

[image: TI Logo] 10 Minutes of Code: Python Modules 	MICRO:BIT: BUTTONS AND GESTURES
 TI-NSPIRE CX II		
	micro:bit
	Buttons and Gestures

	In this activity you will learn about using the micro:bit buttons and gestures and then write a program to toss a die and collect the values in a list to be transferred to a data plot.
There are two parts to this lesson:
Part 1: Investigating buttons and gestures
 Part 2: Using a button or gesture to generate some data

	1. The micro:bit has two buttons, labeled A and B, on each side of the display. The python micro:bit module has two similar methods for reading the buttons and then performing tasks based on those buttons. First you will test the methods and then write a program that lets you collect data and analyze it elsewhere in the TI-Nspire CX II.

There is also a 3-axis accelerometer/compass chip on the back of the micro:bit and methods for interpreting micro:bit movement and orientation.
	
[image:]

	2. Part 1: Investigating buttons and gestures
Start a new blank python program in a document.
We named the program buttons_gestures.

From [menu] > More Modules > BBC micro:bit select the import statement at the top of the list:
 from microbit import *

	
	[image:]

	3. Add the while loop:
 while get_key()! = ’esc’:
from
 [menu] > More Modules > BBC micro:bit > Commands

[bookmark: _GoBack]Almost all your micro:bit programs will be designed this way
	
[image:]

	4. To test button A, add the if : structure:
 if button_a.was_pressed():
 print("Button A")
if is indented to be part of the while loop and print() is indented even more to be part of the if block. Remember that proper indentation is very important in python. The wrong indentation can cause syntax errors or improper execution of your code. Note the light gray diamond symbols () that indicate the indentation spacing.

if is found on [menu] > Built-ins > Control.

The condition button_a.was_pressed() is found on
[menu] > More Modules> BBC micro:bit > Buttons and Logo Touch

print() is on [menu] > Built ins > I/O
Type the text “Button A” inside the print() function.

Note: is_pressed() will also be discussed later.

	
[image:]

	5. You are ready to test the program. Press [ctrl] [R] to run the program. It looks like nothing is happening. Press and release button A on the micro:bit. You will see ‘Button A’ appear on the calculator screen. Each time you press the button the text will appear as in this image.

Press [esc] and return to the Python Editor.
	
[image:]

	6. Add another if statement to check button B using the condition
button_b.is pressed(). Note that ‘IS’ is different than ‘WAS’.
You will see how they differ soon.
 if button_b.is_pressed():
 print("Button B")

Tip: again, pay attention to the indentations!
	[image:]

	7. Run the program again (press [ctrl] [R]). Try both buttons A and B.
Tap each button and press-n-hold each button.
You will see ‘Button B’ repeatedly displayed as long as button B is held down, but not ‘Button A’. There is a difference between .was_pressed() (which needs a release of the button to be reset) and .is_pressed() which just checks to see if the button is down at the very moment that the statement is processed.

Note: if you tap button B quickly, the program may not display Button B since the button is not down at the very moment the if statement is being processed.
	
[image:]

	8. Introducing gestures. The micro:bit has an electronic accelerometer that can measure acceleration forces in three different directions (a 3-axis or 3D accelerometer). In addition to providing numerical values for acceleration in each direction (see image), the micro:bit also provides simple, easy-to understand ‘gestures’ such as ‘face up’ and ‘face down’ that are based on those directional values.

This lesson explores these gestures and demonstrates how to use them in programming your TI-Nspire CX II with micro:bit.
	[image: A picture containing text

Description automatically generated]

	9. Get the gesture value from micro:bit and store it in the variable g:
 g = accelerometer.current_gesture()
Tip: again, pay attention to the indentations!
Type g = and then
Find accelerometer.current_gesture() on
 [menu] > More Modules > BBC micro:bit > Sensors > Gestures >

Then print the value of g:
 print(g)

Reminder: print() is on [menu] > Built ins > I/O

Note that these two statements are indented one stop to be part of the while loop but not part of the if statement above it. Remember that the indentation of each line determines the meaning so BE CAREFUL!

	
[image:]

	10. Run the program and watch the calculator display for the various values as you move the micro:bit around in the air. Turn micro:bit over, stand it on each edge, shake, rattle, and roll it. Part of a sample run is shown in this image.

Some of the available gestures are: face up, face down, up, down, left, right, shake. These are returned as string values. Can you see all these gestures on your screen?
	
[image:]

	11. #comment the last two gesture statements (use [ctrl] [T] to #comment a line) as shown in the image and add this other gesture function from the same menu:
 if accelerometer.was_gesture(“face down”):
 print(“face down”)
The gesture “strings” are all on a pop-up menu.

Yes, you can simply type the gesture string but in the .was_gesture() method it must match the menu item exactly.

When you run this program, you will notice the change in the output:
 .current_gesture() constantly prints the gesture.
 .was_gesture() only prints when the gesture changes.
	
[image:]

	12. Buttons and gestures are two ways of getting input from the micro:bit and producing results on either the TI-Nspire CX II screen or the micro:bit display… or both.
The next part of this activity builds a program that produces some data using the micro:bit for further investigation on the TI-Nspire CX II.
	
[image:]

	13. Part 2: Let’s toss a die (a cube numbered 1..6 on each face). When button A is pressed assign a random integer from 1 to 6 to a variable. Or, you can use button B, or a gesture of your choice.
Display the value on the micro:bit only. Try it yourself before looking at the next step. We will use the current program and add code to simulate the die toss.

Can you determine what number is on the bottom of the pictured die?
	[image: die clipart - Clip Art Library]

	14. Add the two statements highlighted as shown in the image:
 from random import * and randint() are both found on
[menu] > Random

The rest of the statement die = randint(1, 6) is typed in manually and is carefully indented because it is a part of the if button_a… block.

Again, be careful about the indentation.

	
[image:]

	15. After the value of the die has been established, add the statement:
 display.show(die)
to show the value of the die on the micro:bit display.

Run the program again. When you press button A you see ‘Button A’ on the handheld screen and the number on the micro:bit display changes… but not every time! Sometimes the random number selected is the same as the last number and… that’s OK. The presses are ‘independent events’.
	
[image:]

	16. Collecting data: Tossing all those dice with just a button press is nice, but for further study it would be helpful to store all those values so that you can interpret the data: which number occurs most often? What is the average number? And so on…

Add statements to the program to:
· Create an empty list
· Add (.append) the die value to the list
· Store the list from python to the TI-Nspire CX II system for analysis
Each of these three tasks translate to statements that are placed in special places in the program. Try it yourself before proceeding to the next step.
	
[image:]

	17. The empty list assignment belongs at the start of the program:
 tosses = []
The brackets are on the keypad and on [menu] > Built-ins > Lists

After the die is determined. it is added to the list with:
 tosses.append(die)
 .append() is found on [menu] > Built-ins > Lists

At the end of the program the final list is stored to a TI-Nspire list:
 store_list(“tosses”, tosses)
 the store_list function is on [menu] >BBC micro:bit >Commands

Note: the two commented lines were removed so that all the code fits on the screen. You can leave those comments in your program.
	
[image:]

	18. When you run the program now, press button A many times, then press [esc] to end the program. Your python program has a list named ‘tosses’ and now your TI-Nspire also has a list named ‘tosses’. These are two separate lists.

Press [ctrl]-[doc] or [ctrl]-[I] to insert a page and add a Data & Statistics app. A bunch of dots will be scattered around the graph. Click the message ‘Click to add variable’ at the bottom of the new app and select the list tosses. Do you see the screen to the right? Each dot represents one of your die tosses. What information can you gather from this graph? Can you change the graph to a Histogram? Hint: check the app’s [menu].

You can modify this program in several ways; for example: show (print) how many times you toss the die while you are doing it.

Note: button B and your gesture have no effect on the die. Try modifying your code to toss a die only when you ‘shake’ the micro:bit.

Remember to save your document!
	
[image:]

	19. Extension:
· Indent the store_list() method so that the list is stored to the TI-Nspire at every button_a press.
· print(“done.”) at the end of the program so that you know that the program has finished.
· #comment the if buttonB… code and the if accelerometer… code.

	
[image:]

	20. Move to the Shell app and press [ctrl] [4] to combine the Shell with the Data & Statistics app onto the same page as in the image to the right.

Run the program by pressing [ctrl] [R] on the Shell. Press button A on the micro:bit to begin tossing the die and watch the dot plot grow!

The plot will display ‘No numeric data’ at first because the tosses list has been emptied by the program but fear not: pressing button A will begin plotting the data.
	[image:]

	21. Instead of printing just ‘Button A’ at each button press you could print entire list of tosses. Where in your code will you print(tosses)?
	[image:]

	

©2021-2023 Texas Instruments Incorporated	1	education.ti.com
image2.png
I B |

It d 04

LI I |

image3.png
! 1.1 13 *SB2 - bu..res

A *buttons_gestures.py

rap [I] X
2/20

from microbit import *

image4.png
Al 1.1 g *SB2 - bu..res RAD D X
A *buttons_gestures.py 219

from microbit import *

while get_key() = "esc":

image5.png
Al 1.1 g *SB2 - bu..res RAD D X
A *buttons_gestures.py 6/19

from microbit import *

while get_key() != "esc":
if button_a.was_pressed():
print("Button A")

image6.png
m 1.2 g *SB2 - bu..res

(A Python Shell

rap [I] X
9/9

>>>#Running buttons_gestures.py
>>>from buttons_gestures import *
>>>Button A

Button A

Button A

Button A

Button A

Button A

image7.png
1.1 m *SB2 - bu..res RAD D X
A *buttons_gestures.py 8/8

from microbit import *

while get_key() != "esc":
if button_a.was_pressed():
print("Button A")
if button_b.is_pressed():
print("Button B")

image8.png
m 1.2 g SB2 - butt..res

(A Python Shell

rap [I] X
22122

Button B
Button A
Button B
Button A
Button B
Button B
Button B
Button B
Button B
Button B
>>>

image9.jpg

image10.png
1.1 m *SB2 - bu..res F!ADD X
@ buttons_gestures.py 99

from microbit import *

while get_key() != "esc":
if button_a.was_pressed():
print("Button A")
if button_b.is_pressed():
print("Button B")
g=accelerometer.current_gesture()
print(g)

image11.png
m 1.2 |8 *SB2 - bu..res

(A Python Shell

rap [I] X
100100

left
face up
face up
right
right
face up
face up
face up
face up
face up
>>>|

image12.png
1.1 m *SB2 - bu..res RAD D X
A *buttons_gestures.py 1213

while get_key(Q) != "esc":
if button_a.was_pressed():
print("Button A")
if button_b.is_pressed(:
print("Button B")
g=accelerometer.current_gesture()
print(g)
if accelerometer.was_gesture('face down"):
print('face down’)

image13.png

image14.gif

image15.png
m *SB2 - bu..res

‘*.';- *buttons_gestures.py 914
from microbit import *

while get_key() |= "esc":
if button_a.was_pressed():

irint("Button A"i

if button_b.is_pressed(:
 print(‘Button 8

celerometer.current_ gesture()

print(g)

image16.png
[*buttons_gestures.py 10116

from microbit import *
from random import randint

while get_key(!= "esc":
if button_a.was_pressed():
print("Button A")
die = randint(1, 6)
display.show(die)
if button_b.is_pressed():
Iprlnt(”Button B")
e current,

estur

image17.png
Finished

image18.png
[*buttons_gestures.py 14114

from random import randint

|tosses=[1
while get_key() I= "esc":
if button_a.was_pressed():
print("Button A")
die = randint(1, 6)
display.show(die)

if button_b.is_pressed():
print("Button B")
if accelerometer.was_gesture('face down"):

iiﬁ ‘face down’)

image19.png
ra0 1]

-bu.res

(1.1 [1.2] 1.3 [REEE

4.55.05.56.0

0.51.01.52025

tosses

image20.png
[*buttons_gestures.py 15116

while get_key() I= "esc":
if button_a.was_pressed():
print("Button A")
die = randint(1, 6)
display.show(die)
tosses.append(die)
if button_b.is

ressed():

esture("face down"):

print(f
store_list("tosses",tosses)
prinl('done.')l

image21.png
(1.1 1.2 |

(2 Python Shell

*SB2 - bu..res

1n

>>3

d variable

d

%

SSES

image22.png
(A Python Shell 60/64

[5,6,4,3,2,1,4,6,6,

1,6,6,3,1,6, 5,6,4,1
]
[5,6,4,3,2,1,4,6,6,
1,6,6,3,1,6,5,6,4,1
1]
[5,6,4,3,2,1,4,6,6,
1,6,6,3,1,6,5,6,4,1,
1,3]

done.

>>>

le

lick to add variab

wn
0000000

image23.jpeg

