
 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 3
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 6: micro:bit Skill Builder 3: Collecting light

In this lesson, you will monitor the light sensor on the
micro:bit and store the data in a TI-84 Plus CE list for
further analysis.

Objectives:
• Read and display the brightness sensor on the

micro:bit
• Transfer data from python to TI-84 Plus CE
• Investigate collected data from the micro:bit

Teacher Tip: This will shed some light on the micro:bit.
The lesson approximates the inverse square law for illuminance from a point light source. The law
is a connection between distance from the light source and light intensity, not time. But a careful,
regular, constant movement of the micro:bit away from the light source will create a linear
relationship between time and distance and time is a good substitute for distance.

1. The micro:bit can read the ambient light level using the display LEDs.

Yes, the display LEDs can also be used as an input device!

Teacher Tip: for more micro:bit light level information see
 Sensing changes in light on the micro:bit : Help & Support

2. In a new program (LITE) add the usual imports and the while loop.

Teacher Tip: This is a good place to use the template file you made earlier. Just copy the template file to
the file LITE. After copying you are taken right into the Editor.

https://support.microbit.org/support/solutions/articles/19000024023-how-does-the-light-sensing-feature-on-the-micro-bit-work-#:%7E:text=The%20micro%3Abit%20does%20not,can%20use%20in%20your%20program.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 3
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

3. Add an import statement at the top to access the micro:bit display
menu:
 from mb_disp import *

In the while loop body, write the assignment statement:
 ♦♦b = display.read_light_level()
Type b and get = .read_light_level() from [math] Display…

Add a print statement to see what the function produces:
 ♦♦print(“b = “, b)

Remember that the last two statements are indented so that they are
both in the while loop body.

4. <Run> the program and point the display side of the micro:bit at a light
source. It does not matter what is showing on the display. Move the
micro:bit toward and away from the light and observe the changing
values on the TI-84 screen. You should see values varying between 0
and 255.
Note: if you do not see changing values as in this image, add a
sleep(100) statement to the loop to slow things down.
As you probably expect, the further from the light source, the lower the
light level value. Now you will add code to the program to collect the light
level data. Then you can create a scatter plot of light vs. time.

Press [clear] to end the program and go back to the <Editor>.

5. Create two empty lists before your while loop:
 times = []
 brites = []
Find the square brackets on the keypad, on <a A #>, on <Fns…> List or
on [list]. You can use shorter variable names to save on typing (like ts
and bs).

Also before the while loop, add a statement to start a ‘time’ counter
variable (t) at 0:
 t = 0

Avoid using the word ‘time’ as a variable because there is a time
module. It is a good practice to pluralize list names because they contain
many values.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 3
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

6. In the loop body, after the print statement, add a statement to increase
the timer variable t. We will use a one second time interval between light
readings, so use:
 ♦♦t = t + 1

Note: in Python you can also write this statement as: t+=1

7. Add the values of t and b to their respective lists using the statements:
 ♦♦times.append(t)
 ♦♦brites.append(b)

.append() is found on <Fns…> List and is pasted after typing the
variable name.

These statements add the current b (brightness) value and t (time) value
to the end of the lists.

8. To control the timing of the sampling, add:

 ♦♦sleep(1000)
after the two .append statements. This pauses data collection for one
second between each sample.

sleep() is included in the microbit module and is modified to use
milliseconds.

9. After the while loop ends, store the two Python lists into TI-84 Plus CE

lists using store_list() found on [math] ti_system….
The TI-84 list names (the arguments in “QUOTES”) must be 5
UPPERcase letters or less. We use BRITS and TIMES for those lists.
The second argument of store_list(,) is the Python list variable to
store.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 3
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 4 education.ti.com

10. <Run> the program. Start with the micro:bit close to your light source.
An exposed light bulb or a smartphone flashlight work well. Slowly but
steadily move the micro:bit away from the light at a constant rate until
the brightness reading is less than 10.

Press [clear] to end the program.

Repeat the process until you feel that you may have ‘good’ data.
Displaying the data on the calculator screen using print() or disp_at()
may be helpful. Sample data in this image of the TI-84 Plus CE Stat
Editor shows some collected data in the lists TIMES and BRITS.

11. Set up and view a scatter plot of the data (TIMES, BRITS).
Then use your calculator to find a function that ‘best’ fits your data. What
physics principle is controlling the data?

Teacher Tip: The mathematical model should be close to y=k*x**(-2), the ‘inverse square
law’ of physics. PwrReg gives good results if the data is ‘good’. ‘Good’ comes from moving
the sensor away from the light at a constant rate of speed so that there is a linear
relationship between time and distance.
A more direct approach to examine this relationship would be to write a program that tells
the user at what distance from the light source the micro:bit should be placed, then either
press a key on the calculator or press a button on the micro:bit to collect the brightness
value. Then the two lists would represent (distance, brightness).

