[image: TI Logo] 10 Minutes of Code - Python	 	UNIT 7: APPLICATION
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB AND TI-RGB ARRAY™	STUDENT ACTIVITY
	Unit 7: The TI-RGB Array
	Application: Smart Lights

	In this application, you will control the number of LEDs lit on the TI-RGB Array using the TI-Innovator Hub’s brightness sensor.
	Objectives:

	
	· Use the brightness sensor to control the TI-RGB Array
· Adjust the brightness range to suit the TI-RGB Array
· Make sure that all 16 LEDs are impacted by the brightness

	Smart Lights
As the room darkens, the lights in the room get brighter. Imagine a ‘smart home’ with no light switches! Write a program that monitors the brightness and turns on more or less LEDs, as necessary.
	[image:]

	1. As usual, begin this Python Hub Project using the rgb_array() constructor and the while loop to terminate the program with esc.
 cb = rgb_array()
 while get_key() != ”esc”:
	[image:]

	2. Before the while loop, set the brightness.range() to match the number of LEDs on the TI-RGB Array board that could be lit: 0 to 16.
Press menu > TI Hub > Hub Built-in Devices > Brightness Input > range(min,max) for the statement:
 brightness.range(0,16)
 Use 0,16 because this is the range of the number of LEDs to light up on the board.
 The maximum value the sensor will produce is 16. Is the minimum 0?
	[image:]

	3. In the while block, start by reading the brightness.measurement() and store the value in a variable (bright).
 bright = brightness.measurement()
The function produces a floating-point number (float, decimal). Convert it to an integer value using:
 bright = int(bright)
Or, combine the two statements into one operation:
 bright = int(brightness.measurement())
	[image:]

	4. To test your program: add text_at() statement found on menu > TI Hub > Commands:
 text_at(7, str(bright), “left”)

Recall that you need str(bright) because the text_at() function requires a string to display. You can either type str() or get it from menu > Built-ins > Type.

Run the program to ensure that all seventeen values (0…16) do appear. If not, then adjust the range() so that they do. Try using an artificial light source such as a flashlight or the ‘flashlight’ feature on a smartphone.
	
[image:]

	5. Since 0 is the darkest value and 16 is the brightest, we want the number of LEDs lit to be the opposite: when bright = 0, there should be 16 LEDs lit and when bright is 16, there should be 0 LEDs lit.
Write an expression for lites in terms of bright.
 lites = ? ? ?
	[image:]

	6. It’s possible that all LEDs should be off:
 if lites == 0:
 cb.all_off()
 else:

	[image:]

	7. We want all the LEDs to be affected by the brightness so we will use a for loop to control the state of every LED every time. The lites variable is a deciding factor when turning a LED on or off:
 for i in range(1,17):

(Remember that the value 17 is not processed by the loop so i takes on the values from 1 to 16 representing the 16 LEDs.)
	[image:]

	8. Complete the program by adding an if…else… statement to tell the TI-Innovator Hub which LEDs are on and which ones are off.

Hint: If lites is 1, then you want to turn on LED 0. When lites is 16, you want to turn on all LEDs (#0 to #15). Use the color (255,255,255) to get a bright white light.

Remember to turn all the LEDs off at the end of the program.
	[image:]
(demoAPP.gif)

[bookmark: _GoBack]
©2020 Texas Instruments Incorporated	1	education.ti.com
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.jpeg

