
 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

 Unit 6: micro:bit Skill Builder 2: The Buttons

In this lesson you will learn about using the micro:bit
buttons and then extend the program to toss a die and
collect the values in a list. Finally, transfer the list to the
CE environment to create a data plot.
There are three parts to this lesson:

Part 1: Investigate the button functions
Part 2: Use a button to generate some data
Part 3: store data in a list using buttons and
transfer the list to the TI-84 Plus CE.

Objectives:
• Read and process the A and B buttons on the

micro:bit
• Observe the difference between .was and .is
• Investigate collected data from the micro:bit
• Transfer data from python to TI-84 Plus CE

Teacher Tip: As in Skill Builder 1, this lesson is designed from the inside out. Code is not introduced sequentially, but
developed to first focus on the button and gesture features of the micro:bit and then finish with making a connection
between python lists and TI-84 lists.

Python variables are not calculator variables. A python list must be ‘transferred’ to the CE environment to analyze the
date in the list. Similarly, a calculator list (either built in (L1..L6) or named) can be transferred to a Python program for use
in the code. There are two functions in the ti_system module that accomplish these transfers.

1. The micro:bit has two buttons labeled A and B on each side of the
display. The Python micro:bit buttons module has two similar methods
for reading each button and then performing tasks based on those
actions. First you will test these methods then write a program that lets
you collect data and analyze it elsewhere in the TI-84 Plus CE.

Teacher Tip: On the micro:bit version 2 there is also a ‘touchable’ button called ‘pin_logo’ above the display (the
gold oval with two dots). In the buttons module this is referred to as ‘Logo Touch’ and uses one method,
‘.is_touched()’ that is listed along with the buttons functions but only in the version 2 micro:bit buttons module. This
touch button is not discussed in these lessons but is easy to incorporate into your plans based on what you see in this
lesson. (There is no ‘.was_touched()’ function.)

Note the difference between the behavior of .is_ and .was_ below…

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

1. Part 1: Investigating buttons and gestures
Start a new python program called BUTTONS.

Add the ti_system modules to your code using [math] ti_system:
 from ti_system import *

From <Fns…> Modul select <Add-On> microbit to get the statement:

 from microbit import *

Then start a loop:

 while not escape():

 ♦♦

The special while loop can be found under [math] ti_system… or
<Fns…> Modul ti_system…

Important: The microbit import must come after the ti_system import
statement!

Handy Tip: Replicate this file as MBSTART and use it as a template for
all other micro:bit programs. Just replicate the file using the name of a
new program!

2. To use the micro:bit buttons A and B, you must first import the buttons
module.
Place your cursor below all existing import statements at the top of your
code (on a blank line).
Press [math] and select Micro:bit…. Choose Buttons and Touch
Logo. This inserts the import statement from mb_butns import *
It also adds a new item to the <Fns…> Modul (or [math]) menu below
Micro:bit….

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

3. To test button A, in the while loop body add the following if : structure:
 ♦♦if button_a.was_pressed():
 ♦♦♦♦print("button A")

if is indented to be part of the while loop and print() is indented
even more to be part of the if block. Remember that proper
indentation is very important in Python. The wrong indentation can
cause syntax errors or improper execution of your code. Note the
light gray diamond symbols (♦♦) that indicate the indentation
spacing.

if is found on <Fns…> Ctl and automatically adds leading spaces
below it for further indentation of the block.

The condition button_a.was_pressed() is found on the menu item:
 [math] buttons and touch…

Notice that there is a button A and a button B sub-menu at the
top of the screen (not shown). If using version 2 modules, there is
also a pin_logo sub menu.

Select .was_pressed() under the button A menu.
Remember to leave the colon at the end of the if statement:
print() is on <Fns…> I/O

Type the text “button A” inside the print() function.

Note: .is_pressed() will also be discussed later.

4. <Run> the program. It looks like nothing is happening. Press and
release button A on the micro:bit. You will see ‘Button A’ appear on the
calculator screen. Each time you press and release the button the text
will appear as in this image.

Reminder: if you think your program is stuck in an infinite loop press and
hold the [on] key on your calculator to ‘break’ the program.

Press [clear] to end the while loop (and the program) and then return to
the Python <Editor>.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 4 education.ti.com

5. Add another if statement to check button B using the condition
button_b.is_pressed(). You will see how .is_ and .was_ differ soon.
 ♦♦if button_b.is_pressed():
 ♦♦♦♦print("Button B")

Tip: again, pay attention to the indentations!

Teacher Tip: The two functions behave differently because there are programming
circumstances where the choice between the two different behaviors will be valuable.

6. <Run> the program again. Try both buttons A and B.
Tap each button and press-n-hold each button.
You will see ‘Button B’ repeatedly displayed as long as button B is held
down, but not ‘Button A’. There is a difference between .was_pressed()
(which needs a release of the button to be reset) and .is_pressed()
which just checks to see if the button is down at the very moment that
the statement is processed.

Note: if you tap button B quickly, the program may not display Button B
since the button is not down at the very moment the if statement is being
processed.

Teacher Tip:
.was_pressed() requires a full ‘down-up’ action to detect individual presses (clicks).

.was_pressed() detects a down-up event which can happen even when the button was clicked
at some other time in the execution of the loop. The button must be released for another click to
occur. The micro:bit ‘remembers’ that the button ‘was pressed’.

.is_pressed() is like an ‘is_down’ event. Some event-driven programming languages have a
similar function such as ‘mouse_down’. .is_pressed() only produces True if the button is down
at the exact moment that the statement is processed.

In the rest of this lesson the code for button B is ignored.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 5 education.ti.com

7. Part 2: Let’s use a button to toss a die (a cube numbered 1..6 on each
face). When button A is pressed, assign a random integer from 1 to 6 to
a variable. You can use ‘button A was pressed’ or ‘button a is pressed’.
Try both to see the difference.
Display the value of the die on the micro:bit only. Try it yourself before
looking at the next step. We will use the current program and add code
to simulate the die toss.

Can you determine what number is on the bottom of the pictured die?

Teacher Tip:
 Answer: the bottom value is 3. The opposite faces of a die always add up to 7.

8. Add the two statements highlighted as shown in the image:
 from random import * and randint(,) are both found on
[math] random…

The variable die and the arguments ♦♦♦♦die = randint(1, 6)
are typed in manually. Notice that the statement is indented to be part of
the if button_a… block.

Again, be careful about the indentation.

9. Now note these two new highlighted statements in the image again.
After the value of the die has been established, we would like to display
it on the micro:bit.

First, in order to use the micro:bit display features, you must import the
display module (the top statement). Get it from [math] Micro:bit….
Then add the statement:
 ♦♦♦♦display.show(die)
below the die= statement to show the value of the die on the micro:bit.

Micro:bit display commands are found under [math] display…

<Run> the program again. When you press button A you see ‘Button A’
on the handheld screen and the die value on the micro:bit display
changes… but not every time! Sometimes the random number selected
is the same as the last number and… that’s OK. The presses are
‘independent events’.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 6 education.ti.com

10. Part 3: Collecting data: Tossing all those dice with just a button press
is nice, but for further study it would be helpful to store all those values
so that you can interpret the data: which number occurs most often?
What is the average number? and so on.

In the next step, you will add statements to the program to:
- Create an empty list
- Add (.append) the die value to the list
- Store the list from python to the TI-84 Plus CE system for analysis

Each of these three tasks translate into statements that are placed in
special places in the program. Try it yourself before proceeding to the
next step.

11. Begin with an empty list. The empty list assignment belongs at the start
of the program, before the while loop:
 tosses = []
The variable name, tosses, is typed in. The square brackets are found
on the keypad, on <a A #>, on [list] ([2nd] [stat]) and on <Fns…> List.

After the die value is determined, it is added to the list with the
statement:
 tosses.append(die)
 .append() is found on <Fns…> List

At the end of the program, after the while loop ends, the final list is
stored to a TI-84 list:
 store_list(“TOSS”, tosses)
 the store_list function is on [math] ti_system…
Note that this statement is not indented at all so that it is not inside the
while loop but is only executed once at the end of the program once
[clear] is pressed. This function stores the Python list tosses over to the
CE list TOSS. The CE list “TOSS” must be UPPERCASE and less than 6
characters.

**Again, pay attention to the indentations, especially store_list() which
is not indented at all so that it is not part of the while loop.

Note: the display.show() statement has been modified to include the
optional delay= and wait= arguments as explained in the previous
lesson.

Note: You may need to add a sleep(100) statement to the while loop
(just before the if statement) if button A does not respond.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 7 education.ti.com

Teacher Tip:
The lesson uses a named list, TOSS in the TI-84 Plus CE. You can also use one of the six
built-in lists L1..L6 by using just the number of the list in the quotes: store_list(“1”, tosses)
stores the python list tosses in the TI-84 list L1.

12. Button B is not used (yet). Can you use button B for something special
here?
When you run the program now:
- if you used .was_pressed, press and release button A many times

(You should see ‘button A’ on the calculator screen and numbers on
the micro:bit display).

- if you use .is_pressed, hold button A down.

Press [clear] to end the while loop. Your python program had a list
named ‘tosses’ and now your TI-84 CE also has a list named ‘LTOSS’.
These are two separate lists in two separate environments.

Quit Python and set up a [stat plot] histogram of TOSS. You can also
perform a 1-var Stats analysis. Do you notice a pattern? Try more
tosses*!

*Note: due to memory constraints, the store_list() function is limited to
lists of 100 elements maximum.

Teacher Tip: Button B could be used as a ‘reset’ button, clearing the data and starting over
with an empty list.

The program could also count the button presses, report the count on the calculator screen
and limit the count to 100 tosses.

Changing was_pressed to is_pressed will make the program run faster just by holding the
button down for a long time.

