

[bookmark: _GoBack] [image: TI Logo] 10 MOC: Python Modules 	 	 TI PLOTLIB: SEQUENCES
 TI-NSPIRE™ CX II PYTHON		
	TI PlotLib
	Sequences

	This activity demonstrates plotting mathematical sequences using the TI PlotLib module in two different ways: by plotting individual points and by plotting lists.

	Part 1 - Start with an arithmetic and a geometric sequence in a single program. Begin a Python program using the ‘Plotting (x,y) & Text’ template from the ‘Type:’ dropdown list. Our program is called seq1.
	
[image:]

	1. As explained in the Getting Started activity and worth repeating here, this template provides the unique import statement:
 import ti_plotlib as plt
 along with several ‘Setup’ functions.
This type of import statement requires that all ti_plotlib functions be preceded by the alternate module name plt. This is called ‘aliasing’ the module (give it a different, shorter name). When selecting ti_plotlib function from the menus, they will include this name at the beginning of the function as seen here in the first three functions provided.
Note: these three statements, if used, must be listed in this order since each paints the canvas (screen) over the previous screen. First set the window, then draw the grid, then draw the axes on top of the grid.
	
[image:]

	2. Use four ‘window variables’ to set the plt.window because you might need these values elsewhere in your code.
xmin, xmax, ymin, ymax = -5, 30, -5, 100
We’re placing the origin in the lower left corner of the screen because we will be plotting points in the first quadrant.

Having the four window variables assigned on a single line makes them easier to locate & edit and saves vertical space in your program.

The plt.grid((1, 1, “dotted”) values can be edited as needed. Change the y-scale value from 1 to to 10. There are limitations on the window and these grid values may interfere with the run of your program.
	
[image:]

	3. Plot both an arithmetic and a geometric sequence in the same graph to compare them. Use a for loop that makes use of the window variable:
 for n in range(xmax):
Note: change the loop variable from i to n.
In the loop body, first assign two variables the value of an arithmetic/linear term like 3n and a geometric/exponential term like 2n
 a = 3*n # arithmetic
 b = 2**n # geometric
	
[image:]

	4. Plot each term using a different plot style (“mark”):
 plt.plot(n, a, "+")
 plt.plot(n, b, "o")

Get plt.plot(x, y, “mark”) from [menu] TI PlotLib > Draw

Note: There are two plt.plot() functions on the menu. One is for plotting lists and the other is for plotting points.
The plot “mark” can be changed (by hand) and is limited to “.”, “+”, “x”, or “o”.
	
[image:]

	5. Run the program and you should see the two plots. One is the graph of points on a line and the other quickly disappears off the top of the screen. Which is which?

	
[image:]

	6. Try changing the window settings to see different views of these plots. Depending on your window values you may encounter the error seen here: We changed xmax to 100 and got the ‘invalid grid scale’ error because the grid lines would be too close together.
Either:
· change the plt.grid() x-scale value to a larger number (like 10) or
· #comment the plt.grid() function to hide the grid.
	
[image:]

	7. But even using plt.grid(10, 10, ”dotted”) still produces another error! Plotting limits values to be between -2,147,483,648 and 2,147,483,647 (that’s 2**31 - 1).

This is a special constraint built into the ti_plotlib module.

The geometric/exponential sequence b = 2**n gets too large to plot. Can you fix it? See the next step…
	[image:]

	8. We can fix this ‘overflow’ plotting issue by adding a condition:
 if b < ymax:
 plt.plot(n, b, ”o”)

since there’s no need to plot a point that’s not on the screen. You could also place the same restriction on the arithmetic sequence plot statement.
	
[image:]

	9. Running the program now should produce a graph like the one shown here. Notice how the geometric sequence grows so quickly compared to the arithmetic sequence. Both sequences go off the screen, but the arithmetic sequence does not exceed the ti_plotlib upper limit.

In the next section you will use most of this program to plot a different sequence, so we will make a copy of it…
	
[image:]

	10. Part 2: The Collatz Conjecture
The final sequence in this activity is based on the Collatz Conjecture which is also discussed in the TI Codes Python materials.

The Collatz Conjecture goes like this:
0. Start with any counting number (we will use input()).
1. If it is even, then divide it by 2
2. Otherwise, multiply it by 3 and add 1
Repeat steps 2 and 3 with the new number.
The Conjecture (guess) is that all numbers eventually will become 1 but this has not been proven… yet.
Starting with the number 37, we get the sequence shown to the right in the Python Shell. Let’s plot some Collatz sequences.
	
[image:]

	11. This program will differ greatly from the previous one, but we start with the usual plt. setup statements so make a copy of your last program (Harmonic sequence). Ours is named seq5.
Press [enter] a few times after the import statement to make room for some new code: the plan is to make two lists and then use plt.scatter() or plt.plot() to plot the lists rather than one point at a time as was done in Part 1.

Write the first two statements shown:
 print("Collatz Conjecture")
 n = int(input("Number? "))
	
[image:]

	12.
Initialize a counter variable c to be 0.
 c = 0
Create two lists:
 xs is the list of counters, starting with 0.
 ys is the list of terms in the Collatz sequence for n, starting with n.
 xs = [c]
 ys = [n]
We’re going to make a big assumption here: eventually the sequence will reach 1. After all, it has never not happened, right?
 while n > 1:
	
[image:]

	13. Write the if… else structure that processes the Collatz algorithm:
while n>1:
 if n % 2 == 0: # % is ‘mod’
 n = n // 2 # integer division
 else:
 n = 3 * n + 1

Note: use integer division (//) to ensure all values are integers and there are no rounding issues.
	
[image:]

	14. Still in the loop: increment the counter and add (append) the counter c and the number n to their associated lists. Note the use of ‘addition’ here to append a list to another list:
 c += 1
 xs += [c] # same as xs.append(c)
 ys += [n]

Note that these statements are part of the while loop but not part of the else: block and are indented accordingly.
	
[image:]

	15.
When the while loop ends the sequence is complete so we’re ready to plot the data.
Use a special window that depends on the data itself. We write each window variable assignment on a separate line for readability:
 xmin = -1
 xmax = c # the final counter value
 ymin = -10
 ymax = 1.1 * max(ys) # so all fit on screen
 # 1.1* is 10 percent more than the largest
 # number in the list ys
 plt.window(xmin,xmax,ymin,ymax)
	
[image:]

	16. The last three statements control the grid and axes (they were here from the start) and then plot the lists using:
 plt.plot(xs, ys, “o”) will plot the lists with
 segments connecting the dots.
or use:
 plt.scatter(xs, ys, “o”) to plot just the points
 without the connections.
	[image:]

	17. Run the program. At the input prompt enter a positive integer. The plot displays the unique progression of the Collatz sequence of numbers for your entered number and the xmax value on the screen is the number of steps it took to reach 1. Your starting value is the point on the y-axis (it was 37 for this image; ymax is 120, not 20).

Note: For some numbers (like 125) you might have a grid scale issue, so just comment the .grid() statement or find a scale that works.

	
[image:]

	18. To display the initial value on the graph use:
 plt.text_at(row, "text", "align")
found on [menu] TI PlotLib > Draw
row is a number from 1 to 13 that you enter.
“text” is your text (or a string variable) to display
“align” can be “left”, “center”, or “right” selected from a pop-up menu.

To display the starting number for your sequence, add a statement right after the input statement that stores the value of n as a string:
 txt = str(n)
str() is found on [menu] Built-Ins > Type and use that txt variable in the plt.text_at() statement.

The ‘37’ at the top center of this screen is the result of the plt.text_at() function:
 plt.text_at(3, txt, “center”)

	
[image:]

[image:]

	19. For more precise position of text you can use the alternate form:
 plt.text_at(row, col, “text”)
 (which is not found on the menus).
 Use a column value from 1 to 30+.

For this screen, plt.text_at(3, 5, txt) was used.

For other interesting integer sequences see https://oeis.org/, the
Online Encyclopedia of Integer Sequences.
	
[image:]

©2022 Texas Instruments Incorporated	3	education.ti.com
image2.png
*plotlb act. e

New

Name: [seq

Type: [Plotting (x,y) & Text | ¥

oK | cancel

image3.png
" fap.

9 *coins.py

[# PIotting (x,y) & Text

import ti_plotiib as pit

pltwindow(«in,xrax,yminyma)
plegrid(1,1,"dotted)
pit.axes(on’)

image4.png
42[43 44 (8 ~o
@ *seql.py 9120

fihmetic and Geometic

import ti_plotiib as pit

xmin, xmax, ymin, ymax=-5, 30, -5, 100
pttwindow(xmin, xmax, ymin, ymax)
pitgrid(1, 10, "dofted’)

image5.png
42[43 44 (8 ~o
6 *seql.py 816

fihmetic and Geometic

import ti_plotiib as pit

xmin, xmax, ymin, ymax=-5, 30, -5, 100
pttwindow(xmin, xmax, ymin, ymax)
pitgrid(1, 10, "dofted’)

pit.axe:

on

for n in rangemax):
a=3m
b=2"n

image6.png
B *seql.py 1516
¥imin, Xmax, ymin, yimax=-S, 30, -5, 100
pttwindow(xmin, xmax, ymin, ymax)

pitgrid(1, 10, "dofted’)

pitaxes(on

for n in rangemax):
a=3m
b=2"n
plt.plot(n, a,
plt.plot(n, b,

image7.png
30.00

image8.png
ra0 [l

[Python Shell 15/15]
>>>from seql import™
>>>#Running seq1.py
>>>from seql import *
raceback (most recent call last):
din>", line 2, in <
File "C:\Users\jehan\AppData\Roaming\Texas Instru
ments\TI-Nspire CX CAS Premium Te;
pythondoca\seq1.py", line 7, in <module>
File "python\doct”, ine 178, in grid
File "python\dol

e seo Sxcept
il exeopton VRl GRARCHB VA

55|

image9.png
ra0 I
) Python Shell 17117

>>>Tiom seqt impart™
>
| Error

i u
Parameters must be between ~2147483648 and |y

m)

t_ptotup_excepton: 1mvaua gna scate vaiwe:
>>>#Running seq.py

>>>from seql import *

>>5|

image10.png
RAD

42[43]
B seqlpy 16/17)
pitwindow(xmin, xmax, ymin, ymax)
plt.grid(10, 10, "Gottect)
pit.axes('on’)

for n in rangemax):

pitpltn 3,
if beymax:
pItplot(n, b,

image11.png
100.00)

image12.png
RAD

[Python Shell 156/156|

>>>#RuUNNIG Seo.py.
>>>from seqs import *

Callatz Conjecture

Number? 37

137, 112,56, 28, 14,7, 22, 11,34, 17,52, 26, 13, 40,
120, 10,5, 16,8,4,2,1]

>

55>

55>

55>

5>

555

image13.png
2.9 (4.1
(@ *seqS.py

RAD

1131

Ttz pi

import ti_plotiib as pit

print("Collatz Conjecture
n=int(input(humber? *))

image14.png
[T

(@ *seqS.py

rao [J
1331

import ti_plotiib as pit

= int(input(Number?

c
x
v
while n>1:

print("Collatz Conjecture

)

image15.png
[25 11 w0 [l
6 *seqs.py 17531

print(Collatz Conjecture
n=int(input(humber? *))

image16.png
(@ *seqS.py
B

RAD

21732

1
ys=[nl
while n>1:
10 % 2220t
nen/2

elsi
n=3*n

ceet
xsr=[c]
ys+=In]

image17.png
[T wo il
6 *secs.py 27132

-10
1% maxiys)

pitwindow(xmin,xmax,ymin,ymax)
pit.grid(1,10, "dofted’)

Ipttaxes(‘on')
pitplot(xs,ys,

image18.png
[25 11 w0 [l
2 *seds.py 3363

pttwindow(cmin, xmaxymin,ymas)

ptt.grid(1,10, "dottect’)
ptt.axes(o
plt.plot(xs,ys, o)

image19.png
Fin

image20.png
mm ib act._ie; rap I X
@ *seaspy 3235
xmax = ¢
ymin = ~10

ymax = 1.1 * max(ys)
pitwindow(xmin, xmax,ymin,ymax)

pit.grid(10,1000, "dotted")
pitaxes(‘on’)
plt.plot(xs,ys,"o")
plt.text_at(G,bt,"center’)

image21.png
7

image22.png
27

1.00

image23.jpeg

