[image: TI Logo] 10 Minutes of Code: Python	UNIT 5: SKILL BUILDER 3
 TI-84 PLUS CE PYTHON	TEACHER NOTES
	Unit 5: The TI Modules
	Skill Builder 3: Graphing

	In this lesson, you will use the ti_plotlib to graph a function. That is, you do not need to leave the Python world to create a graph of a function.

	Objectives:

	
	· Create a connected graph of plotted points

	Teacher Tip: Graphing a function in Python requires a bit of coding, but there are advantages. The bigest is the 100-element limit on data transfers. Wthin Python, you can have a large number of elements in two lists, and you can create graphical plots of that data right in Python. You can also “connect the dots” as explained in this lesson.

	
1. Let’s take a look at the Plotting (x,y) & Text template when starting a New program. It gives not only the necessary import statement, but also a whole demo program.

Notice line 3 of the program contains two list assignments but there’s no data in the lists.
 x = []; y = []

In order for the program to run, you need to supply some data in these lists. Enter some numbers inside the brackets such as:
 x = [1, 2, 3]; y = [1, 2, 3]
You can use any numbers, but the lists must have the same number of elements.

When using the <Setup> functions of ti_plotlib (.cls(), .window(), .labels(), .grid() and .axes()) the order in which these statements are written matters so they are inserted automatically in the code in the proper order for demonstration.

After entering data in the lists x and y the program will run.

The last statement,
 plt.show_plot()
causes the plot to remain on the screen until the [clear] key is pressed. Without it, the Shell prompt appears. (Test this by placing a comment sign in front of the statement, and run the program again.)
	

	2. Run the program to see the graph. Not quite what you are expecting? The points are plotted but they are not connected. Let’s connect the dots.

	[image:]

	3. Press [clear] and return to the <Editor>. On the next-to-last line, change the word .scatter to .plot by deleting “scatter” and typing “plot.”
 plt.scatter(x, y, ”o”) becomes plt.plot(x, y, ”o”)

The plt.plot(xlist, ylist, ”mark”) function is on the menu right below .scatter, but it is simpler to just edit the line rather than replace it.
There is also a function to plt.plot() a single point but our x and y are lists, not numbers.
	
[image:]

	4. Run the program again and see that the three points are now connected with segments.
	
[image:]

	
Teacher Tip: The statement x=[]; y=[] illustrates the “Python way” to place two statements on one line — use a semicolon as a separator. It is used in this demo program to ensure that all the code fits into one screen.
The Python demo program GRAPH included in the 5.6 OS release graphs two functions, one with a curve and one with a scatter plot.
[image:]
This lesson graphs a function and shows the red “curve” method step by step.

	5. Write a program using ti_plotlib that will graph any defined function.

Start a new program, AGRAPH (so that it appears near the top of your Files list) and use the <Type> Plotting (x,y) & Text.

	
[image:]

	6. Change the word “scatter” to “plot” on the next-to-last line as before.
	[image:]

	7.
Below the import statement define a function to graph. This will make it easy to change the function later to graph any function.
We moved the rest of the code off the screen to be less distracting.

Get both def and return from <Fns…>
Give the function a name (we use f) and an argument (we use x)
After return, write the function expression (we use x**2):

def f(x):
 return x**2
 Remember to dedent to the left edge of the screen.
	
[image:]

	Teacher Tip: You could get more math-y and write:
def f(x):
 y = x**2
 return y

	8. [bookmark: _GoBack]
Below the x=[]; y=[] statements add some blank lines. Here’s where you will build the two lists one element at a time.

	[image:]

	9.
Write a loop structure that starts at xmin and goes up to xmax in small steps. Since these steps might not be integers a for loop is not appropriate because the for loop only allows integer arguments. Use a while loop:
 a = plt.xmin
 while a <= plt.xmax:

xmin and xmax are found on <Fns…> Modul ti_plotlib Properties

	
[image:]

	10. In the loop body build the two lists x and y using the .append() function.
 x.append(a)
 y.append(f(a))

 Recall that .append() is found on <Fns…> List.
	
[image:]

	11. Now add a value to the variable a so that it eventually increases to xmax. Let’s start with
 a += 1
and see how it looks. You can come back and edit this increment value later to see its effect on the graph.

Recall that a += 1 is the same as a = a + 1.
	
[image:]

	12. Run the program. You will see an error message, the most important of which is the last statement: Invalid grid scale value. This error occurs because auto_window() looks at the lists x and y and sets up a window that fits all the data on the screen, but the .grid() function cannot make that many grid lines. There are several ways to fix the problem. Try it yourself before looking at the next step.
	
[image:]

	13. Some ways to fix the error:
· Eliminate the .grid() (make it a #comment)
· Change the .grid() values to allow the grid to be drawn
· Set the window and grid by yourself rather than using auto_window

We chose to adjust the .grid() values. Can you spot the change?
	
[image:]

	14. Run the program. Do you see the graph shown here? Something similar? If so, congratulations! Share your success with a friend. You have graphed a function! Now for the extensions.

Notes:
a) If your graph does not appear or quickly disappears be sure that you have the plt.show_plot() function at the end of your program. This statement pauses the program until the [clear] key is pressed.

b) If your program is stuck in an “infinite loop” press [on] to break the program. Check the while loop body to be sure that the variable a is being changed. We use a+=1 at the bottom of the loop. You can use other values than 1 but eventually the variable a must eventually exceed xmax so that the loop can end.
	
[image:]

	15.
Extension. There are a lot of ways to embellish the graph of a function:
· Add Color
· Adjust dot spacing (change the increment)
· Adjust dot size (o, x, + and . are the four dot styles)
· Change line thickness (pen)
· Use custom window settings
· Change the function
· Graph multiple functions on the same screen
Use the ti_plotlib module features to enrich the appearance of your graph. A sample is shown here. Once you have the core code, enhancements are easy.
Note: For trigonometric, log, and other special functions, you have to use
 from math import *
The trig keys ([sin] [cos] [tan]) all invoke the Trig menu and [log], [ln], [ex], and [10x] bring up the Python functions as well.
	
[image:]

	Teacher Tip: The code for the final image. Changes from the lesson are bold and #commented:

import ti_plotlib as plt
def f(x):
 return 3*x**3 - 10*x**2 + 40 #note function change
x = []; y = []
a = plt.xmin
while a <= plt.xmax:
 x.append(a)
 y.append(f(a))
 a+=1
plt.cls()
plt.grid(1,10,"dot") #note grid change
plt.window(-10,10,-70,70) #note window change
plt.axes("on")
plt.color(255,0,0) #note color
plt.pen("medium","solid") #note pen
plt.plot(x, y, ‘.’) #note dot size
plt.show_plot()

©2021 Texas Instruments Incorporated	2	education.ti.com
image1.png

image2.png

image4.png

image5.png

image3.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.jpeg

