

[bookmark: _GoBack][image: TI Logo] 10 Minutes of Code - Python	 	UNIT 5: SKILL BUILDER 3
 TI-NSPIRE™ CX II TECHNOLOGY		TEACHER NOTES
	Unit 5: The TI Modules
	Skill Builder 3: Circles Everywhere!

	In this lesson, you will make use of several separate included modules to create a ‘screen saver’ style animation.
	Objectives:

	
	· Use several imports
· Use random numbers
· Stop a program with a keypress
· Draw filled circles

	Your next project makes random circles on the screen until a key is pressed. This is a sort of ‘screen saver’ (a type of program that was used in the old days to prevent ‘burning in’ of a CRT display by fixed images).

	[image:]

	1. Start a new Python file using the Type: Geometry Graphics
This template provides the ti_draw module. You will also need two more modules in this project: one for random numbers and one for a ‘press esc to end’ feature. Random number functions are found in the random module and get_key is in the ti_system module, so import both modules. They are found on different menus.
	[image:]

	Teacher Tip: This lesson uses the ‘default’ graphics screen (canvas). Most computer graphic screens use the same conventional ‘default’ coordinate system: (0, 0) is the upper left corner, the x-value represents horizontal position, and the y-value represents vertical position (top-to-bottom). This convention is based on the way that the screen is stored in computer memory as a series of bytes.
A small sample of this type of screen system is shown here:
[image:]
There is a difference between ‘pixel’ coordinates in this configuration and ‘window’ coordinates that you use in a Graphs app or when using set_window() in Python.
The biggest change is the vertical (y-values) orientation and its effect on the behavior of height: In the default screen, height is measured top-to-bottom. In a screen created with set_window(), height goes from bottom-to-top due to the change in orientation of the y-coordinates. height is used for drawing rectangles and arcs of ellipses.

Using set_window() in the middle of a graphical program does not affect the graphics that are already on the screen, only the new drawing commands.

set_window(0, 0, 0, 0) sets the screen to the default ‘pixel’ coordinate system at any time.

	2. In this project, do not use set_window. Use the ‘default’ graphics window where (0,0) is in the upper left corner. The screen is 318 x 212 pixels. The coordinates of the four corners and the center of the canvas are shown in this image.
An important difference between this screen and one designed using set_window is:
In the statement draw_rect(x, y, width, height), the (x,y) pair is now the upper-left corner and the height value measures from top-to-bottom because the y-values increase going down the screen.
	[image:]

	Teacher Tip: This is the same for draw_arc as it relies on the rectangle surrounding it.

	3. The main program consists of a loop that stops when esc is pressed. This while statement is on menu > More Modules > TI System.
	[image:]

	Teacher Tip: To make ‘any key’ stop the program, change the condition to
 while get_key()==”” (the empty string).

	4. To draw random circles in random colors, we need to set up several variables with random values. For the circles we need values for x, y, radius and for the colors we need red, green, and blue values.
Each of these six variables is assigned like this one:
 x = randint(0,317)
Assign each variable a random integer in an appropriate range. Keep in mind the screen dimensions and color value restrictions.
	[image:]

	5. Add the set_color() and fill_circle() functions from:
 menu > More Modules > TI Draw

Do you see that the gray inline prompts for the arguments are the same words as the variable names? Unfortunately, you cannot leave them like that. The inline prompt red is not the variable red. You must type the variable names in place of the inline prompts.

Replace the prompts in these two statements with the variable names.

Run the program when ready and press esc to stop the program.

Feel free to modify the random number ranges. Suppose you want the circles to appear more reddish… what would you do?
	[image:]

	6. And, just in case you want to control the speed of the drawing process, use the sleep() function in the time module again. Import sleep from the time module using
 from time import sleep
and add sleep(1) at the bottom of the loop (after the fill_circle function and still indented).

This statement pauses processing for 1 second. Too slow? You can make things go faster or slower by using smaller or larger numbers in sleep().

	[image:]

	7. If you look at the image at the beginning of this lesson, you’ll notice that each circle has a black edge. Can you make that happen, too?

	[image:]

	Teacher Tip: Possible Solution:

[image:]

©2020 Texas Instruments Incorporated	4	education.ti.com
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.jpeg

