[image: TI Logo] 10 Minutes of Code - Python	 	UNIT 7: SKILL BUILDER 1
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB AND TI-RGB ARRAY™	STUDENT ACTIVITY
	Unit 7: The TI-RGB Array
	Skill Builder 1: Light Them Up

	In this lesson, you will learn to control the 16 LEDs on the TI-RGB Array both collectively (all at once) and individually (one at a time).
Note: The simulation that is used in this unit to replicate the lights on the TI-RGB Array is used for demonstration purposes only. This tool is not a TI product and is not available for purchase or distribution by TI.
Caution: Rapidly flashing lights may be disturbing for some students, so it is wise to use sleep() statements to slow things down a bit.
	Objectives:

	
	· Light up ALL LEDs and make them blink in unison using a loop
· Use another loop to light up and turn off the LEDs one at a time

	[image:][image:][image:]
TI-RGB Array back breadboard ports
The TI-RGB Array is a circuit board with 16 color LEDs and a controller chip and comes with a short 4-wire cable. It connects to the TI-Innovator Hub using the breadboard (BB) ports on the TI-Innovator Hub. Follow the wiring instructions on the back of the circuit board to connect it to the TI-Innovator Hub; connect the TI-Innovator Hub to your TI-Nspire CX II.

	1. Start a new Python program using the Hub Project template.

Press menu > TI Hub > Add Output Device and select the TI-RGB Array.

In place of the var placeholder, type any variable name. We used cb (for ‘circuit board’).
	[image:]

	2. To get the lights to light up all at once, on the next line of your program type your variable name followed by a period or decimal point.
 cb.
A dialog box pops up in the editor showing all the methods (functions) that are available to the rgb_array() class. Your variable (cb) is an instance of that class (an object) and can use any of these class methods.

Select set_all(red, green, blue), as shown.
	[image:]

	3. Your statement consists of your variable name, a period, and the function you selected from the pop-up list.
As with a lot of other commands in the Python menus, this one contains three inline prompts (red, green, and blue) with a tool tip on each indicating the allowed values (0-255).
	[image:]

	4. Choose and enter values for the three colors.

Run your program and see that all 16 LEDs light up in your color.
Notice that the LEDs remain lit even after the program ends.

	[image:]

	5. To turn the LEDs off, use the statement:
 cb.all_off()

Type your variable name and a period again and select all_off() from the list.
And, add a sleep(2) (seconds) between the lighting up and the shutting off; otherwise, you won’t see anything!

When you run the program now, the LEDs stay lit for two seconds.
	
[image:]

	6. Put your LED control statements into a for loop to make them blink on and off several times. Add another sleep() after they are turned off. You may want to adjust the sleep times to speed things up a bit. Be sure to indent all statements in the loop block.

Note: Do not include the constructor statement cb = rgb_array() in the loop block. It only needs to be defined once!

Run your program to test it before you continue.
	[image:]

	7. If your program blinks all LEDs at once, then you are successful. Now let’s control the LEDs one at a time with an inner loop.
	[image:]
(demo1.1.gif)

	8. Below the for i… loop, add an inner loop: for j in range(16):
Indent all four loop block statements so that they now apply to the inner loop.
Delete the statement cb.set_all(…), but leave the blank line. In its place, type
 cb.
and select set(led_position, red, green, blue).

Use the inner loop variable j as the led_position and enter your color values.
Change the sleep values and the outer loop range() to speed things up a bit.

	[image:]

	9. [bookmark: _GoBack]Run your program. Now your 16 LEDs light up one at a time for 3 times.

Remember to save your document.

	(demo1.2.gif)[image:]

©2020 Texas Instruments Incorporated	1	education.ti.com
image2.png

image3.jpeg

image4.jpeg

image5.png
m 1.2 m *Unit7 Py..ray

A *u7sb1.py 119

from ti_hub import *

from math import *

from time import sleep

from ti_plotlib import text_at,cls
from ti_system import get_key

cb—rgb_arrayo

image6.png
@ *u7sbl.py 1019

f==

frop-
frol
L Set
frol all_off()
frol pattern(value)
= measurement() F--===
cb=ryu_arrayy
cb.

image7.png
@ *u7sbl.py

1019

#
from ti_hub import *

from math import *

from time import sleep

from ti_plotlib import text_at,cls

from ti_system import get_key
P

b_array(
cb.set_all(Ed, areen,blue)

image8.png
®
TI-RGB Array P Texas INsTRUMENTS
‘cgogooooo
7 6 5 4 3 2 1 [
’|5‘1l'13‘|2v!1‘10’9,8
googooogo
IRl .
ness ! 3 ®

image9.png
m 1.2 m *Unit7 Py..ray

A *u7sb1.py 1422

from math import *

from time import sleep

from ti_plotlib import text_at,cls
from ti_system import get_key
cb=rgb_array(
ch.set_all(255,0,0)

sleep(2)

cb.all_off()

image10.png
*u7sb1.py

1416

from math import *

from time import sleep

from ti_plotlib import text_at,cls
fromt system import get_key

cb=rgb_: arrayO

for i in range(10):
cb.set_all(255,0,0)
sleep(1)
cb.all_off(
sleep(1)

image11.png
nit

]
@ *w7sblpy 1517,
ffrom time import sleep

ffrom ti_plotlib import text_at,cls

ffrom ti_system import get_key

b_array0

for iin range():

for jin range(16):
cb.set_all(,255,255,0)
sleep(1)
cb.all_off0
sleep())

image12.png
Finished

® TI-RGB Array % Tousremuars ©
'D'UEO'U'O'D’U’U

.5 14 13 12 1 10 9

000000

image13.jpeg

