
 10 Minutes of Code - Python    UNIT 6: APPLICATION 
             MICRO:BIT USING TI-NSPIRE CX II    TEACHER NOTES 

©2021 Texas Instruments Incorporated 1 education.ti.com 

Unit 6: micro:bit with Python Application: Toss the dice   

In this Application you will write a program to collect data 
using the micro:bit and run the program while observing a 
dot plot grow on a split page of the TI-Nspire.  

Objectives: 
• Write a micro:bit data collection program 
• Create a dynamic Data & Statistics plot of the 

collected data 

1. This Application project is a compilation of all the micro:bit skills you 
learned in the past three Skill Builders: write a program that uses a 
gesture, like ‘shake’ (or a button press) to collect some data, store the 
list as a TI-Nspire variable and…  

 

 
2. … then set up a TI-Nspire page that  

- runs the python program on one side of the screen (the python 
Shell) and  

- displays a dot plot (or histogram) of the collected data as you are 
running the program (using a Data & Statistics app). 

 

 

  
Teacher Tip:   The TI-Nspire split screen layout shown above can be either vertical or horizontal. 
When pressing ctrl-4 to group two apps onto one page, the default is vertical as seen in the student 
lesson. To switch to the horizontal layout on the handheld press [doc] > Page Layout > Select 
Layout > Layout 3.  

You can also adjust the separator bar to make the python Shell app smaller and the Data & 
Statistics app larger:  

 
This lesson produces a Dot Plot, not a histogram. Instructions for converting from a  Dot Plot to a 
Histogram in the Data & Statistics app are found later in this document’s Teacher Notes. 



 10 Minutes of Code - Python    UNIT 6: APPLICATION 
             MICRO:BIT USING TI-NSPIRE CX II    TEACHER NOTES 

©2021 Texas Instruments Incorporated 2 education.ti.com 

3. Begin your micro:bit program with the usual imports including the 
random module and start with an empty list called sums: 
                                sums = [ ] 
Immediately store this list to a TI-Nspire variable (using the same name). 
                             store_list(“sums”, sums) 
so that the TI-Nspire list is cleared as well. 
 
print( ) some instructions to the user before the loop begins. We are 
going to use the ‘shake’ gesture to roll the dice. 

 

 

4. In the while loop body, use the gesture to  
- toss two dice (generate two random integers) 
- add them together 
- append the sum to the sums list 
- print the two dice values, their sum and the roll number on the TI-

Nspire screen. Hint: len(sums) is the roll number. 
- display both die values on the micro:bit 
- store the list to a TI-Nspire variable 

Try it now. 

 

 
Teacher Tip: Students should have enough knowledge from Skill Builders 1, 2, and 3 to 
develop this program. If they struggle with menus, encourage them to check back in the 
prior Skill Builders.  

5. To toss the dice use a gesture or button press: 
      ♦♦if accelerometer.was_gesture("shake"): 
    ♦♦♦♦display.clear() 
    ♦♦♦♦r1 = randint(1,6) 
    ♦♦♦♦r2 = randint(1,6) 
 
Again, note the indentations. 

 

 
6. Add them together and .append the sum to the sums list: 

    sum = r1 + r2 
    sums.append(sum) 

 

 

 

  

 

 



 10 Minutes of Code - Python    UNIT 6: APPLICATION 
             MICRO:BIT USING TI-NSPIRE CX II    TEACHER NOTES 

©2021 Texas Instruments Incorporated 3 education.ti.com 

7. Display the two dice on the micro:bit display. Remember that the two 
dice might have the same value so we want to make sure that both will 
actually appear: 
 
    display.clear() 
   display.show(r1) 
   sleep(250) 
   display.clear() 
   display.show(r2) 
   sleep(250) 
 
You might prefer a longer delay in the sleep( ) commands.  
If you have entered the code properly and in the right sequence, try 
running the program now and shake the micro:bit. You should see two 
numbers displayed on the micro:bit. 

 

 

Teacher Tip: Another sleep( ) may be helpful in the loop to give micro:bit a chance to 
monitor the gesture. 

8. Add code to print the dice, sum and rolls on the TI-Nspire screen.  We 
can use a single print() statement like this: 

             ♦♦♦♦print (r1, "+", r2,"=",sum,", ","rolls =", len(sums)) 
             which results in the lines shown in this image. 

             Be careful about the punctuation! 

 

 

9. Store the python list sums to a TI-Nspire list of the same name: 
 
     ♦♦♦♦store_list(“sums”, sums) 
 
This store_list( ) statement is deep inside the while and if blocks so that 
the TI-Nspire list is updated every time a new pair of dice is generated. 

 

Teacher Tip: Note the lack of a ‘counter’ variable in the print statement above. It is not 
needed since the programmer just uses len(sums) as the number of rolls. 



 10 Minutes of Code - Python    UNIT 6: APPLICATION 
             MICRO:BIT USING TI-NSPIRE CX II    TEACHER NOTES 

©2021 Texas Instruments Incorporated 4 education.ti.com 

10. When you are satisfied that your program is working properly you are 
ready to connect your python program to the TI-Nspire plotting 
capabilities. Run your program and generate about 50 rolls. Press [esc] 
to end the program. 
 
In the python Shell (at the command prompt >>>) press [ctrl] [doc] or 
[ctrl] [I] to insert a page. Select the Data and Statistics app. You 
should see a screen similar to the one on the right. Your sums data is 
scattered around the screen. 

 

 

11. Click on the ‘Click to add variable’ message on the bottom of the screen 
and select the list variable sums. Your scattered data points are now 
organized along the x-axis according to their value and the window is 
suited to the data. This is a Dot Plot. 
 
 

 
Teacher Tip:  It is possible to change the plot to a histogram: press [menu] > Plot Type > 
Histogram. But you should also adjust the bin alignment to 0.5 so that the bars are 
centered over their x-axis values. Press [menu] > Plot Properties > Histogram Properties 
> Bin Settings: Equal Bin Width and set the Alignment to 0.5.  

 
12. Go back one page to the python Shell app ([ctrl] [leftarrow]) and press 

[ctrl] [4] to ‘group’ this app with the Data and Statistics app, creating a 
split-screen page with your python Shell on the left and your Data & 
Statistics app on the right as shown here. 

 



 10 Minutes of Code - Python    UNIT 6: APPLICATION 
             MICRO:BIT USING TI-NSPIRE CX II    TEACHER NOTES 

©2021 Texas Instruments Incorporated 5 education.ti.com 

13. The Shell has been ‘re-initialized’ so pressing [ctrl] [R] will not re-run the 
program. Go back to the python Editor and press [ctrl] [R] to run the 
program. It runs in the half-screen Shell as shown here. You see ‘No 
numeric data’ on the right because the program stores an empty list right 
away. 
  
As you collect the data (shake the micro:bit to roll the dice) your sums 
values appear as dots in the Data & Statistics app on the right. 
 
Pressing [esc] will end the program and you can do a lot of other 1-
variable data analysis in the TI-Nspire environment.  
 
Pressing [ctrl] [R] again now (in the python Shell) does re-run the 
program. 
 
Tip: to clear the Shell at the start of each run add the statement:  
              clear_history() 
   found on [menu] > More Modules > BBC micro:bit > Commands 
   at the beginning of your program. 
 
Enjoy, and remember to save your document!  

 

  
Teacher Tip: (repeat) The TI-Nspire split screen layout can be either vertical or horizontal. 
When pressing ctrl-4 to merge two apps onto one page, the default is vertical as seen in the 
student lesson. To switch to the horizontal layout on the handheld press [doc] > Page Layout > 
Select Layout > Layout 3. You can also adjust the separator bar to make the python Shell app 
smaller:  

 
 

To change the Dot Plot to a Histogram, press [menu] > Plot Type and select ‘Histogram’. 
 
 
 



 10 Minutes of Code - Python    UNIT 6: APPLICATION 
             MICRO:BIT USING TI-NSPIRE CX II    TEACHER NOTES 

©2021 Texas Instruments Incorporated 6 education.ti.com 

Sample solution: 

 
 
Optional extension: Displaying the pips on each face of a die 
It is easy to design custom images to display on the micro:bit. The following code creates the six die 
faces (pips). Note the capital I in Image.  
 
Type in the first block, one=Image(…, then copy/paste/edit the other five faces. Then make the 
list of dice_images, using None for element #0 so that the die values match the indices in the list. 
Python interprets two strings written on separate lines without a delimiter (like a comma) as a 
single string, so  
   “aaa” 
   “bbb” 
      is the same as  
   “aaabbb” 
In the following code, the 5 rows of the micro:bit are duplicated in the Image( ) function to 
facilitate designing an image. The value of each digit in the image can be from 0 to 9 to control 
the brightness of each LED. 
############################################################# 
from microbit import * 
from random import * 
 
one=Image( 
"00000:" 
"00000:" 
"00900:" 
"00000:" 
"00000") 



 10 Minutes of Code - Python    UNIT 6: APPLICATION 
             MICRO:BIT USING TI-NSPIRE CX II    TEACHER NOTES 

©2021 Texas Instruments Incorporated 7 education.ti.com 

two=Image( 
"00000:" 
"09000:" 
"00000:" 
"00090:" 
"00000") 
 
three=Image( 
"00000:" 
"09000:" 
"00900:" 
"00090:" 
"00000") 
 
four=Image( 
"00000:" 
"09090:" 
"00000:" 
"09090:" 
"00000") 
 
five=Image( 
"00000:" 
"09090:" 
"00900:" 
"09090:" 
"00000") 
 
six=Image( 
"00000:" 
"09090:" 
"09090:" 
"09090:" 
"00000") 
 
dice_images=[None, one, two, three, four, five, six] 
#     index:    0    1    2     3      4     5     6 
print("running...") 
while get_key() != "esc": 
  if button_a.is_pressed(): 
    die=randint(1,6) 
    display.show(dice_images[die])  # display one of the dice’s faces using pips 
 
 


