[image: TI Logo] 10 Minutes of Code – Python	 UNIT 6: SKILL BUILDER 1
 TI-84 PLUS CE PYTHON	 	TEACHER NOTES
	Unit 6: micro:bit
	Skill Builder 1: The display

	In this lesson, you will write your first python programs to control the micro:bit display in different ways. This lesson has two parts:
 Part 1: Alien encounter
 Part 2: Displaying images
	Objectives:

	
	· Control the display on the micro:bit board using .show(), .scroll() and .show(image)
· Control the speed of the display using sleep(ms) and delay=
· Writing a loop structure

		Teacher Tip: : Getting Started with BBC micro:bit and TI-84 Plus CE Python
[bookmark: _Hlk69724835] The four lessons in this Unit assume that the micro:bit and the TI-84 Plus CE Python handheld are ‘ready to go’. Make sure you (and your students) are using OS version 5.7 or higher ([mem] About), have completed the setup steps on their individual calculators and the micro:bits. Be sure to read and perform the setup instructions in the ‘Getting Started’ guide that is included in the download folder from the TI Education website. https://education.ti.com/en/teachers/microbit. As with all new software and hardware, be sure to stay informed about upgrades and updates.
 The BBC micro:bit modules are special Python modules developed and provided by Texas Instruments that are installed in the calculator as AppVars.
 The first five units of the CE Python: 10 Minutes of Code curriculum should be completed prior to this Unit. The coding presented here is not complicated, but there should be a comfort level with python coding on the TI-84, especially working with the unique python meu system.
 This Unit is designed to work with micro:bit versions 1 and 2 but does not address features that are unique to version 2 (audio, microphone, and logo touch). The micro:bit version 2 modules for CE Python do support those features and the coding process is similar to these activities. Just use the menus.
 All the micro:bit projects found online (including micro:bit version 2 projects) can be developed on the TI-84 Plus CE Python and an attached micro:bit version 1 or version 2. But there are two important distinctions:
· You cannot disconnect the micro:bit from the calculator while the program is running even if a battery is attached to the micro:bit. The micro:bit runtime (.hex file) is configured to listen to the calculator for its instructions. The calculator is powering and controlling the micro:bit.
· Many of the demo programs found online use while True: to create an infinite loop. This loop runs directly on the micro:bit board until the program is replaced with another using a downloaded .hex file. When using the TI-84, the calculator is controlling the micro:bit so the loop most commonly used is
 while not escape():
 which allows the user to press the [clear] key to terminate the program.

 If the message ‘micro:bit not connected’ appears even though it IS connected, try unplugging the micro:bit, wait a few seconds and plug it in again (reset/reboot).

	1. Before you begin, be sure that:
· You are using a TI-84 Plus CE Python with OS 5.7
· You are comfortable programming in python and/or you have already completed Units 1 through 5.
· Your micro:bit is connected to your calculator and lit.
· You have followed the set-up directions and file transfers in the micro:bit Getting Started Guide:
 https://education.ti.com/en/teachers/microbit
and thus have the TI runtime file on the micro:bit and the latest microbit modules in your calculator
This setup process should only have to be done once but keep informed periodically about updates/upgrades.
	
[image:]

	
2. From the home screen (Quit the Python App) you can check your calculator to be sure that the appropriate files are installed: press [2nd] [+] for [mem], select Mem Management > AppVars and scroll to the ‘M’ section to find MICROBIT and the MB_* support files shown.

Note: there are more than those displayed in this image: a total of 11 (version 1) or 13 (version 2) micro:bit AppVars.

	
[image:]

	3. If all is good and the setup has been done correctly, your micro:bit should look like this when it has power from the calculator:
The display on the micro:bit is showing the TI logo, an icon of the state of Texas with a bright spot near Dallas, the home of Texas Instruments, Inc.

	[image:]

	4. Part 1: alien encounter: Of course, as with every other first programming experience, you will start with displaying a message on the micro:bit display. In the Python Editor start a <New> program (we name it GREETING).
In OS version 5.7, when selecting <Fns…> Modul, a soft key appears called <Add-On> which gives access to additional TI-developed modules. (if you don’t see this, you need to update to OS 5.7)

Tip: If the message ‘micro:bit not connected’ ever appears, just unplug the micro:bit and plug it in again (reset).
	
[image:]
<Fns…> Modul screen

	5. Select <Add-On> and see some additional modules that are available, some of them shown here. Your list may differ but should include microbit. Select from microbit import * to paste that code into your program.
	
[image:]

	6.
In the Editor, the presence of this statement adds a new option to the bottom of both the <Fns…> Modul menu and the [math] menu: Micro:bit…

As you add features from Micro:bit this menu will grow!

Note: [math] is a keypad shortcut for <Fns…> Modul but does not display the <Add-On> soft key.
	
[image:]

	7. The Micro:bit… sub-menu contains all the tools necessary for programming the micro:bit in separate sub-modules.

Each of these menu items will paste its own import statement since the tools are all in separate Python modules (AppVars). If you are using a micro:bit version 1 there are fewer items on this screen.

Select the Display menu…
	
[image:]

	Teacher Tip: the micro:bit commands are broken up into separate modules to conserve memory.
The Version sub-menu contains the microbit module version and a function to determine the runtime version (.hex file) on an attached micro:bit. You can write a program to include the runtime_version() fiunction or jus texecture the function at the Shell prompt.

	8. After selecting Display, you see a new import statement in your program:
 from mb_disp import *
	[image:]

	9. Look at the [math] menu again: There is now a display… menu item added to the bottom of the list. Select display…

	
[image:]

	Teacher Tip: The order in which micro:bit modules appear on the Modul menu is determined by the order of the import statements in the code. The system ‘looks’ at the code and then displays the menu items accordingly. So the menu name is more important than the menu number.

	10. The display… menu (shown) contains the functions that control the display on the micro:bit, the 5x5 grid of red LEDs in the center of the board and more.

Select .show(val)

	[image:]

	11. Your cursor is blinking inside the function’s arguments (actually on the right parenthesis). Type “greetings, earthlings” in the parentheses, including the quotes:
 display.show(“greetings earthlings”)

Press [2nd] [alpha] to turn alpha lock on and press [+] for a quotation mark. All letters typed will be lowercase. For uppercase, press [alpha].

Note: There are two optional arguments that you can add:
 display.show(___, delay = 400, wait = True)

delay= (time in milliseconds) controls the speed of the display.
wait= (True or False) tells the micro:bit/calculator to finish displaying before moving on to do something else.
Each parameter can and should be edited to see their impact and each may be specified using their keyword. This is recommended, but not required.

<Run> the program and watch the display on the micro:bit.
You will see the letters of your message appear, one letter at a time, on the display. The lowercase letters ‘e’ do appear twice but you cannot distinguish two of them.
	
[image:]

	Teacher Tip: for more information on micro:bit functions, see the micro:bit API at
 https://microbit-micropython.readthedocs.io/en/latest/microbit.html

	12.
A better method for displaying long messages is:
 display.scroll(“greetings earthlings”)
which is also found on the [math] display… menu.

Make the previous .show() statement a #comment. Place the cursor at the beginning of that line and press [2nd] [3] to insert a ‘#’ and then run the program again.

Yes, you can also simply change .show to .scroll by typing.
Note: .scroll() also supports the optional delay= and wait= arguments.
	
[image:]

	13.
The display.scroll() function causes the message to scroll smoothly from right to left like a banner. delay controls the speed of the scrolling. wait tells the calculator and micro:bit to wait until the scroll is done before moving on to another instruction. Try other delay values to see the effect on the scrolling.

 display.scroll(___ , delay = 100, wait = True)

	
[image: A picture containing graphical user interface

Description automatically generated]

	14.
Part 2: Displaying images- Be.Still.My.Beating.Heart
This section shows you how to display images on the micro:bit.
Select <Files> and make a new program called HEART.
In the Editor, add the two import statements as before:
 from microbit import *
 from mb_disp import *
First, get the microbit module from <Fns…> <Add-On>
Then press [math] Micro:bit… for display…
	
[image:]

	15. To display the HEART image on the micro:bit display, use the statement:
 display.show(…)
Again, this statement is found on:
 [math] display…
Immediately, with your cursor still inside the parentheses, select:
 HEART
from the [math] display… Images sub-menu.

Note: there are 36 Images to choose from and you can design your own using var=Image(…) found on the Display sub-menu. See micro:bit documentation online for information on this feature.

In case you have not noticed…to cut down on keypresses, the menu system allows for up-arrow and left-arrow ‘wraparound’, so, for example:
 Select [math] then up-arrow to display…

	[image:]

	16. The string “Image.Heart” is inserted into your code as shown in this screen.

	[image:]

	17. <Run> the program. Do you see the heart ? This display remains on the micro:bit until something takes its place, even after the program is done. To restore the original TI icon, reset the micro:bit. There is a ‘reset’ button on the back of the micro:bit or you can unplug and re-plug from the calculator. Or just leave it alone.

	
[image:]

	18. Go back to the Editor and add another display.show() statement to show the small heart:
 display.show(“Image.HEART_SMALL”, …)

Be sure to get the display.show() statement first, then paste the “Image.HEART_SMALL” string. You can find this ‘small heart’ string on the same Image sub-menu right below HEART.

	
[image:]

	19. <Run> the program again. It quickly displays the large heart and then displays the small heart that looks like this.
	
[image:]

	20. Make a loop: To get the two hearts to blink repeatedly (‘beat’), embed the two display statements in a loop. Before the two display statements insert:
 while not escape():

found on [math] ti_system…
and indent the two display statements so that they form the loop body.

You also need to import ti_system in order to use this special while statement. Place that import statement at the top of your code.

Important Tip: new to Python? Indentation is critical in Python programs. This is how python interprets loop blocks and if blocks. If the two display statements are not indented the same number of spaces then you will see a syntax error. Use the [space] key ([alpha] [0]) or select <Tools> Indent► to indent both lines the same amount. Indentation spaces are indicated in this Editor as light gray diamond symbols () to help with proper indentation.

	
[image:]

	21. <Run> your program again and watch the Beating Heart! Press the [clear] key to end the program.

[bookmark: _GoBack]Tip: if you ever think your program is stuck in an infinite loop, press and hold the [on] key on your calculator to ‘break’ the program. This could happen if you use while True:. These lessons avoid that type of structure by using the while not escape(): loop.

	
[image: A picture containing graphical user interface

Description automatically generated]

	22. To control the beating heartrate, add the delay= and, optionally wait=, argument and adjust the values in these two display commands as shown here. Remember that the delay value is in milliseconds.

Note: some blank lines have been removed from the program in this screen to show the entire program.

Change both wait= parameters to False to see how fast the heart blinks. False is found on <a A #>. wait = True tells the micro:bit to complete the task before going to the next task (like ‘pause’ or ‘sleep’). When False it goes immediately to the next task and ignores the delay= value.
	
[image:]

	23. Optional: Try ‘Making Faces’. Use a similar program structure as ‘Beating Heart’ but use the ‘face’ images instead
	
[image:]

	Teacher Tip: Many online micro:bit lessons typically use a while True: loop in python and a forever: loop in MakeCode. These ‘infinite loops’ run directly on the micro:bit until it is turned off or replaced by another program (.hex file). When using the TI-84 Plus CE to control the micro:bit, this infinite loop is not necessary since the calculator is in full control.

If a student gets stuck in an infinite loop on the handheld, to ‘break’ the program press the [on] key. See the ‘Getting Started’ guide (PDF) that came with the micro:bit software from TI for information about breaking python programs on computers.

Python commands on other menus also come in handy when coding for micro:bit. The micro:bit module does not import these commands. Using the proper import statements is important, though, as in using while not escape() which requires the ti_system module.

Caution regarding the time module: If you need to use another function from the time module (besides sleep()) in your program be aware that the micro:bit module modifies the sleep() function to use milliseconds rather than seconds (it’s a micro:bit ‘feature’) so be sure to place from time import * above from microbit import * in your code so that the sleep() function operates on milliseconds rather than seconds. This is a micro:bit convention. The microbit module has the sleep() function included.

Optional: To get the display back its ‘TI’ state (displaying the TI logo of Texas) at the end of a program, either
· press the ‘reset’ button on the back of the micro:bit.
or
· restart the micro:bit by unplugging and re-plugging from the calculator.

©2021 Texas Instruments Incorporated	8	education.ti.com
image1.jpeg

image2.png
RAM FREE
ARC FREE

MB_DISP

MB_GROVE
MB_MUSIC
MB_NEOPX
MB_PINS

MB_RADIO
MB_SENSR
MICROBIT

101702
1250K
4689
3947
2452
1860
2144
2568
4460
1964

image3.png
I B |

It d 04

LI I |

image4.png
DITO N
Func Cil Ops List Type 1/0
fHnath

isysten..
plotlib..
1 Zhub..

Feo | Help [Add=0n|

image5.png
=
Fon ti_drav import ¥
2:fron ti_image import ¥
ron tello import X
rom microbit import ¥

Too

image6.png
DITO 0
Func Ctl Ops List Type 1/0 (I
inath.

isysten..
plotlib..

Feo | Help [Add=0n|

image7.png
icrophone
uttons and Touch Logo
ensors and Gestures
adio

nput/Output Pins

9: Grove Devices

0iData Logging

Teo

image8.png
from microbit import %
from mb_disp import %

Freo Ta A #]Tools] Run

Files

image9.png
isysten..
plotlib..

image10.png
show(val)
seroll(val)
clear()

ge(
= read_light_level()

Too

image11.png
from microbit import %
from mb_disp import %

display.shou("greetings earthlin

Tra-

= A #]Tools] Run [Files

image12.png
L N
from microbit import %
from mb_disp import %

Hdisplay. show("greetings earthli
ngs")

display.scroll(Vgreetings earthl
ings")

Fre. Ta A #Tools] Run [Files

image13.gif

image14.png
from microbit import %

from mb_disp inport

Tra-

= A #]Tools] Run

Files

image15.png
Displey
Ll

image16.png
from microbit import ¥
from mb_disp inport X

display.show("Inage.HEART")

Tra-

= A #]Tools] Run [Files

image17.png

image18.png
from microbit import ¥
from mb_disp inport X

display.show("Inage.HEART")

display. shou("Inage . HEART_SHALL"
)

Tra-

= A #]Tools] Run [Files

image19.png

image20.png
L N
from ti_systen import &

from microbit import ¥
from mb_disp inport X

while not escape():
display. show("Image . HEART")
display. shou (" Tnsge. HERRT.SHL

Fre. Ta A #Tools] Run [Files

image21.gif

image22.png
L N
from ti_systen import &

from microbit import ¥
from mb_disp inport X

while not escape():
display. show("Inage HEART", del

‘ay=200, wait=True)
display. show("Inage . HEART_SHAL
L', delay=100,

Fre. Ta A #Tools] Run [Files

image23.png

image24.jpeg

