[image: TI Logo] 10 Minutes of Code – Python	 UNIT 6: APPLICATION
 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ ROVER 	STUDENT ACTIVITY
	[bookmark: _GoBack]Unit 6: Rover’s Coordinates
	Application: A Random Walk

	In this application, you will see how often Rover can travel on the grid (making random turns north and east only) from the origin (0, 0) to the point (2, 2). You will also investigate the experimental and theoretical probabilities of reaching that point at random.
	Objectives:

	
	· Use a random number to decide in which direction to go next
· Determine success or failure of reaching the goal point (2,2)
· Plot coordinates on the screen
· Use the color LED to report success or failure
· Repeat the experiment multiple times and
determine how often Rover reaches the goal
· Examine the theoretical probability of reaching
the goal

	[bookmark: _Hlk94603967]Rover starts at the origin (O). At each grid point, Rover can move only east (to the right) or north (up) at random, one unit at a time. There are several different routes Rover can take to reach the goal (2, 2). One route is highlighted in red/bold in the image to the right. In how many different ways can Rover get to the goal? If each move is random it is possible that Rover will miss the goal.
What is the probability that Rover makes it to the goal?
Write a simulation of this problem to keep track of the number of times Rover makes it to the goal and determine the percentage of the trials that are successful.
Think about the failures: How do you know that Rover fails to make it to the goal?

	
[image:]

	1. Begin a new Python Rover Coding project and add
 import ti_plotlib as plt
Since this is a ‘random’ walk also add the random module:
 from random import *
Set up a plt screen to display Rover’s positions along the route using the ti_plotlib Setup menu:
plt.cls()
plt.window(-1, 4, -1, 4)
plt.grid(1, 1, "dash")
plt.axes("on")

	
[image:]

	2. Use a variable for the number of trials: tr = 10
Use a variable to count the successes: su = 0
Use two variables for the goal point: px, py = 2, 2 (Yes, this is valid!)
Use a for loop to perform the trials: for i in range(tr):
Now begin a trial:
 In the loop block, use two different variables for Rover’s position:
 rx, ry = 0, 0

	
[image:]

	3. Plot this initial point on the graphing screen:
 plt.plot(rx, ry, ”o”)

	
[image:]

	4.
Make a while loop that continues as long as Rover is not at the goal point and Rover has not failed. Think about what condition determines a failure.
This additional condition is left as an exercise.

Find != (‘does not equal’) and and on the [test] key ([2nd] [math])
	[image:]

	5. In the while block, use randint(0, 1) to decide whether to go east (0 degrees) or north (90 degrees). This is accomplished with the statement:
 dir = randint(0, 1) * 90
Recall that randint(,) is found in the random… module.

Notice the extra indentation. This statement is in the while block which is in the for block.

	
[image:]

	6. Get Rover to turn to the correct angle (dir) and move forward 1 unit.
(The statements in the image are incomplete)

Add an rv.wait_until_done() statement to control the plotting speed.

	[image:]

	7. Update Rover’s position variables, rx and ry.
 If Rover moved east (dir == 0),
 add 1 to rx.
 Otherwise,
 add 1 to ry.
Plot Rover’s position in the screen using plt.plot(rx,ry,”o”) using proper indentation!

	
[image:]

	8. After the while loop ends (notice the indentation again), determine if Rover was successful:
 if (rx, ry) == (px, py):

 else:

and count the success by adding 1 to the variable su.
Print “success” or “fail”.
If Rover is successful, light the color LED in GREEN, otherwise light the color LED in RED or use the colors of your choice.
Then enter (not shown):
a) Two statements for Rover to return to (0,0) and face east (to angle 0 degrees)
b) A statement to turn the LED off
c) Statements to redraw the plotting screen starting with plt.cls(), and then use the three Setup statements again

	
[image:]

	9. After the for loop ends (when all the trials are finished), print the results of the experiments:
a) The total number of successes
b) The percentage of the successes (successes / trials *100)

A sample run of 10 trials is shown in the image to the right. The percentage is the experimental probability of success.
	
[image:]

	10. Theoretical Probability
[bookmark: _Hlk94185662]This image shows the number of routes to each end point of the trips.
The probability of success is 3/8 or .375.
How close did your experiments come? What should you do to get a more accurate experimental probability?
	[image:]

©2021 Texas Instruments Incorporated	3	education.ti.com
image1.png
(2,2)

image2.png
4 Rover

from time import ¥

from ti_systen inport &
inport 1i_rover as ru
inport ti_plotlib as plt
from random import ¥

bLt.cls()
pLt.grid(1,1,"das!
SR T R
pLt.axes("on"

Fre. Ta A #]Tools] Run

Files

image3.png
plt.cls()

pLt.grid(1,1,"das|
SR b i

pLt.axes("on

px,py=2,2
for i in range(tr):
rxary=0,0

Freo Ta A #]Tools] Run

Files

image4.png
Pt grid(1,1,"das
L T ndewi 18,1, 4)
pLt.axes("on")

pLt.plotlrx,ry,

Fre. Ta A #]Tools

Run [Files

image5.png
pLt.plot(rx,ry, "o")
while (rx,ry)!Z(px,py) and ?

Fre. Ta A #Tools] Run [Files

image6.png
pLt.axes("on")

bx.py=2,2
for i in range(tr):

pli.plot(rx,ry, to")
while (rx,ry)!=(px,py) and ?:
andint(0,1)¥90

Fre. Ta A #Tools] Run [Files

image7.png
tr=10
su=0
px,py=2,2
For 1 in range(tr
ri,ry=0,0
pli.plot(rx,n
while (rx,ry)!=(px.py) and 2:
dir=randint(0,1)k90
ru. to_angle(dir)
rv. forward(1)
rv.walt_until_done()
Fre. Ta A #]Tools] Run [Files

image8.png
-andint(0,1)¥90
rv. to_angle(dir)
ru.foruard(1)
rylwait_until_done()

plt.plot(rx,ry,

Freo Ta A #]Tools] Run

Files

image9.png
els
plt.plot
it (rry)

print("success")
1ru;color_rob(0,255.0)

print("fail"

rv.color_rgb{255.0.0)

Fre. Ta A #Tools] Run [Files

image10.png
fail
fail
fail

fail
success

image11.png
+3

(2,2)

image12.jpeg

