
 10 MOC: Python Modules TI PLOTLIB: SEQUENCES

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 1 education.ti.com

TI PlotLib Sequences

This activity demonstrates plotting mathematical sequences using the TI PlotLib module in two different ways: by plotting

individual points and by plotting lists.

Part 1 - Start with an arithmetic and a geometric sequence in a

single program. Begin a Python program using the ‘Plotting (x,y) &

Text’ template from the ‘Type:’ dropdown list. Our program is called

seq1.

1. As explained in the Getting Started activity and worth repeating here,

this template provides the unique import statement:

 import ti_plotlib as plt

 along with several ‘Setup’ functions.

This type of import statement requires that all ti_plotlib functions be

preceded by the alternate module name plt. This is called ‘aliasing’

the module (give it a different, shorter name). When selecting

ti_plotlib function from the menus, they will include this name at the

beginning of the function as seen here in the first three functions

provided.

Note: these three statements, if used, must be listed in this order

since each paints the canvas (screen) over the previous screen. First

set the window, then draw the grid, then draw the axes on top of the

grid.

2. Use four ‘window variables’ to set the plt.window because you might

need these values elsewhere in your code.

xmin, xmax, ymin, ymax = -5, 30, -5, 100

We’re placing the origin in the lower left corner of the screen because

we will be plotting points in the first quadrant.

Having the four window variables assigned on a single line makes

them easier to locate & edit and saves vertical space in your program.

The plt.grid((1, 1, “dotted”) values can be edited as needed.

Change the y-scale value from 1 to to 10. There are limitations on the

window and these grid values may interfere with the run of your

program.

 10 MOC: Python Modules TI PLOTLIB: SEQUENCES

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 2 education.ti.com

3. Plot both an arithmetic and a geometric sequence in the same graph

to compare them. Use a for loop that makes use of the window

variable:

 for n in range(xmax):
Note: change the loop variable from i to n.

In the loop body, first assign two variables the value of an

arithmetic/linear term like 3n and a geometric/exponential term like 2
n

 a = 3*n # arithmetic
 b = 2**n # geometric

4. Plot each term using a different plot style (“mark”):

 plt.plot(n, a, "+")

 plt.plot(n, b, "o")

Get plt.plot(x, y, “mark”) from [menu] TI PlotLib > Draw

Note: There are two plt.plot() functions on the menu. One is for

plotting lists and the other is for plotting points.

The plot “mark” can be changed (by hand) and is limited to “.”, “+”, “x”,

or “o”.

5. Run the program and you should see the two plots. One is the graph

of points on a line and the other quickly disappears off the top of the

screen. Which is which?

6. Try changing the window settings to see different views of these

plots. Depending on your window values you may encounter the error

seen here: We changed xmax to 100 and got the ‘invalid grid scale’

error because the grid lines would be too close together.

Either:

- change the plt.grid() x-scale value to a larger number (like

10) or

- #comment the plt.grid() function to hide the grid.

 10 MOC: Python Modules TI PLOTLIB: SEQUENCES

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 3 education.ti.com

7. But even using plt.grid(10, 10, ”dotted”) still produces another error!

Plotting limits values to be between -2,147,483,648 and

2,147,483,647 (that’s 2**31 - 1).

This is a special constraint built into the ti_plotlib module.

The geometric/exponential sequence b = 2**n gets too large to plot.

Can you fix it? See the next step…

8. We can fix this ‘overflow’ plotting issue by adding a condition:

 if b < ymax:

 plt.plot(n, b, ”o”)

since there’s no need to plot a point that’s not on the screen. You

could also place the same restriction on the arithmetic sequence plot

statement.

9. Running the program now should produce a graph like the one shown

here. Notice how the geometric sequence grows so quickly compared

to the arithmetic sequence. Both sequences go off the screen, but

the arithmetic sequence does not exceed the ti_plotlib upper limit.

In the next section you will use most of this program to plot a different

sequence, so we will make a copy of it…

10. Part 2: The Collatz Conjecture

The final sequence in this activity is based on the Collatz Conjecture

which is also discussed in the TI Codes Python materials.

The Collatz Conjecture goes like this:

0. Start with any counting number (we will use input()).

1. If it is even, then divide it by 2

2. Otherwise, multiply it by 3 and add 1

Repeat steps 2 and 3 with the new number.

The Conjecture (guess) is that all numbers eventually will become 1

but this has not been proven… yet.

Starting with the number 37, we get the sequence shown to the right

in the Python Shell. Let’s plot some Collatz sequences.

 10 MOC: Python Modules TI PLOTLIB: SEQUENCES

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 4 education.ti.com

11. This program will differ greatly from the previous one, but we start

with the usual plt. setup statements so make a copy of your last

program (Harmonic sequence). Ours is named seq5.

Press [enter] a few times after the import statement to make room

for some new code: the plan is to make two lists and then use

plt.scatter() or plt.plot() to plot the lists rather than one point at a

time as was done in Part 1.

Write the first two statements shown:

 print("Collatz Conjecture")
 n = int(input("Number? "))

12. Initialize a counter variable c to be 0.

 c = 0

Create two lists:

 xs is the list of counters, starting with 0.

 ys is the list of terms in the Collatz sequence for n, starting with n.

 xs = [c]

 ys = [n]

We’re going to make a big assumption here: eventually the sequence

will reach 1. After all, it has never not happened, right?

 while n > 1:

13. Write the if… else structure that processes the Collatz algorithm:

while n>1:
 if n % 2 == 0: # % is ‘mod’
 n = n // 2 # integer division
 else:
 n = 3 * n + 1

Note: use integer division (//) to ensure all values are integers and

there are no rounding issues.

 10 MOC: Python Modules TI PLOTLIB: SEQUENCES

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 5 education.ti.com

14. Still in the loop: increment the counter and add (append) the counter

c and the number n to their associated lists. Note the use of ‘addition’

here to append a list to another list:

 c += 1
 xs += [c] # same as xs.append(c)
 ys += [n]

Note that these statements are part of the while loop but not part of

the else: block and are indented accordingly.

15. When the while loop ends the sequence is complete so we’re ready

to plot the data.

Use a special window that depends on the data itself. We write each

window variable assignment on a separate line for readability:

 xmin = -1
 xmax = c # the final counter value
 ymin = -10
 ymax = 1.1 * max(ys) # so all fit on screen
 # 1.1* is 10 percent more than the largest
 # number in the list ys
 plt.window(xmin,xmax,ymin,ymax)

16. The last three statements control the grid and axes (they were here

from the start) and then plot the lists using:

 plt.plot(xs, ys, “o”) will plot the lists with

 segments connecting the dots.

or use:

 plt.scatter(xs, ys, “o”) to plot just the points

 without the connections.

17. Run the program. At the input prompt enter a positive integer. The

plot displays the unique progression of the Collatz sequence of

numbers for your entered number and the xmax value on the screen

is the number of steps it took to reach 1. Your starting value is the

point on the y-axis (it was 37 for this image; ymax is 120, not 20).

Note: For some numbers (like 125) you might have a grid scale issue,

so just comment the .grid() statement or find a scale that works.

 10 MOC: Python Modules TI PLOTLIB: SEQUENCES

 TI-NSPIRE™ CX II PYTHON

©2022 Texas Instruments Incorporated 6 education.ti.com

18. To display the initial value on the graph use:

 plt.text_at(row, "text", "align")

found on [menu] TI PlotLib > Draw

row is a number from 1 to 13 that you enter.

“text” is your text (or a string variable) to display

“align” can be “left”, “center”, or “right” selected from a pop-up menu.

To display the starting number for your sequence, add a statement

right after the input statement that stores the value of n as a string:

 txt = str(n)

str() is found on [menu] Built-Ins > Type and use that txt variable in

the plt.text_at() statement.

The ‘37’ at the top center of this screen is the result of the

plt.text_at() function:

 plt.text_at(3, txt, “center”)

19. For more precise position of text you can use the alternate form:

 plt.text_at(row, col, “text”)

 (which is not found on the menus).

 Use a column value from 1 to 30+.

For this screen, plt.text_at(3, 5, txt) was used.

For other interesting integer sequences see https://oeis.org/, the

Online Encyclopedia of Integer Sequences.

https://oeis.org/

