[image: TI Logo] 10 Minutes of Code – Python	 UNIT 6: SKILL BUILDER 1
 TI-84 PLUS CE PYTHON	 	STUDENT ACTIVITY
	Unit 6: micro:bit
	Skill Builder 1: The display

	In this lesson, you will write your first python programs to control the micro:bit display in different ways. This lesson has two parts:
 Part 1: Alien encounter
 Part 2: Displaying images
	Objectives:

	
	· Control the display on the micro:bit board using .show(), .scroll() and .show(image)
· Control the speed of the display using sleep(ms) and delay=
· Writing a loop structure

	1. Before you begin, be sure that:
· You are using a TI-84 Plus CE Python with OS 5.7
· You are comfortable programming in python and/or you have already completed Units 1 through 5.
· Your micro:bit is connected to your calculator and lit.
· You have followed the set-up directions and file transfers in the micro:bit Getting Started Guide:
 https://education.ti.com/en/teachers/microbit
and thus have the TI runtime file on the micro:bit and the latest microbit modules in your calculator
This setup process should only have to be done once but keep informed periodically about updates/upgrades.
	
[image:]

	
2. From the home screen (Quit the Python App) you can check your calculator to be sure that the appropriate files are installed: press [2nd] [+] for [mem], select Mem Management > AppVars and scroll to the ‘M’ section to find MICROBIT and the MB_* support files shown.

Note: there are more than those displayed in this image: a total of 11 (version 1) or 13 (version 2) micro:bit AppVars.

	
[image:]

	3. If all is good and the setup has been done correctly, your micro:bit should look like this when it has power from the calculator:
The display on the micro:bit is showing the TI logo, an icon of the state of Texas with a bright spot near Dallas, the home of Texas Instruments, Inc.

	[image:]

	4. Part 1: Alien Encounter
Of course, as with every other first programming experience, you will start with displaying a message on the micro:bit display. In the Python Editor start a <New> program (we name it GREETING).
In OS version 5.7, when selecting <Fns…> Modul, a soft key appears called <Add-On> which gives access to additional TI-developed modules. (if you don’t see this, you need to update to OS 5.7)

Tip: If the message ‘micro:bit not connected’ ever appears, just unplug the micro:bit and plug it in again (reset).
	
[image:]
<Fns…> Modul screen

	5. Select <Add-On> and see some additional modules that are available, some of them shown here. Your list may differ but should include microbit. Select from microbit import * to paste that code into your program.
	
[image:]

	6.
In the Editor, the presence of this statement adds a new option to the bottom of both the <Fns…> Modul menu and the [math] menu: Micro:bit…

As you add features from Micro:bit this menu will grow!

Note: [math] is a keypad shortcut for <Fns…> Modul but does not display the <Add-On> soft key.
	
[image:]

	7. The Micro:bit… sub-menu contains all the tools necessary for programming the micro:bit in separate sub-modules.

Each of these menu items will paste its own import statement since the tools are all in separate Python modules (AppVars). If you are using a micro:bit version 1 there are fewer items on this screen.

Select the Display menu…
	
[image:]

	8. After selecting Display, you see a new import statement in your program:
 from mb_disp import *
	[image:]

	9. Look at the [math] menu again: There is now a display… menu item added to the bottom of the list. Select display…

	
[image:]

	10. The display… menu (shown) contains the functions that control the display on the micro:bit, the 5x5 grid of red LEDs in the center of the board and more.

Select .show(val)

	[image:]

	11. Your cursor is blinking inside the function’s arguments (actually on the right parenthesis). Type “greetings earthlings” in the parentheses, including the quotes:
 display.show(“greetings earthlings”)

Press [2nd] [alpha] to turn alpha lock on and press [+] for a quotation mark. All letters typed will be lowercase. For uppercase, press [alpha].

Note: There are two optional arguments that you can add:
 display.show(___, delay = 400, wait = True)

delay= (time in milliseconds) controls the speed of the display.
wait= (True or False) tells the micro:bit/calculator to finish displaying before moving on to do something else.
Each parameter can and should be edited to see their impact and each may be specified using their keyword. This is recommended, but not required.

<Run> the program and watch the display on the micro:bit.
You will see the letters of your message appear, one letter at a time, on the display. The lowercase letters ‘e’ do appear twice but you cannot distinguish two of them.
	
[image:]

	12.
A better method for displaying long messages is:
 display.scroll(“greetings earthlings”)
which is also found on the [math] display… menu.

Make the previous .show() statement a #comment. Place the cursor at the beginning of that line and press [2nd] [3] to insert a ‘#’ and then run the program again.

Yes, you can also simply change .show to .scroll by typing.
Note: .scroll() also supports the optional delay= and wait= arguments.
	
[image:]

	13.
The display.scroll() function causes the message to scroll smoothly from right to left like a banner. delay controls the speed of the scrolling. wait tells the calculator and micro:bit to wait until the scroll is done before moving on to another instruction. Try other delay values to see the effect on the scrolling.

 display.scroll(___ , delay = 100, wait = True)

	
[image: A picture containing graphical user interface

Description automatically generated]

	14.
Part 2: Displaying Images- Be.Still.My.Beating.Heart
This section shows you how to display images on the micro:bit.
Select <Files> and make a new program called HEART.
In the Editor, add the two import statements as before:
 from microbit import *
 from mb_disp import *
First, get the microbit module from <Fns…> <Add-On>
Then press [math] Micro:bit… for display…
	
[image:]

	15. To display the HEART image on the micro:bit display, use the statement:
 display.show(…)
Again, this statement is found on:
 [math] display…
Immediately, with your cursor still inside the parentheses, select:
 HEART
from the [math] display… Images sub-menu.

Note: there are 36 Images to choose from and you can design your own using var=Image(…) found on the Display sub-menu. See micro:bit documentation online for information on this feature.

In case you have not noticed…to cut down on keypresses, the menu system allows for up-arrow and left-arrow ‘wraparound’, so, for example:
 Select [math] then up-arrow to display…

	[image:]

	16. The string “Image.Heart” is inserted into your code as shown in this screen.

	[image:]

	17. <Run> the program. Do you see the heart ? This display remains on the micro:bit until something takes its place, even after the program is done. To restore the original TI icon, reset the micro:bit. There is a ‘reset’ button on the back of the micro:bit or you can unplug and re-plug from the calculator. Or just leave it alone.

	
[image:]

	18. Go back to the Editor and add another display.show() statement to show the small heart:
 display.show(“Image.HEART_SMALL”, …)

Be sure to get the display.show() statement first, then paste the “Image.HEART_SMALL” string. You can find this ‘small heart’ string on the same Image sub-menu right below HEART.

	
[image:]

	19. <Run> the program again. It quickly displays the large heart and then displays the small heart that looks like this.
	
[image:]

	20. Make a loop: To get the two hearts to blink repeatedly (‘beat’), embed the two display statements in a loop. Before the two display statements insert:
 while not escape():

found on [math] ti_system…
and indent the two display statements so that they form the loop body.

You also need to import ti_system in order to use this special while statement. Place that import statement at the top of your code.

Important Tip: new to Python? Indentation is critical in Python programs. This is how python interprets loop blocks and if blocks. If the two display statements are not indented the same number of spaces then you will see a syntax error. Use the [space] key ([alpha] [0]) or select <Tools> Indent► to indent both lines the same amount. Indentation spaces are indicated in this Editor as light gray diamond symbols () to help with proper indentation.

	
[image:]

	21. <Run> your program again and watch the Beating Heart! Press the [clear] key to end the program.

[bookmark: _GoBack]Tip: if you ever think your program is stuck in an infinite loop, press and hold the [on] key on your calculator to ‘break’ the program. This could happen if you use while True:. These lessons avoid that type of structure by using the while not escape(): loop.

	
[image: A picture containing graphical user interface

Description automatically generated]

	22. To control the beating heartrate, add the delay= and, optionally wait=, argument and adjust the values in these two display commands as shown here. Remember that the delay value is in milliseconds.

Note: some blank lines have been removed from the program in this screen to show the entire program.

Change both wait= parameters to False to see how fast the heart blinks. False is found on <a A #>. wait = True tells the micro:bit to complete the task before going to the next task (like ‘pause’ or ‘sleep’). When False it goes immediately to the next task and ignores the delay= value.
	
[image:]

	23. Optional: Try ‘Making Faces’. Use a similar program structure as ‘Beating Heart’ but use the ‘face’ images instead.
	
[image:]

©2021 Texas Instruments Incorporated	1	education.ti.com
image1.jpeg

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.gif

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.gif

image22.png

image23.png

image24.jpeg

