10 Minutes de Code TI - NSPIRE[™] CX II & TI - PYTHON

UNITE 6 : COMPETENCE 3 **NOTES DU PROFESSEUR**

Unité 6 : utiliser les bibliothèques TI Hub & ti_rover	Compétence 3 : les dispositifs d'entrée-sortie
Dans cette seconde leçon de l'unité 6, vous allez	Objectifs :
découvrir comment connecter le ti-rover à l'aide de la	• Découvrir le module TI Rover .
bibliothèque TI Rover .	• Écrire et utiliser un script permettant d'utiliser
	TI-Innovator™ Rover et ses actionneurs associés.
	- Utilizer une house suverte et une instruction

Utiliser une boucle ouverte et une instruction conditionnelle.

Vous allez, dans cette leçon, réaliser un script donnant au TI-Innovator™ Rover la possibilité d'effectuer un parcours marqué par l'illumination de la diode RVB, tant que la distance (mesurée par le capteur RANGER) respecte une limite inscrite dans une instruction conditionnelle.

Nouveau	1		
Nom : U	SB3		
Type: C	odage du Rov	/er	•
		ок	Annuler

Ce document est mis à disposition sous licence Creative Commons http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

	sinon afficher une couleur verte et co
arrêter, afficher	une couleur bleue
ttendre 1s	
teindre la diode	
er la diode en ble	eu pour marquer la fin

- Commencer un nouveau script et le nommer U6SB3.
- Choisir la bibliothèque « Codage du Rover ».
- Valider.

Vous êtes maintenant prêts à écrire votre script.

Effacer votre écran à l'aide de l'instruction clear_history(), située dans le • menu TI System.

10 Minutes de Code

TI - NSPIRE[™] CX II & TI - PYTHON

- Demander au TI-Innovator™ Rover de se déplacer en avant. L'unité de mesure de la distance est laissée à votre choix sachant que par défaut, celle-ci est fixée à 0,1 m. Ainsi rv.forward(20) assignera au robot un déplacement en avant sur une distance de 2 m. L'instruction rv.forward() est située dans le menu TI Rover et enfin 2 Lecteur.
- Inscrire ensuite, le début d'une boucle ouverte que l'on trouve dans le menu de la bibliothèque TI System.

Conseil à l'enseignant : Un grand nombre d'instructions disponibles dans le menu de la bibliothèque TI System, le sont également dans celui de la bibliothèque TI Rover sous le menu Commandes.

- Créer une variable a à laquelle est affectée la distance mesurée par le RANGER. Pour cela, commencer à écrire la lettre a, puis laisser le curseur à la fin de cette lettre. Inscrire ensuite l'instruction rv.ranger measurement() située dans le menu 9 TI Rover puis 3 Entrées puis E/S et enfin 1 rv.ranger_measurement(). L'unité de mesure est le mètre.
- Créer à présent l'instruction conditionnelle. Si la distance mesurée est inférieure à 20 cm, le robot s'arrête et la diode RVB s'allume en rouge. L'instruction rv.color() est disponible dans la bibliothèque TI Rover au menu 4 sortie.
- rv.stop() est une instruction de conduite et donc placée sous le menu correspondant. Sinon la diode RVB est de couleur verte, et le robot poursuit son parcours jusqu'à attendre la distance fixée. L'instruction rv.resume() termine le traitement des actions en court dans la file d'attente.

◀ 1.1 ▶	*Classeur	rad 🚺 🗙	
🛃 *U6SB3.py		22/24	
while get_key() != "esc":		
a=rv.ranger_measurement()			
••if a<0.2:			
<pre>****rv.color_rgb(255,0,0)</pre>			
****rv.resume			
**else:			
••••rv.color_rgb(0,255,0)			
••••rv.resume			
rv.stop			
clear_history()			
rv.color_rgb(0,0,255)			

∢ 1.1 ▶	*Classeur	rad 📘 🗙		
🛃 *U6SB3.p	у	9/10		
# Rover Codir	ng			
#========	======================================			
from math im	port *			
import ti_plotlib as plt				
from ti_system import *				
#========	=======================================			
clear_history(

*Classeur

plt.text_at(6,"[esc] pour arrêter","center")

RAD 🚺 🗙

4/15

◀ 1.1 ▶

🛃 *U6SB3.py

rv.forward(20) while get_key() != "esc":

bloc

import ti rover as rv from math import import ti_plotlib as plt from ti_system import * from time import * clear history()

- A la fin de la boucle :
 - Le robot s'arrête : **rv.stop()**.
 - o L'écran est effacé.
 - \circ $\;$ La diode affiche une couleur bleue.

Un délai d'attente de 1s précède l'extinction de la diode.

Ce document est mis à disposition sous licence Creative Commons <u>http://creativecommons.org/licenses/by-nc-sa/2.0/fr/</u>

