectives:
• Read and process the A and B buttons on the

micro:bit
• Observe the difference between .was and .is
• Transfer data from python to TI-Nspire
• Investigate collected data from the micro:bit
• Use gestures to control the display

Teacher Tip: As in Skill Builder 1, this lesson is designed from the inside out. Code is not introduced sequentially, but
developed to first focus on the button and gesture features of the micro:bit and then finish with making a connection
between python lists and TI-Nspire lists.

1. The micro:bit has two buttons, labeled A and B, on each side of the
display. The python micro:bit module has two similar methods for
reading the buttons and then performing tasks based on those buttons.
First you will test the methods and then write a program that lets you
collect data and analyze it elsewhere in the TI-Nspire CX II.

There is also a 3-axis accelerometer/compass chip on the back of the
micro:bit and methods for interpreting micro:bit movement and
orientation.

Teacher Tip: On the micro:bit version 2 there is also a ‘touch’ button above the display (the gold oval).
In the module this is referred to as ‘Logo Touch’ and uses the method ‘is_touched()’. This touch button
is not discussed in these lessons but is easy to incorporate into your plan based on what you see in this
lesson. Note the difference between the behavior of .is_ and .was_ below…

2. Part 1: Investigating buttons and gestures
Start a new python program in a new document.

Press the [home] key and select New, then Add Python >New…
We named the program buttons_gestures.

From [menu] > More Modules > BBC micro:bit select the import
statement at the top of the list:
 from microbit import *

 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 2 education.ti.com

3. Add the while loop:
 while get_key()! = ’esc’:
from
 [menu] > More Modules > BBC micro:bit > Commands

Almost all your micro:bit programs will be designed this way

4. To test button A, add the if : structure:

 ♦♦if button_a.was_pressed():
 ♦♦♦♦print("Button A")
if is indented to be part of the while loop and print() is indented even
more to be part of the if block. Remember that proper indentation is
very important in python. The wrong indentation can cause syntax errors
or improper execution of your code. Note the light gray diamond symbols
(♦♦) that indicate the indentation spacing.

if is found on [menu] > Built-ins > Control.

The condition button_a.was_pressed() is found on
[menu] > More Modules> BBC micro:bit > Buttons and Logo Touch

print() is on [menu] > Built ins > I/O

Type the text “Button A” inside the print() function.

Note: is_pressed() will also be discussed later.

5. You are ready to test the program. Press [ctrl] [R] to run the program. It
looks like nothing is happening. Press and release button A on the
micro:bit. You will see ‘Button A’ appear on the calculator screen. Each
time you press the button the text will appear as in this image.

Press [esc] and return to the Python Editor.

 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 3 education.ti.com

6. Add another if statement to check button B using the condition
button_b.is pressed(). Note that ‘IS’ is different than ‘WAS’.
You will see how they differ soon.
 ♦♦if button_b.is_pressed():
 ♦♦♦♦print("Button B")

Tip: again, pay attention to the indentations!

Teacher Tip: The two functions behave differently. There are programming circumstances
where the choice between the two different behaviors will be important.

7. Run the program again (press [ctrl] [R]). Try both buttons A and B.
Tap each button and press-n-hold each button.
You will see ‘Button B’ repeatedly displayed as long as button B is held
down, but not ‘Button A’. There is a difference between .was_pressed()
(which needs a release of the button to be reset) and .is_pressed()
which just checks to see if the button is down at the very moment that
the statement is processed.

Note: if you tap button B quickly, the program may not display Button B
since the button is not down at the very moment the if statement is being
processed.

Teacher Tip:
.was_pressed() requires a full ‘down-up’ action to detect individual presses (clicks).

.was_pressed() detects a down-up event which can happen even when the button was
clicked at some other time in the execution of the loop. The button must be released for
another click to occur. The micro:bit ‘remembers’ that the button was pressed.

.is_pressed() is like an ‘is down?’ event. Some event-driven programming languages have
a similar function such as ‘mouse_down’. .is_pressed() only produces True if the button
is down at the exact moment that the statement is processed.

In the rest of this lesson the code for button B is ignored.

8. Introducing gestures. The micro:bit has an electronic accelerometer
that can measure acceleration forces in three different directions (a 3-
axis or 3D accelerometer). In addition to providing numerical values for
acceleration in each direction (see image), the micro:bit also provides
simple, easy-to understand ‘gestures’ such as ‘face up’ and ‘face down’
that are based on those directional values.

This lesson explores these gestures and demonstrates how to use them
in programming your TI-Nspire CX II with micro:bit.

 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 4 education.ti.com

9. Get the gesture value from micro:bit and store it in the variable g:
 ♦♦g = accelerometer.current_gesture()
Tip: again, pay attention to the indentations!

Type ♦♦g = and then

Find accelerometer.current_gesture() on

 [menu] > More Modules > BBC micro:bit > Sensors > Gestures >

Then print the value of g:
 ♦♦print(g)

Reminder: print() is on [menu] > Built ins > I/O

Note that these two statements are indented one stop to be part of the
while loop but not part of the if statement above it. Remember that the
indentation of each line determines the meaning so BE CAREFUL!

10. Run the program and watch the calculator display for the various values
as you move the micro:bit around in the air. Turn micro:bit over, stand it
on each edge, shake, rattle, and roll it. Part of a sample run is shown in
this image.

Some of the available gestures are: face up, face down, up, down,
left, right, shake. These are returned as string values. Can you see all
these gestures on your screen?

11. #comment the last two gesture statements (use [ctrl] [T] to #comment a
line) as shown in the image and add this other gesture function from the
same menu:
 ♦♦if accelerometer.was_gesture(“face down”):
 ♦♦♦♦print(“face down”)
The gesture methods and the gesture “strings” are all on:
 [menu] > More Modules > BBC micro:bit > Sensors > Gestures

Yes, you can simply type the gesture strings but in the .was_gesture()
method it must match the menu item exactly.

When you run this program, you will notice the change in the output:
 .current_gesture() constantly prints the gesture.
 .was_gesture() only prints when the gesture changes.

 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 5 education.ti.com

12. Buttons and gestures are two ways of getting input from the micro:bit
and producing results on either the TI-Nspire CX II screen or the
micro:bit display… or both.
The next part of this lesson builds an activity that produces some data
using the micro:bit for further investigation on the TI-Nspire CX II.

13. Part 2: Let’s toss a die (a cube numbered 1..6 on each face). When
button A is pressed assign a random integer from 1 to 6 to a variable.
You can use button A, button B, or a gesture of your choice.
Display the value on the micro:bit only. Try it yourself before looking at
the next step. We will use the current program and add code to simulate
the die toss.

Can you determine what number is on the bottom of the pictured die?

Teacher Tip:
 Answer: the bottom value is 3. The opposite faces of a die always add up to 7.

14. Add the two statements highlighted as shown in the image:
 from random import * and randint() are both found on
[menu] > Random

The rest of the statement ♦♦♦♦die = randint(1, 6) is typed in
manually and is carefully indented because it is a part of the if
button_a… block.

Again, be careful about the indentation.

15. After the value of the die has been established, add the statement:
 display.show(die)
to show the value of the die on the micro:bit display.

Run the program again. When you press button A you see ‘Button A’ on
the handheld screen and the number on the micro:bit display changes…
but not every time! Sometimes the random number selected is the same
as the last number and… that’s OK. The presses are ‘independent
events’.

 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 6 education.ti.com

16. Collecting data: Tossing all those dice with just a button press is nice,
but for further study it would be helpful to store all those values so that
you can interpret the data: which number occurs most often? What is the
average number? And so on…

Add statements to the program to:
- Create an empty list
- Add (.append) the die value to the list
- Store the list from python to the TI-Nspire CX II system for analysis
Each of these three tasks translate to statements that are placed in
special places in the program. Try it yourself before proceeding to the
next step.

17. The empty list assignment belongs at the start of the program:
 tosses = []
The brackets are on the keypad and on [menu] > Built-ins > Lists

After the die is determined. it is added to the list with:
 tosses.append(die)
 .append() is found on [menu] > Built-ins > Lists

At the end of the program the final list is stored to a TI-Nspire list:
 store_list(“tosses”, tosses)
 the store_list function is on [menu] >BBC micro:bit >Commands

Note: the two commented lines were removed so that all the code fits on
the screen. You can leave those comments in your program.

18. When you run the program now, press button A many times, then press
[esc] to end the program. Your python program has a list named ‘tosses’
and now your TI-Nspire also has a list named ‘tosses’. These are two
separate lists.

Press [ctrl]-[doc] or [ctrl]-[I] to insert a page and add a Data &
Statistics app. A bunch of dots will be scattered around the graph. Click
the message ‘Click to add variable’ at the bottom of the new app and
select the list tosses. Do you see the screen to the right? Each dot
represents one of your die tosses. What information can you gather from
this graph? Can you change the graph to a Histogram? Hint: check the
app’s [menu].

You can modify this program in several ways; for example: show (print)
how many times you toss the die while you are doing it.

 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 7 education.ti.com

Note: button B and your gesture have no effect on the die. Try modifying
your code to toss a die only when you ‘shake’ the micro:bit.

Remember to save your document!

Teacher Tip:
Button B could be used as a ‘reset’ button, clearing the data and starting over with an
empty list.

The program so far with #comments:

19. Extension:
• Indent the store_list() method so that the list is stored to the TI-

Nspire at every button_a press.
• print(“done.”) at the end of the program so that you know that

the program has finished.
• #comment the if buttonB… code and the if accelerometer…

code.

 10 Minutes of Code - Python UNIT 6: SKILL BUILDER 2
 MICRO:BIT USING TI-NSPIRE CX II TEACHER NOTES

©2021Texas Instruments Incorporated 8 education.ti.com

20. Move to the Shell app and press [ctrl] [4] to combine the Shell with the
Data & Statistics app onto the same page as in the image to the right.

Run the program by pressing [ctrl] [R] on the Shell. Press button A on
the micro:bit to begin tossing the die and watch the dot plot grow!

The plot will display ‘No numeric data’ at first because the tosses list
has been emptied by the program but fear not: pressing button A will
begin plotting the data.

21. Instead of printing just ‘Button A’ at each button press you could print
entire list of tosses. Where in your code will you print(tosses)?

