
 10 Minutes of Code: Python UNIT 3: SKILL BUILDER 2

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 3: Conditions, If and While Skill Builder 2: Flag Waving

In this lesson, you will learn about counters and

accumulators by calculating the number and the total of

numbers entered and determine the average of the

numbers.

Objectives:

• Counter statement

• Accumulator statement

• While loop with a flag

• Calculating an average (mean)

You will write a program that will count and add up a set of numbers, but you do not know in advance how many numbers

there will be. This lesson introduces the concept of a counter statement, an accumulator statement, a “flag” value to end a

loop, and the calculation of the average of the entered numbers.

1. Begin a new Python file and name it COUNTER.

Make two variables and set them both equal to zero:

 count = 0

 total = 0

count keeps track of how many numbers are entered and

total keeps a running total of the numbers that have been entered.

A third variable, num, stores each number entered one at a time.

Rather than setting it equal to 0, use an input statement to get the first

number from the user:

 num=float(input(“Enter a number: ”))
Remember that most of the Python programming tools are found under <Fns…>.

Teacher Tip: Python shortcuts:

 c=c+1 can be written c+=1 (but not c++)

 t=t+n can be written t+=n

 count=total=0 is allowed as well as

 count, total = 0,0

 The input statement before the while loop gets the loop started properly; it initializes the loop condition.

2. Now start a while loop that will end when a certain number is entered.

Some options here are 0, -999 or -1. Keep in mind that this unique

number cannot be one of the numbers you are trying to process. We will

use -999 as our “flag” value to signal that we have finished entering

numbers.

 while num != -999:

Recall that while is found on <Fns…> Ctl and != is on all the places you

can find ==. Simplest is the [test] menu.

 10 Minutes of Code: Python UNIT 3: SKILL BUILDER 2

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

Teacher Tip: Flags (or sentinels), counters and accumulators are common programming terms.

Both the “subtraction” key and the “negation” key on the keypad produce the same character since

Python uses context to determine semantics.

3. The while loop block will:

a) Count the number of numbers entered.

b) Add them up.

c) Then, ask for another number.

 Counting is performed with the statement

 count = count + 1

 which adds 1 to the variable count each time it is processed.

 Adding them up, or totaling, is accomplished with the statement:

 total = total + num

 “Ask for another number” requires an input statement like the first one:

 num=float(input(“Enter a number (-999 to end): ”))

 but here we add a message telling the user how to end the loop.

Tip: Copy the first input statement and paste it here, then edit it.

 Be sure all three of these statements are properly indented.

 The input statement comes last in the loop body to control the loop.

4. Test your program so far since the while loop is complete. Enter any

number and enter -999 to end the program.

 Question: Is -999 included in the total?

 Answer: No!

Tip: If your program does not end when you enter -999, you can press

[on] to break it, go into the Editor and check your code.

 10 Minutes of Code: Python UNIT 3: SKILL BUILDER 2

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

5. We have finished with the loop. Skip a line or two and erase (backspace)

the indent spaces. Note the cursor position in this image.

Now is the time to process the inputted numbers. We kept track of the

count and the total so now (after the loop ends) we can calculate the

average.

Try it yourself before looking at the next step.

6. The statement

 avg = total / count

calculates the average and stores the result in the variable avg.

Ponder this: Why do we use / here and not // as in the last lesson?

Finally, write the print statement(s) that report the count, total and

average to the user. You may wish to use more than one print statement.

Our code is shown in the next step.

Teacher Tip: Why do we use / here and not // as in the last lesson?

 / is floating point division and results in decimal answers.

 // is integer division and the results are integers only.

7. We used three print statements at the end of the program to report the

results:

 print("count = ", count)

 print("total = ", total)

 print("average = ", avg)

 10 Minutes of Code: Python UNIT 3: SKILL BUILDER 2

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 4 education.ti.com

A sample run of the completed program is shown.

Special Note-

Sometimes you might notice the average has a lot of trailing zeros

followed by a 1. Python’s method of storing and computing with binary

floating point numbers then converting them to decimal approximations

can lead to stray decimals in some calculations. This anomaly is

common with Python on virtually any computing platform and has

nothing to do with the TI-84 Plus CE Python graphing calculator.

Teacher Tip: Python’s method of storing and computing with floating point numbers leads

to stray decimals in some calculations. This is a quirk of Python and has nothing to do with

TI-84 Plus CE Python.

Challenge: As part of the input routines, display the number of numbers entered so far.

