
 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 5: The TI Modules Skill Builder 1: The Plot Thickens

In this lesson, you will create a scatter plot of the dice
totals from Unit 4, Application using the ti_plotlib
module.

Objectives:
• Introduce ti_plotlib
• Make a scatter plot
• Adjust the window

In the Unit 4, Application you made a simulation of tossing two dice and logging
the experiment’s totals in a list. Here you will continue with that program and see
how easy it is to make a scatter plot of that data using Python.

Teacher Tip: ti_plotlib is based on a popular Python library called matplotlib, a rich library
for the graphical visualization of data. ti_plotlib implements some of the “pyplot” functions
from matplotlib.

The convention when using matplotlib is to use the statement
 import matplotlib.pyplot as plt
and this requires the use of the plt. prefix for any of the plotting functions. This ensures that
the person reading the program knows that the function is a member of the library. This
technique is common when using matplotlib.pyplot. The TI-84 Plus CE Python menus
create a similar statement: import ti_plotlib as plt.

When making a new file, there is a “Plotting…” template available on the Type menu that creates a
template with this statement inserted. All of the ti_plotlib functions will include plt. at the front of the
function when selected from the menus (even though it is not shown on the menus). Most of the
functions also have in-line prompts or selection lists.

1. Rather than starting from scratch, load the dice project from the Unit 4,
Application — we called it DICE.

You can make a copy of your program in the FILE MANAGER by
pointing to your DICE program name and using:

 <Manage> Replicate Program…

Type a new name when prompted. We’ll use DICEB.

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

2. Your DICE program should resemble the image shown here. After the
first for loop, there is a list called totals that contains 11 values
representing the number of times each total from 2 to 12 occurred in
your trials.

It looks similar to this for 100 trials:
 totals = [1, 6, 5, 9, 15, 13, 19, 13, 9, 5, 5]
Your numbers will vary.

The second for loop calculates and then prints the experimental
probabilities. We will not be concerned with that loop in this project.

Teacher Tip: Rather than deleting the second for loop, just comment each line.

In the next step, there is a variation of the usual from…import * syntax. There is also a third option:
import math. This requires the prefix math. in front of all math functions.

3. To create a graphical plot of the data that the program generated, you
need to import another custom TI module. At the top of your program,
below “from random…,” add the following import statement:

 import ti_plotlib as plt
You can get this entire statement from <Fns…> Modul ti_plotlib.

Note: This form of import requires the prefix plt. in front of all of the
ti_plotlib functions, and that will be provided when you select a function
from the menu.

4. Scroll to the bottom of the program (below print(totals)).

To make a scatter plot we need two lists, an xlist and a ylist. totals is
going to be the ylist. For the xlist, we use the 11 possible sum values:

 sums = [2, 3, 4, 5, 6 , 7, 8, 9, 10, 11, 12]

There are other, clever ways of making this list, but just typing it in is fast
and simple.

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

5. Now we can set up and display the scatter plot of (sums, totals).

Setup statements are taken from <Fns…> Modul ti_plotlib Setup.

The order of the functions on the menu illustrates the order in which they
should appear in your code, and all Draw functions should follow the
setup functions.

The setup we’ll use here are the statements:

a) plt.cls() to clear the Shell screen for plotting

b) plt.window(, , ,) to establish the viewing window

The window settings depend on the data. Use -5,15 for the x-axis and
10,1000 for the y-axis (we plan on tossing a lot of dice).

 c) plt.axes()
The choices for the “mode” appear on a sub-menu. Select “on” to see
the axes and window settings.

6. To make the scatter plot, from <Fns…> Modul ti_plotlib > Draw menu
select:

 plt.scatter(xlist, ylist, "mark")
• For mark, choose one from the four that are offered on the sub-

menu; we chose the circle
• For xlist, type sums
• For ylist, type totals

and from <Fns…> Modul ti_plotlib setup menu choose:
 plt.show_plot() to pause the display until [clear] is
 pressed.

7. Run the program. Enter 1000 for the number of trials.
Does your plot look something like this? It may not match exactly since the
dice are random.

Press [clear] to exit the plot screen and return to the Python Shell

Try again with a larger number of trials.
Consider adjusting your window values.

 Reminder: To “break” a running program press the [on] key.

 10 Minutes of Code: Python UNIT 5: SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 4 education.ti.com

8. You can customize the window for the number of trials:
In the plt.window() function change ymax to 1.1*max(totals).

 This image shows 50000 tosses with this change as the program
automatically adjusts the ymax value.

Note that we only added five new statements to the program to make the
plot!

Teacher Tip: When using statements from ti_plotlib, the order of the statements matters
because each graphical feature (axes, grid, window, etc.) affects the graphing window. For
example, use grid first and then axes because the grid will cover the axes. The order of the
functions on the menu illustrates the order in which they should appear in your code.

This plot (for a large number of trials) illustrates that the sum of 7 is the most common; each
side of the hill is a linear function. The height of each point is (approximately) 1/36*trials,
2/36*trials, etc. The plot can be modeled with an appropriate Absolute Value function.

