
 10 Minutes of Code - Python UNIT 3: APPLICATION
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB STUDENT ACTIVITY

©2020 Texas Instruments Incorporated 1 education.ti.com

Unit 3: Brightness, if and while with the TI-Innovator™ Hub Application: Lite Music

In this application, you will control sounds using the brightness
sensor. There are three parts to this project:

1. Light tones (frequencies)
2. Notes using tones (frequencies of notes)
3. Notes using a list of note “names”

Objectives:
• Set the brightness.range() so that the value is

suitable for making sounds
• Play sounds or musical notes by varying the

brightness.

In an earlier lesson, you learned about sound.tone() and sound.note() using
the TI-Innovator Hub. In this lesson, you will use the brightness sensor to create
‘noise’ and ‘music’ (sometimes it is hard to tell the difference!).

Part 1: Light Tones

1. Again, use the original ‘brightness meter’ program from the first lesson in this
unit. Make another copy of the program using menu > Actions > Create
Copy….

Next, you must decide what brightness.range() would be appropriate to use
for sounds.

2. For tones we can use any frequency between 0 and 8000 Hz, but many of
those frequencies are too high or too low for humans to hear. Start with a
range of (100,1000) and adjust to your liking.

 10 Minutes of Code - Python UNIT 3: APPLICATION
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB STUDENT ACTIVITY

©2020 Texas Instruments Incorporated 2 education.ti.com

3. Add the sound.tone() statement below the brightness.measurement
statement and use the variable b for the frequency argument. Set the
sound’s time to your preference and use the same value in the sleep()
statement so that the TI-Innovator Hub and the handheld are in sync.

If you like, try making the sleep() value a little larger than the tone time
value. This puts a little silent gap between sounds.

 Test your program now and then adjust the numbers you used.

Part 2: Musical Notes Using Frequencies

1. In the five octaves pictured, there are a total of 60 notes (12 per octave).
Note A1 (A in the first octave) has frequency 55 Hz.

Subsequent notes have frequency 55 * 2 ** (k/12), where k is the note
number after A1. A1 is note number zero: k=0 2**(0/12) = 1.

2. To play ‘notes,’ modify your program.
Change the brightness.range() to be 0…59.
brightness.measurement() produces a decimal but we only want integers
so convert b to an integer using b = int(b).
int() is found on menu > Built-ins > Type.

Calculate a note’s frequency using f = 55*2**(b/12).
Use the variable f in the sound.tone() statement for frequency.

Try the program again. Some notes might be too high or too low. What can
you do to limit the range of the notes?

 10 Minutes of Code - Python UNIT 3: APPLICATION
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB STUDENT ACTIVITY

©2020 Texas Instruments Incorporated 3 education.ti.com

Part 3: Notes Using a List

1. Recall that the sound object can also use note “names”.
At the top of your program (before the while loop), make a list of note
“names” as you did in an earlier lesson:
 notes = [“C5”, ”D5”, ”E5”, …]

Note names are any of the letters ABCDEFG followed by a number from
12345.
Set the brightness.range() to be (0, # of notes in your list -1).
Convert the variable b to an integer.
Use the variable b as the index of the notes list:
 sound.note(notes[b], .25)

 Run the program now.

This program plays the notes in the list with low brightness using the
beginning notes and high brightness using the notes from the end of the list.

