

[bookmark: _GoBack][image: TI Logo] 10 MOC: Python Modules 	 	TURTLE GRAPHICS: STARS & FIREWORKS
 TI-NSPIRE™ CX II PYTHON		
	Turtle Graphics
	Stars & Fireworks

	After learning about the basics of ‘Turtle Graphics’ in the previous lesson, let’s try to make a more complex display of stars and fireworks!

	1. Part I: Drawing Stars
When making polygons using the turtle, you use the Geometric property that the sum of the exterior angles of a polygon is 360 degrees. When making a regular polygon the turning angle is therefore 360/n since all the angles are equal.

In this first part of the activity, you will use a similar property to produce star polygons like the one shown at the right.
	
[image: A picture containing diagram

Description automatically generated]

	2. First let’s take a look at the basic regular polygon program from the previous activity.
The program shown here makes a regular septagon.
	
[image: Graphical user interface, text, application, email

Description automatically generated]
[image: Chart

Description automatically generated]

	3. Change the code to make a star…
In the turn function, instead of 360, use an integer multiple of 360.

To get this image we used 2*360.
	[image: Graphical user interface, text, application

Description automatically generated]
[image: A picture containing chart

Description automatically generated]

	4. You might try a higher multiple of 360 This star uses 3*360 instead of 2*360.

The multiple represents the number of revolutions that the turtle makes to complete the star. This is called a (7/3) star polygon since it has seven vertices and it takes three revolutions to complete.
	[image: A picture containing diagram

Description automatically generated]

	5. When you add polygon filling to a star polygon, the results can be surprising.
Add t.fillcolor(, ,), t.begin_fill() and t.end_fill() to your program.

The entire star is not filled. There are places that the fill algorithm skips because it is looking for ‘borders’.
	[image: Graphical user interface, text, application

Description automatically generated]
[image: A picture containing chart

Description automatically generated]

	6. Part II: The Fireworks!
In this section of the activity you will use lots of random values to generate these awesome fireworks on the screen.
	
[image: Background pattern

Description automatically generated]

	7. In the star-making loop shown here n is the number of vertices and r is the number of revolutions. What values for n and r make for pleasing stars?

 We will limit n to be random odd numbers: 5,7,9,11…
 For ‘pointy’ stars we will make r = int(n/2)

We will also use a random position, heading, color, and side length for each star in this project.
	[image: Graphical user interface, text, application

Description automatically generated]

	8. First test these star-making options:
 n = 2 * randint(2, 10) + 1 # odd numbers
 r = int(n / 2) # or r = n // 2

Running this program will make a pointy star with an odd random number of vertices.
	[image: Graphical user interface, text, application

Description automatically generated]

[image: Chart, table

Description automatically generated]

	9. Now add code to the program to:
· Hide the turtle
· Hide the grid
· Make the turtle move fast: t.speed(10) (or 0)
· Put the star-making code in a while not escape(): loop
· Assign a random odd value to n
· Calculate r
· Draw the star using the for loop
· Clear the screen to see the different stars. This is temporary.

Test your program to see various stars displayed like this one.
	
[image: Graphical user interface, text, application

Description automatically generated]

[image: A picture containing shape

Description automatically generated]

	10. We’re ready for the fireworks:
· each star will be drawn in a different position on the screen using a different heading with different colors and sizes.
· assign random values to appropriately-named variables to achieve the fireworks effect as seen here.
· #comment the t.clear() statement since we want to fill the screen with stars.
· Run the program and enjoy the show!
	[image: Background pattern

Description automatically generated]

	
Teacher Tip: Odd numbers to avoid possible disconnected polygons. The number of revolutions gives the pointiest stars

	
Teacher Tip: Possible Fireworks solution:
from turtle import *
from random import *
t=Turtle()
t.hidegrid()
t.hideturtle()
t.speed(0)
while get_key() != "esc":
 n=2*randint(2,9)+1
 r=int(n/2)
 a=randint(-90,90)
 s=randint(10,100)
 t.penup()
 t.goto(randint(-179,159),randint(-106,106))
 t.pendown()
 t.setheading(a)
 t.fillcolor(randint(0,255),randint(0,255),randint(0,255))
t.pencolor(255,255,255)
 t.begin_fill()
 for i in range(n):
 t.forward(s)
 t.left(r*360/n)
 t.end_fill()

©2022 Texas Instruments Incorporated	3	education.ti.com
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.jpeg

