
 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 1

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ ROVER STUDENT ACTIVITY

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 6: Coordinates with Rover Skill Builder 1: Drive and Plot

In this lesson, you will learn about the Rover’s coordinate

system and how to drive to a particular point represented

by an ordered pair of numbers.

Objectives:

 Understand the Rover’s coordinate system and

initial position and heading

 Make the Rover move to a certain point on the

coordinate plane

 Plot Rover’s points on the TI-84 Plus CE screen

The Rover has a ‘built-in’ coordinate system just like a Cartesian graphing

system. When you import ti_rover as rv, the Rover’s position on the coordinate

grid is set to (0,0) and its heading is 0 degrees (pointing toward the positive x-

axis, or ‘east’ on a map).

In addition to Rover’s coordinate grid, we can use the on-screen coordinate

system that is available from the ti_plotlib module which is also imported into

the Rover Coding template for just this reason. If you use these statements from

menu [math]> ti_plotLib, you will get the screen to the right when you run:

 import ti_plotlib as plt

 plt.cls()

 plt.grid(1,1,"dashed")

 plt.window(-10,10,-7,7)

 plt.axes("on")

 plt.show_plot()

As we tell Rover to move around to points on the floor, we will also be plotting

those points on the screen.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 1

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ ROVER STUDENT ACTIVITY

©2021 Texas Instruments Incorporated 2 education.ti.com

1. Start a new Python program using the Rover template and add the

statement:

 import ti_plotlib as plt

found on [math] ti_plotlib…

2. Add the setup statements described earlier:

 plt.cls()

 plt.grid(1,1,"dashed")

 plt.window(-10,10,-7,7)

 plt.axes("on")

and add the statement to plot Rover’s starting position at the origin:

 plt.plot(0,0,”o”)
found on [math] ti_plotlib Draw. You will select the dot type from an

additional sub-menu.

Be sure to select the plot statement 5: plot(x, y, “mark”) and not

6: plot(xlist, ylist, “mark”).

3. Depending on the space that you have, make Rover drive to a point in

each of the four quadrants using rv.to_xy() found on menu > TI Rover

> Drive.

rv.to_xy(1,1)

rv.to_xy(-1,1)

rv.to_xy(-1,-1)

rv.to_xy(1,-1)

You do not have to use 1s and you don’t even have to use the same

numbers. But you do have to make sure that Rover visits all four quadrants.

Try your program now. Notice that Rover turns directly toward the

position of the next point before moving there.

 10 Minutes of Code – Python UNIT 6: SKILL BUILDER 1

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ ROVER STUDENT ACTIVITY

©2021 Texas Instruments Incorporated 3 education.ti.com

4. Add plt.plot(x,y,”mark”) statements to your program to plot the points

on the screen right after Rover reaches them. Try it now.

Did the program perform as you expected?

5. Answer: No!

The points on the screen are plotted almost immediately when the

program runs, and it takes Rover some time to drive to all four points.

How do you sync the plotting with the driving?

6. Use the Rover function rv.wait_until_done() found on [math] ti_rover >

Commands to pause the program while Rover is moving. You will need

one of these functions for each driving point and order of the statements

in the program does matter.

Try it now. Where will you place those wait functions?

7. At the end of your program, send Rover to the ‘home’ position, (0, 0).

Also use the statement:

 rv.to_angle(0, “degrees”)

found on [math] ti_over… to have Rover point in its original direction

(‘east’). It’s nice to put the toys away, right?

And finally, to keep the graphic display on the screen add the statement:

 plt.show_plot()

which waits for the [clear] key to be pressed before returning to the

Python Shell prompt.

