
 10 Minutes of Code: Python UNIT 3 : SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 3: Conditions, If and While Skill Builder 1: Collatz

In this lesson, you will “branch” out into the world of
conditional programming. You will also investigate a
mathematical theory that is (so far) unproven.

Objectives:
• Learn the relational and logical operators
• Learn the integer operators (% and //)
• Write programs using if statements and while loops

Choices, choices, choices. Our life is one long series of decisions: Are you
hungry? What to eat? Is it cold? What to wear? Are we there yet?

This decision-making process in programming is handled with if statements and
while loops, which both depend on conditions. Examples of if and while in
action are seen in in this image.

A condition is an expression that results in the value True or False:

 X > Y A+B <= C Qty > 0 5 != 3
 are all examples of conditions. (does not equal)

A condition includes one or more of these relational operators:

 == > < != >= <=
Caution: Remember to use == when writing a condition, not =. Using the wrong
symbol will result in a syntax error. Write if x==5:, not if x=5:. Using the [test]
menu can help.

This lesson introduces you to these powerful programming tools.

Teacher Tip: Tricky: Use == for equality and != for “does not equal.”

This lesson introduces two new Python arithmetic operators: % and //.

a % b gives the integer remainder when a is divided by b (a mod b).

 a // b, called floor division, gives the integer quotient of a divided by b and is equivalent to floor(a/b).

1. The Collatz Conjecture

 Algorithm: Take a positive integer, if it is even, divide it by 2,

 otherwise multiply it by 3 and add 1.

 Repeat with the result.

 What happens to the sequence?

 Begin with a blank Python file (we called it COLLATZ).

 Input an integer to the variable num using the statement:

 num = int(input("Enter a positive integer: "))
 int(is found on <Fns…> Type.

 input(is found on <Fns…> I/O.

 10 Minutes of Code: Python UNIT 3 : SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

2. if statements come in three flavors: if.., if.. else.., and if.. elif.. else...
They are all found on <Fns…> Ctl. Note that there is no “then” in
Python.

(They are on the Ctl menu because these statements Control the flow
of your program.)

 if .. Use when there is no “otherwise” action.

 if .. else .. Use when there are exactly two alternative actions
 for True and False (either do this or do that).
 (You will use this one soon.)

 if .. elif .. else .. Use these when there are three or more actions
 to be taken based on several conditions.
 elif is short for “else if…” and requires a condition
 just like if.
 You can add as many elifs as your algorithm requires.

 (This structure is used in the application for this unit.)

There must be a colon (:) at the end of each if, elif and else. These
colons are required and indicate that what follows are the actions to be
taken when the condition is True or False.

Teacher Tip: Selecting the structure from the menu ensures that all proper syntax and characters are
included. When typing in the commands by hand, beginners often forget about proper indentation and
colons.

Conditions are called Boolean Expressions, and each indented “block” will be filled with your actions.

True, False and None are the only Python keywords that are Capitalized.

Suppose you write: thing=(x<0) #(yes, this is valid!)
Never write if thing == True: … that’s a sure sign of a beginner!
 write if thing: instead, since thing is either True or False!

3. Insert the if.. else statement from <Fns…> Ctl.

 10 Minutes of Code: Python UNIT 3 : SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

4. The condition (written between if and the colon) is …
 if num % 2 == 0:
% is called “mod” and is the mathematical operator (like +, - *, and /) that
gives the remainder when the first number is divided by the second.
“mod” is short for “modulus.”
% is found on the <a A #> screen or in the catalog [2nd] [0].
The statement now reads: “If the remainder when num is divided by 2 is
zero,” which means “if num is even…”
Note the two equal signs!
For == just use any of the following:

• press the [sto ->] key twice or
• select it from <Fns…> Ops or
• select from <a A #> or
• press [test]

Teacher Tip: Notice that there is no “then” in Python. Waste of space!

5. if (the number is even) :
 ♦♦ (the “True” block)
is:
 ♦♦num = num // 2

Just use two / signs (the [÷] key).

// (two division signs) is called floor division (no decimal and truncates to
the integer just below the decimal value). If you use / you will see a
decimal point even if all the numbers are integers.

6. else: (when the number is odd — no condition here) :
 (the “False” block)
is:
 ♦♦num = 3 * num + 1

 10 Minutes of Code: Python UNIT 3 : SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 4 education.ti.com

7. After the if.. else: structure, backspace to the beginning of a line (erase
the indent characters) and write the print statement:
 print(num)

8. Running the program:

Select <Run> to run the program. Enter a positive integer. An answer
appears. Remember it!

Select <Tools> [enter] to run the program again and this time enter the
last answer.

Repeat running the program, each time entering the previous answer.
Eventually.…

But wait! Let’s add a loop to the program so that the process runs
repeatedly by itself instead of having to run the program over and over.

9. Place your cursor right below the input statement and above the If
statement as shown in this image.

10. On this blank line add the while statement found on
 <Fns…> Ctl

 You will see:

 while :
 ♦♦

 pasted into your program and your cursor is blinking on the colon.

 10 Minutes of Code: Python UNIT 3 : SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 5 education.ti.com

Teacher Tip: The While “block” is inserted (the two diamonds) but the actual block is the if .. else
structure and print statement already coded. The next step shows how to indent that section of text to
become the while block.

11. Indent each line below while : (the if.. else structure and the print
statement) by:

• Place your cursor anywhere on a line
• Select <Tools> Indent►

Blank lines and #comments do not need to be indented since Python
ignores both.

Indenting causes the statements to become the block of code inside the
while structure. You still need to write the while condition.

12. Now write the condition after the word while (leave a space after while
and do not erase the colon).

The Collatz Conjecture states that all sequences will eventually
become 1. As long as the number is greater than 1, continue processing
so write:

 while num > 1 :

13. Run the program now. Enter 20 as the number. Follow the logic of the
program. Odd numbers get larger and even numbers get smaller:

 20 is even 10
 10 is even 5
 5 is odd 16
 16 is even 8
 and so on …
 … and the program ends when the number reaches 1.

 Note that it only took one line of code to create a loop!

Can you find a number that causes the program to NEVER end? Try a
large number. Notice how fast the numbers fly by! When the program
ends you can scroll upward through the Shell history ([2nd] [uparrow]) to
examine the numbers.

 10 Minutes of Code: Python UNIT 3 : SKILL BUILDER 1

 TI-84 PLUS CE PYTHON TEACHER NOTES

©2021 Texas Instruments Incorporated 6 education.ti.com

Teacher Tip: The Shell history is plain text and is not preserved. To scroll upwards through
the history, press [2nd] [up arrow] at the Shell prompt. Each press goes up one line, even
into previous runs.

The Collatz Conjecture (first presented in 1937) is still unproven. Is there something
special about the numbers 3, 1 and 2 in the algorithm? Try using different numbers.
One more option that students can add to the program is to count the number of steps to
reach 1.

