[image: TI Logo] 10 Minutes of Code: Python Modules 	MICRO:BIT: PAIR-O-DICE
 TI-NSPIRE CX II	 	
	[bookmark: _GoBack]micro:bit
	Pair-o-Dice

	In this activity you will write a python program to collect data using the micro:bit and run the program while observing a dot plot grow on a split page of the TI-Nspire CX II.

	1. This activity is a compilation of all the micro:bit skills you learned in the past three Skill Builders: write a program that uses a gesture, like ‘shake’ (or a button press) to collect some data, store the list as a TI-Nspire variable and…
	
[image:]

	2. … then set up a TI-Nspire page that
· runs the python program on one side of the screen (the python Shell) and
· displays a dot plot (or histogram) of the collected data as you are running the program (using a Data & Statistics app).

	
[image:]

	3. Begin your micro:bit program with the usual imports including the random module and start with an empty list called sums:
 sums = []
Immediately store this list to a TI-Nspire variable (using the same name).
 store_list(“sums”, sums)
so that the TI-Nspire list is cleared as well.

print() some instructions to the user before the loop begins. We are going to use the ‘shake’ gesture to roll the dice.
	
[image:]

	4. In the while loop body, use the gesture to
· toss two dice (generate two random integers)
· add them together
· append the sum to the sums list
· print the two dice values, their sum and the roll number on the TI-Nspire screen. Hint: len(sums) is the roll number.
· display both die values on the micro:bit
· store the list to a TI-Nspire variable
Try it now.
	
[image:]

	5. To toss the dice use a gesture or button press:
 if accelerometer.was_gesture("shake"):
 display.clear()
 r1 = randint(1,6)
 r2 = randint(1,6)

Again, note the indentations.
	
[image:]

	6. Add them together and .append the sum to the sums list:
 sum = r1 + r2
 sums.append(sum)

	
	
[image:]

	7. Display the two dice on the micro:bit display. Remember that the two dice might have the same value so we want to make sure that both will actually appear:

 display.clear()
 display.show(r1)
 sleep(250)
 display.clear()
 display.show(r2)
 sleep(250)

You might prefer a longer delay in the sleep() commands.
If you have entered the code properly and in the right sequence, try running the program now and shake the micro:bit. You should see two numbers displayed on the micro:bit.
	
[image:]

	8. Add code to print the dice, sum and rolls on the TI-Nspire screen. We can use a single print() statement like this:
 print (r1, "+", r2,"=",sum,", ","rolls =", len(sums))
 which results in the lines shown in this image.
 Be careful about the punctuation!
	
[image:]

	9. Store the python list sums to a TI-Nspire list of the same name:

 store_list(“sums”, sums)

This store_list() statement is deep inside the while and if blocks so that the TI-Nspire list is updated every time a new pair of dice is generated.
	[image:]

	10. When you are satisfied that your program is working properly you are ready to connect your python program to the TI-Nspire plotting capabilities. Run your program and generate about 50 rolls. Press [esc] to end the program.

In the python Shell (at the command prompt >>>) press [ctrl] [doc] or [ctrl] [I] to insert a page. Select the Data and Statistics app. You should see a screen similar to the one on the right. Your sums data is scattered around the screen.
	
[image:]

	11. Click on the ‘Click to add variable’ message on the bottom of the screen and select the list variable sums. Your scattered data points are now organized along the x-axis according to their value and the window is suited to the data. This is a Dot Plot.

	[image:]

	12. Go back one page to the python Shell app ([ctrl] [leftarrow]) and press [ctrl] [4] to ‘group’ this app with the Data and Statistics app, creating a split-screen page with your python Shell on the left and your Data & Statistics app on the right as shown here.
	[image:]

	13. The Shell has been ‘re-initialized’ so pressing [ctrl] [R] will not re-run the program. Go back to the python Editor and press [ctrl] [R] to run the program. It runs in the half-screen Shell as shown here. You see ‘No numeric data’ on the right because the program stores an empty list right away.

As you collect the data (shake the micro:bit to roll the dice) your sums values appear as dots in the Data & Statistics app on the right.

Pressing [esc] will end the program and you can do a lot of other 1-variable data analysis in the TI-Nspire environment.

Pressing [ctrl] [R] again now (in the python Shell) does re-run the program.

Tip: to clear the Shell at the start of each run add the statement:
 clear_history()
 found on [menu] > More Modules > BBC micro:bit > Commands
 at the beginning of your program.

Enjoy, and remember to save your document!
	[image:]

©2021 Texas Instruments Incorporated	1	education.ti.com
image2.png

image3.png
[Python Shelll72/172

>>>#Running roll_two_dice.
>>>from roll_two_dice impor
shake card to rollthe dice
5+5=10, rolls =1
1+4=5, rolls =2
6+3=9, rolls =3
rolls =4
rolls =5
rolls =6
rolls =7
roll
roll

Is =8
Is =9

Frequency

[}

w

image4.png
A *roll_two_dice.py

7/30

from random import *
from microbit import *

sums=[]
store_list("sums",sums)
print(*shake card to roll the dice")

while get_key() = "esc":

image5.png
] 1.1 [1.2] 1.3 EERGTY rap [X

@ *roll_two_dice.py 13141 »

if accelerometer.was_gesture('shake"):
display.clear()
r1 = randint(1,6)
12 = randint(1,6)

image6.png
1. m *mb APP

B *roll_two_dice.py

sum=r1+1r2
sums.append(sum)

image7.png
111213 *mb APP

@ *roll_two_dice.py

12/28

display.clear()
display.show(r1)
sleep(250)
display.clear()
display.show(r2)
sleep(250)

image8.png
[Python Shell 11111

>>>#Running roll_two_dice.py
>>>from roll_two_dice import *
shake card to roll the dice
6+6=12, rolls =1
2+2=4, rolls=2

2+1=3,rolls=3
1+2=3, rolls=4
2+6=8, rolls=5
5+4=9, rolls=6
S5+6=11, rolls=7

image9.png
1. m *mb APP

B *roll_two_dice.py

W

print (r1, "+", r2,"=",sum,", ","rolls =", len(sul
store_list("sums",sums)

image10.png
Click to add variab

image11.png
sums

image12.png
) Python Shell 1/1

>>>

image13.png
) Python Shell ~ 5/5

>>>#Running roll_two_
>>>from roll_two_dice i
shake card to roll the di
ce

©
I3
©

ck to

Cli

1

No numeric data

e s s e
35791

sums

image14.jpeg

