{’} 10 Minutes of Code - Python UNIT 3: SKILL BUILDER 1

TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES
Unit 3: Brightness, if and while with the TI-Innovator™ Hub Skill Builder 1: Measuring Light
In this lesson, you will take control of the brightness sensor on Objectives:
the Tl-Innovator Hub and then learn how to make use of its e Read the brightness sensor
information. e Set the range of the brightness sensor

e Monitor the brightness sensor
e Control a light with the brightness sensor

Unlike the light, color, and sound features of the Tl-Innovator Hub, the brightness
sensor is an Input device rather than an Output device. A program can obtain
information from the brightness sensor and take actions based on that numeric

value. You can either work with the default brightness values or you can set the | R b N
range of values with a special brightns.range(,) function. AR N SR

The brightness sensor is clearly labeled on one end of the TI-Innovator Hub.

Teacher Tip: This first project will simply read and display the brightness values on the
screen using improved display techniques.

1. Begin a new Python Hub Project, import the brightns module from

[math] ti_hub... Built-in devices... and start with these three . - LINE SO
statements found on [math] ti_hub... Commands fm: tiizdif“ import ¥

. from time import #
disp_clr() ;npoptlhﬁghtns

H - isp_clr
disp_at(11, “Press clear to end”, “center”) dispat(il, Press esc to end” e
while not escape(): while not escape():
L X

[Fns.. [a A #]Tools| Run [Files]|

Notes:
disp_clr() clears the calculator screen.
disp_at() displays the message at the bottom center of the screen.
“center” is chosen from a special sub-menu.
“Press clear to end.” Is typed in by hand.
The [clear] key acts as an ‘escape’ key.

©2021 Texas Instruments Incorporated 1 education.ti.com

*y 10 Minutes of Code — Python

TI-84 PLUs CE PYTHON WITH THE TI-INNOVATOR™ HUB

2. Inthe while block use two statements: one to read the brightness and
one to display the resulting value.

Assign the brightness measurement to the variable b:
¢ ¢b = brightns.measurement()
found on [math] Brightness....
Then:
¢ odisp_at(6, "brightness =" + str(b), "left")

found on [math] ti_hub... Commands
disp_at(6... is the middle line on the screen.

See the next step for an explanation of + str(b) ...

3. About "brightness =" + str(b):

str(b) (found on <Fns... > Type) converts the numeric value of b into a
string because disp_at() can only display text (characters), not values of
numeric variables.

The + (addition) sign combines the string “brightness = “ with the string
value of b. This ‘addition of strings’ is called concatenation.

Alignment “left” is better than “center” in this case. If you prefer to use
“center”, then new data might not completely erase old data since the
line will vary in length. You can move the text closer to the center by
adding spaces before “ brightness =" (inside the quotes). You can
change the alignment by replacing “left” with “center” or “right”.

You can also suppress (hide) the cursor by using disp_cursor(0) before
the while loop (not shown).

<Run> the program to see the output screen shown to the right.

4. Slow the display down a bit by adding a sleep() statement right after
the disp_at() statement. Be sure it is indented to match the other
statements in the while block. Enter a delay value (number of seconds)
for the argument.

<Run> the program again and determine the lowest and highest values
that the brightness sensor delivers by changing the light intensity hitting
the sensor.

UNIT 3: SKILL BUILDER 1
TEACHER NOTES

PROGRAH LIHE g9l
from time import ¥
import brightns
disp_elri()
disp_at(11,"Press esc te end","ec

enter'"]
while not escape():
b=brightns.measurement(|
disp_at(6,"brightness= "+str(b
] . "left"]

[Fns.. [a A #]Tools| Run [Files|

h=brightns.uia§ﬁre-ent[]
disp_at(6,"brightness= "+str(b
] . Ill!f +_n]

brightness= 13.%43§

Press esc to end
[Fns. [a A #]Toels[Editer|Files|

PROGRAM LINE 9911
from time import *
import brightns
disp_elri()
disp_curser(0)
disp_at(11l,"Press esc to end","c

enter"]
while net escapel(]):
b=brightns.measuremnent()
disp_at(b,"brightness= "+str(b
].“left“]
sleep(.25)_

[Frns.. [a A #]Tools| Run [Files|

Teacher Tip: The brightness default range is [0,100]. A smartphone ‘flashlight’ makes a
good light source. A brightness value of 0 can be hard to achieve. A possible fix could be

b=int(b)
after the measurement().

©2021 Texas Instruments Incorporated 2

education.ti.com

*y 10 Minutes of Code — Python

TI-84 PLUs CE PYTHON WITH THE TI-INNOVATOR™ HUB

5. You can set the range of values that the brightness sensor delivers
using the statement
brightns.range(min, max)

found on [math]> Brightness...

Place this statement before the while loop. Use any values for min and
max but be sure that min < max.

Change the two range values (we use 0, 255) and run the program
again to observe the values produced. You now have a custom digital

light meter.

Why is this important? We'll see in the next few lessons...

UNIT 3: SKILL BUILDER 1
TEACHER NOTES

EDITOR: BRIGHTA n
PROGRAH LIHE 0999 o
import brightns
disp_clri)
disp_at[11l,"Press esc te end","e¢
enter")
disp_cursor(0)

brightns.range(9,255)

while not escape():
b=brightns.measurement()
disp_at(6,"brightness= "+str(b

[Fns.. [a A #]Tools| Run [Files|

Teacher Tip: Setting the range makes controlling other Hub devices like sound and color
using the brightness sensor a lot easier because there is no need to ‘convert’ from one scale
to another. The brightness range can be made to conform to the other devices’ constraints.
This is explored in the following lessons. You can also use the brightness sensor with Rover
(to make it stop and go using a flashlight, for example) and all other devices attached to the

Hub like the RGB Array.

It is possible to re-define the brightness range within the loop, but this is rarely necessary.

©2021 Texas Instruments Incorporated 3

education.ti.com

