[image: TI Logo] 10 Minutes of Code - Python 	 	UNIT 6: SKILL BUILDER 2
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ ROVER	TEACHER NOTES
	Unit 6: Coordinates with Rover
	Skill Builder 2: The Distance Formula

	In this lesson, you will use the distance formula from coordinate Geometry to calculate the distance between two points and compare the Rover’s measured distance against the calculated distance. **You will need a meter stick or metric tape measure for this lesson.
	Objectives:

	
	· Move to two different points
· Use a marker to draw the segment
· Use a function to compute the distance between two points and display the distance
· Measure the distance between the points
· Compute the error in the measurement versus the computation

	Recall the “Distance Formula”, which is based on the Pythagorean Theorem:
 [image:]
Based on the image to the right, this becomes the Python statement:
 d = sqrt((6 - 2)**2 + (4 - 1)**2)
This evaluates to: d = 5
Can you find a 3-4-5 right triangle in the image?
	
[image:]

	1. Start a new Python Rover Coding project.
Define a function called dist which takes four arguments (two pairs of coordinates) and will return the distance between the two points.
The def function() template is found on menu > Built-ins > Functions.
The body of the function consists of one calculation:
 [image:]
and the return statement: return d
return is found on menu > Built-ins > Functions
Make sure these two statements are indented the same amount.
	
[image:]

	[bookmark: _Hlk51428266]Teacher Tip: To use one inch rather than 10 centimeters per grid unit, set Rover’s unit to:
 rv.grid_m_unit(0.0254)

	2. Below the function (after the return statement), begin the main program. Be sure your code is no longer indented. Write four input() statements (using copy and paste) to enter the coordinates of the two points. Create simple prompts for the inputs and use the float() function to convert the input result from a string to a decimal value. Only one of these four statements is shown to the right. We are using the variable a to store the first x-coordinate. Use b, c, and d for the other three coordinates.	
	[image:]

	Teacher Tip: Using different variables for the actual parameters (a, b, c, d) reinforces the idea that these identifiers are really different from the formal parameters (x1, x2, y1, y2) used in defining the function.

	3. After the four input() statements, make Rover drive to the first point. Pause there while you insert a marker in the Rover’s marker holder to draw a line segment. Then continue driving to the second point. A good pause statement is:
 input(“press [enter] to continue.”)
The result of this input function does not assign any value to a variable because nothing is entered.
	[image:]

	4. Now have the program evaluate the distance function using the coordinates of your two points:

 calculated_distance = dist(a, b, c, d)
	[image:]

	Teacher Tip: The long variable name is used for clarity. The students will measure the length of the segment using a meter stick or a metric tape measure and compare it to the calculated_distance.

Notice that the letter ‘d’ is used as a variable in two different ways: in the main program, it represents the second point’s y-coordinate but in the dist() function it is used to store the value of the calculated distance. These two variables do not conflict with each other because they have a different ‘scope’: the part of the program where the variable ‘lives’ (or: is valid).

	5. Use a ruler or tape measure to determine the length of the segment that Rover made.
Add an input() statement to your program so that you can enter the measured_distance.

Add print() statements to display the two distance variables.
How does the measured distance compare to the calculated distance?
	[image:]

	6. Calculate the percent error using the formula
 (measured - calculated) / calculated * 100
[bookmark: _GoBack] and print the error.

	Teacher Tip: If you have a set of Rovers, try this program on each one to determine which Rover is the ‘most accurate’.

©2020 Texas Instruments Incorporated	1	education.ti.com
image2.png
d= (x2—x]) 2+(y2—y7)2

image3.png
7

6,4)

2,1 10

image4.png
1.4 m *Unit6 Py..rds RAD D X

@ *ubsh2.py 13/16

import ti_rover as rv
from math import *
import ti_plotlib as plt
from ti_system import *
from time import *

points

eentwo

distance betw

def dist(x1,y1,x2,y2):
d=

return d

image5.png
1.4 mm *Unit6

@ *ubsh2.py 15/18

import ti_plotlib as plt
from ti_system import *
from time import *

distance between two

def dist(x1,y1,x2,y2):
d=

return d

a = float(input("x1 = ?"))

image6.png
*Unit6 Py

*uBsb2.py 23/33
a = float(input("x1 = 7))

b = float(input('y1 = 7))

c = float(input("x2 = 7))

d = float(input("y2 = 7))

#drive...

rv.to_xy(a,b)
print("insert marker")
input("press [enter] to continue.")

image7.png
B *ubsb2.py

29/34

d = float(input("y2 =7"))

v.to_xy(a,b)

print("insert marker")

x=input("press [enter] to continue.")
rv.to_xy(c,d)

calculated_distance = dist(a,b,c,d)

image8.png
1.4 mm *Unit6 Py..rds RAD

@ *ubsh2.py 3034
d = float(input('y2 = 2"))

v.to_xy(a,b)

print("insert marker")

x=input("press [enter] to continue.")
v.to_xy(c,d)

calculated_distance = dist(a,b,c,d)
measured_distance = float(input(Measured distance? ")

image9.jpeg

