[image: TI Logo] 10 Minutes of Code - Python 	 	UNIT 2: SKILL BUILDER 3
 TI-NSPIRE™ CX II WITH THE TI-INNOVATOR™ HUB	STUDENT ACTIVITY
	Unit 2: for loops with the TI-Innovator™ Hub
	Skill Builder 3: Looping with Sound

	In this lesson, you will learn to play a song on the TI-Innovator Hub.
	Objectives:

	
	· Use a for loop with specific frequencies
· Use a loop with a list of musical notes
· Write a program to play a song

	
[image:]
A Little Music Theory

Musical notes are determined by the frequency of a vibrating object such as a speaker, drumhead, or string as in a guitar or piano. The notes of the musical scale have a special mathematical relationship. There are 12 steps in an octave. If a note has frequency F, then the very next note has frequency F × 12√2.

Multiplying a note’s frequency by 12√2 or 21/12 (the twelfth root of 2) twelve times results in a doubling of the original frequency, so the last note in the octave (or the first note in the next octave) has frequency of F ×(21/12)12 = 2 × F. For example, if a note has a frequency of 440 Hz, the same note an octave above it has a frequency of 880 Hz, and the same note an octave below it has a frequency of 220 Hz.

The human ear tends to hear two notes that are an octave apart as being essentially "the same", due to closely related harmonics. For this reason, notes that are an octave apart are given the same name in the Western system of music notation - the name of the note one octave above C is also C. The 12 intervals between these notes are called ‘semitones’.

In this project we’ll take advantage of the 21/12 principle to generate the 12 notes in an octave (both naturals and sharps) plus the first note in the next octave.

Middle C (the lowest note in the staff pictured above) has a frequency of 261.64 Hz. An octave above Middle C, also known as Treble C, has a frequency 2 × 261.64 Hz or 523.28 Hz. There are 12 steps (semitones) between these two notes, and each step is 21/12 times the note before it.

	1. In the image to the right, enter 261.64 into a Calculator app. Then, in the next line, first press the multiplication key. The handheld supplies Ans at the beginning (not shown) because the multiplication symbol requires something in front of it.

We multiply Ans by 2^(1/12) and press enter. Then, press enter repeatedly to produce the sequence of answers shown.

We will incorporate this repetitive principle into our program. If you continue pressing enter, the twelfth answer will be 523.28, exactly two times the starting value, because F × (21/12)12 = 2 × F.

	
[image:]

	2. Start a New Python Hub Project. Begin by assigning the number 261.64 to the variable freq.
 freq = 261.64
	[image:]

	3. Now write a for loop to do something 12 times:
 for i in range(12):
	[image:]

	4. In the for loop block do two things:
Play the frequency value on the speaker for one second:
 sound.tone(freq,1)
Then, increase the frequency by a factor of 2**(1/12) (the twelfth root of 2).
 freq = freq * 2 ** (1/12)
** is the python ‘raise to the power’ or ‘exponent’ operator.
	[image:]

	5. If you run the program now (assuming there are no errors in your code), you will hear only the last tone. The program runs too fast to hear all the notes. The one second delay in the sound function takes place in the TI-Innovator Hub, not in the handheld. The program sends the next sound too quickly. Tell the program to ‘wait’ while each note is playing by adding a sleep(1) function to the loop after the sound is played.
You may also want to add a print() statement to see the frequencies being played at the same time they are playing.
	
[image:]

	6. There is another way to play musical notes on the TI-Innovator Hub. Add the following code to your program:

sleep(2)
for note in ["c4","d4","e4","f4","g4","a4","b4","c5"]:
 sound.note(note,1)
 sleep(1)

Find the square brackets [] on the keypad by pressing ctrl+(to the left of the 0 key.
Explanation:
sleep(2) is just a 2-second pause between the first part of the program and this second part.
for note in is the start of a typical for loop statement. You can get this form of the for statement from menu > Built-ins > Control > for index in list:.
["c4","d4","e4","f4","g4","a4","b4","c5"] is a list of musical notes, each in quotes (a string). “c4” is note C in the 4th octave (‘middle c’, which has frequency 261.64 Hz).
sound.note(noteName ,time) This loop plays the familiar ‘do-re-mi-fa-sol-la-ti-do’ scale. It leaves out the sharps in the octave.

Can you modify the list to play a song?

	
[image:]

[bookmark: _GoBack]
©2020 Texas Instruments Incorporated	1	education.ti.com
image2.png

image3.png
rao 171 9]

261,640 =
1 277.198
26164212
1 203,681
277.19792400817- 2 12
1 311144

203 68097031967 2 12 5

image4.png
from ti_hub |mport *

from math import *

from time import sleep

from ti_plotlib import text_at,cls
from ti_system import get_key

freq = 261.64

image5.png
*Unit2 Py..ops

@ *u2sb3.py 11731
from ti_hub import *

from math import *

from time import sleep

from ti_plotlib import text_at,cls

from ti_system import get_key

for iin range(12):
block

image6.png
) *u2sb3.py

from ti_hub import *

ffrom math import *

ffrom time import sleep

from ti_plotiib import text_at,cls

for iin range(12):
sound.tone(freq, 1)
freq = freq "2+ (1/12)

image7.png
*Unit2 Py..ops

A *u2sb3.py 12126

from ti_plotlib import text_at,cls
from ti_system import get_key

freq = 261.64 I
for i in range(12):

print(i,freq)

sound.tone(freq,1)
freq=freq*2*(1/12)

sleep(1)

image8.png
@ *u2sb3.py 21/22

print(i,freq)
sound.tone(freq,1)
freq="freq*2*(1/12)
sleep(1)
sleep(2)
for note in ["c4","d4","ed","f4","gd","ad","b4","c5"]:
sound.note(note,1)
sleep(1)

image9.jpeg

