10 Minutes de Code TI - NSPIRE™ CX II & TI - PYTHON

NOTES DU PROFESSEUR

UNITE 7 : COMPETENCE 1

Unité 7 : Utiliser la bibliothèque cmath	Compétence 1 : Les fonctions de la bibliothèque cmath
Dans cette première leçon de l'unité 7, vous allez	Objectifs :
découvrir comment utiliser la bibliothèque cmath pour	Découvrir la bibliothèque cmath.
effectuer des calculs simples sur les nombres complexes.	• Utiliser les fonctions de la bibliothèque cmath .

- 1. Utiliser le module **cmath.**
- Insérer une nouvelle application et choisir le menu A Ajouter Python.
- Dans cette leçon, nous allons essentiellement travailler en utilisant la console (shell), afin de découvrir les instructions de la bibliothèque cmath.
- Dans la fenêtre qui s'ouvre, choisir l'option 3 Shell.
- La touche menu donne accès à 9 Plus de modules, puis 1 Mathématiques complexes.

Choisir l'option 2 complex(real, imag) et affecter ce nombre à une variable

*	1	Outils		•	ur	rad 📘 🗙
Ē	2	Modifier		•		1/1
If	3	Intégrés		•		
\sqrt{x}	4	Maths		•		
٩	5	Nombres	alé	atoire 🕨		
1	6	TI PlotLib		•		
	7	TI Hub	4	A		
جە	8	TI Rover		Nather	natiques	complexes •
8	9	Plus de m	2	lime		•
	•		3	TI Syst	tem	•
var	A	Variables	4	TI Drav	N	•
			5	TI Imag	ge	•

2	′1 Outils ▶ur	rad 🚺 🗙
1	from cmath import *	1/1
2	complex(real, imag)	1/1
3	rect(modulus, argument)	
4	.real	
5	.imag	
6	polar()	
7	phase()	tiques complexes 🕨
8	exp()	•
9	cos()	n 🕨
А	sin()	•
	-	•

∢ 1.1 ▶	*Classeur	rad 📋 🗡
🔁 Shell Pyt	hon	4/5
>>>from cm >>>z=comp	ath import * lex(1,1)	
(1+1j)		

• Demander l'affichage de z.

Importer la bibliothèque **cmath**.

•

Ζ.

• La calculatrice utilise j pour désigner le nombre imaginaire pur.

On remarquera que le nombre complexe est édité entre parenthèse sous la forme

$$z = a + bj$$

 De la même façon, définir un nombre complexe sans passer par l'instruction complex(real, imag), mais directement en utilisant la même syntaxe, soit par exemple z2 = (2 - 3j)

Conseil à l'enseignant : l'oubli de parenthèses lors de l'écriture d'un nombre complexe dans la console entraîne l'édition d'un message d'erreur.

Ce document est mis à disposition sous licence Creative Commons <u>http://creativecommons.org/licenses/by-nc-sa/2.0/fr/</u>

10 Minutes de Code TI - NSPIRE™ CX II & TI - PYTHON

- Importer également dans la console, la bibliothèque de calculs mathématiques.
- Dans la bibliothèque cmath, choisir l'instruction 3 rect(module, argument).
- Compléter l'instruction rect(sqrt(2),pi/4), soit la demande en coordonnées rectangulaires d'un nombre complexe de module $\sqrt{2}$ et d'argument $\frac{\pi}{4}$.
- L'affichage des parties réelles et imaginaires d'un nombre complexe s'effectue par l'intermédiaire des méthodes **.real** et **.imag** précédées du nom de la variable complexe.

 L'instruction 6 polar() ne doit comporter comme seul argument que le nom de la variable complexe afin de renvoyer un tuple dont le premier élément sera le module du nombre complexe et le second un argument.

• L'instruction **7 phase()** donne l'argument du nombre complexe exprimé en radians.

UNITE 7 : COMPETENCE 1 NOTES DU PROFESSEUR

∢ 1.1 ▶	*Classeur	rad 📘 🗙	
🔁 Shell Pyth	on	10/10	
>>>type(z)			
<class 'complex'=""></class>			
>>>polar(z)			
(1.414213562373095, 0.7853981633974483)			
>>>u=polar(z)		
>>>u[0]			
1.4142135623	373095		
>>>u[1]			
0.7853981633	3974483		
>>>			

2

Ce document est mis à disposition sous licence Creative Commons

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

 Pour exprimer un argument d'un nombre complexe en degrés, utiliser l'instruction degrees issue de la bibliothèque de fonctions mathématiques.

Conseil à l'enseignant : Le module d'un nombre complexe peut également être obtenu en utilisant l'instruction abs(z).

Carré d'un imaginaire pur.

- Créer le nombre complexe z = j (attention à l'instruction à fournir à la calculatrice).
- Calculer z^2
- On obtient bien le résultat attendu, avec la précaution d'usage de bien conserver à l'esprit la façon dont les nombres décimaux sont exprimés en langage python.
- On pourra écrire dans un script une fonction permettant d'affecter 0 à la partie réelle ou imaginaire d'un nombre complexe, lorsque sa valeur n'excède pas 10⁻ⁿ, la valeur de n étant à préciser.

∢ 1.1 ▶	*Classeur	rad 📘 🗙
🔁 Shell Pyth	n	8/8
>>>z=(j) Traceback (m File " <stdin>' NameError: n: >>>z=(1j) >>>z**2 (-1+1.224646 >>></stdin>	ost recent call last): , line 1, in <module> ame 'j' isn't defined 799147353e-16j)</module>	

∢ 1.1 ▶	*Classeur	RAD 📘 🗙
🛃 Shell Pyth	on	2/5
>>>from cma >>>z=sqrt(-' >>>z (6.123233995 >>>	ath import * 1) i736767e-17+1j)	

Ce document est mis à disposition sous licence Creative Commons <u>http://creativecommons.org/licenses/by-nc-sa/2.0/fr/</u>

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Ce document est mis à disposition sous licence Creative Commons

qui renvoie le conjugué d'un nombre complexe donné.

b) Nombre conjugué d'un nombre complexe.

Insérer une nouvelle application Python permettant d'écrire un script et le • nommer U7SB1.

Le conjugué d'un nombre complexe n'est pas implémenté dans la calculatrice

TI-Nspire[™]. On se propose donc d'écrire pour terminer cette leçon, une fonction

- Importer les bibliothèques de calculs mathématiques et le module cmath. • Extraire les parties réelle et imaginaire du complexe passé en argument de •
- la fonction.
- Afficher les deux nombres z et \bar{z} .

Exemple : Soit z = 2 + 3j, déterminer à l'aide de la fonction **conj(z)** le nombre complexe conjugué.

2.	Quelques	calculs	élémentaires.
----	----------	---------	---------------

10 Minutes de Code

TI - NSPIRE[™] CX II & TI - PYTHON

- a) Définir le nombre complexe de partie réelle 3 et de partie imaginaire 2. Vérifier que le module de ce nombre est $\sqrt{13}$.
 - 🔁 Shell Python 4/4 >>>z=complex(3,2) >>>abs(z)==sqrt(13) True >>>
 - RAD 间 1.1 *Classeur 🛃 *U7SB1.py 10/10 # Math Calculations from math import * from cmath import * def conj(z): a=z.real b=z.imag conjugue=complex(a,-b) return z,"a pour conjugue",conjugue

*Classeur

◀ 1.1 ▶

RAD 🚺 🗙

4