[image: TI Logo] 10 Minutes of Code: Python	UNIT 3: SKILL BUILDER 3
 TI-84 PLUS CE PYTHON	TEACHER NOTES
	Unit 3: Conditions, If and While
	[bookmark: _GoBack]Skill Builder 3: Press a Key

	In this lesson, you will use a function that looks for a keypress to terminate a loop. This feature is unique to the TI-84 Plus CE Python graphing calculator, so you will need to import one (or more) special modules.
	Objectives:

	
	· Use escape() to end a loop
· Examine powers of 2 and powers of 1/2
· Use sleep(n) to pause code execution for n seconds

	Now that you’ve experienced the while loop, let’s visit a special and powerful feature of the TI-84 Plus CE Python system: escape(). We will write a program that will display powers of 2 (2, 4, 8, 16, 32, 64, …) continuously and will end only when the escape key is pressed.
Notice that there is no [esc] key on the TI-84 Plus CE Python.

	Teacher Tip: escape() and wait_key() are special functions included in the ti_system module. They are used a great deal in working with graphics programs (a later unit) and TI-Innovator™ Hub with TI LaunchPad™ Board programs (in another course).
from ti_system import * is needed to be able to use these feature in a program. There are many other functions in that module. Check the online documentation.
escape() checks for the [clear] key without stopping the program.
wait_key() will pause the program and wait for a keypress and return a number unique to the key pressed.

	1. Begin a new Python blank program and name it “POWERS2.”
Select <Fns…> Modul ti_system to get the statement
 from ti_system import *
located at the top of the list.
From the same menu, select the special statement:
 while not escape():

The [clear] key will terminate this loop.
	
[image:]

	2. Now introduce a variable num = 2 just before the while statement.

	
[image:]

	3.
In the loop block (below the while statement and indented two spaces), print the variable num and then make an assignment statement that multiplies it by 2. Be sure both statements are indented.

Try it yourself before checking the code in the next step.

	
[image:]

	4. Here you go:
while not escape():
print(num)
num = 2 * num
 Again, watch the indentation carefully!

 Run the program and press the [clear] key to stop the loop.
 [clear] is used as the (missing) [esc] key.
	
[image:]

	5. The numbers grow really fast!
Two interesting features of Python:
· It’s really fast, and
· There’s no upper limit to the integers

 However, you are limited by the capacity of the computer’s memory.

 Your next task is to slow things down so that you can read the numbers.
	
[image:]

	6.
You need a function called sleep() that is found in the Python time module.
At the top of your program add the statement
 from time import *
located on the top of <Fns…> Modul time.

	
[image:]

	7. Below the statement num = num * 2, add the statement
 sleep(1)
inside the while block (indented like the other two statements above it).

Run the program again. This time, after each number is displayed, the computer sleeps (waits) for one second before proceeding to the next step in the loop. Change the sleep number to speed things up a bit. Again, press [clear] to end the program. Try other sleep() values to vary the speed of the display (yes, you can use decimals).

 At the end of the program, print(“done”).

	
[image:]

	8. Running the program with sleep() in the loop causes the numbers to appear at a slower rate.

Displaying “done” at the conclusion lets the user know that the computer is now ready to do something else.
	
[image:]

	9. Extra: Change each 2 in the program to 0.5.
What happens?
Try other numbers.
When do the numbers grow and when do they shrink?
How about using negative numbers?
Would it make sense to try 0 or 1 instead of 2?
Now try this: Change num = num * 2 to num *= 2
This shortcut operation does the same thing and works for many other mathematical operators.
	
[image:]

	Teacher Tip: escape() and sleep() are additional functions that make Python programming very interesting.

time is a standard Python module that has other time-related functions.

ti_system is a Texas Instruments module designed for the TI-84 Plus CE Python.

©2021 Texas Instruments Incorporated	2	education.ti.com
image1.png
from ti_systen import &

uhile not escape():

Tra-

= A #]Tools] Run

Files

image2.png
from ti_systen import &

nun=2_
uhile not escape():

Freo Ta A #]Tools] Run

Files

image3.png
L N
from ti_systen import &

nun=2

uhile not escape():

print(nun)
nun=2inun

Fre. Ta A #Tools] Run [Files

image4.png
18446744073709551616
36893488147419103232
73786976294838206464
147573952589676412928
295147905179352825856
590295810358705651712
1180591620717411303424
2361183241434822606848
4722366482869645213696
9444732965739290427392

55> |

Frs. Ta A #]Tools Editor Files

image5.png
L N
from ti_systen import &
from time import ¥_

hun=2

while not escape():
print(nun)
Aun=2inun

Fre. Ta A #Tools] Run [Files

image6.png
L N
from ti_systen import &
from time import ¥

hun=2

while not escape():
print(nun)
un=2inun
sleep(1).

Fre. Ta A #Tools] Run [Files

image7.png
‘ 0
>5> B Shell Reinitialized
>>> # Running POUERSZ
>>> from POMERSZ import ¥

Frs Ta A #]Tools Editor]Files

image8.png
L N
from ti_systen import &
_rom time import ¥

hun=2

while not escape():
print(nun)
un=2inun
sleep(1)

print ("done")

Fre. Ta A #Tools] Run [Files

image9.jpeg

