[image: TI Logo] 10 Minutes of Code – Python	 UNIT 3: SKILL BUILDER 1
 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB 	STUDENT ACTIVITY
	Unit 3: Brightness, if and while with the TI-Innovator™ Hub
	Skill Builder 1: Measuring Light

	In this lesson, you will take control of the brightness sensor on the TI-Innovator Hub and then learn how to make use of its information.

	Objectives:

	
	· Read the brightness sensor
· Set the range of the brightness sensor
· Monitor the brightness sensor
· Control a light with the brightness sensor

	Unlike the light, color, and sound features of the TI-Innovator Hub, the brightness sensor is an Input device rather than an Output device. A program can obtain information from the brightness sensor and take actions based on that numeric value. You can either work with the default brightness values or you can set the range of values with a special brightns.range(,) function.
The brightness sensor is clearly labeled on one end of the TI-Innovator Hub.

	
[image:]

	1. Begin a new Python Hub Project, import the brightns module from [math] ti_hub… Built-in devices… and start with these three statements found on [math] ti_hub… Commands
disp_clr()
disp_at(11, “Press clear to end”, ”center”)
while not escape():

Notes:
disp_clr() clears the calculator screen.
disp_at() displays the message at the bottom center of the screen.
 “center” is chosen from a special sub-menu.
 “Press clear to end.” is typed in by hand.
The [clear] key acts as an ‘escape’ key.
	
[image:]

	2. In the while block use two statements: one to read the brightness and one to display the resulting value.
 Assign the brightness measurement to the variable b:
 b = brightns.measurement()
 found on [math] Brightness….
Then:
 disp_at(6, "brightness = " + str(b), "left")
 found on [math] ti_hub… Commands
disp_at(6… is the middle line on the screen.
See the next step for an explanation of + str(b) …
	
[image:]

	3. About "brightness = " + str(b):
str(b) (found on <Fns… > Type) converts the numeric value of b into a string because disp_at() can only display text (characters), not values of numeric variables.
The + (addition) sign combines the string “brightness = “ with the string value of b. This ‘addition of strings’ is called concatenation.
Alignment “left” is better than “center” in this case. If you prefer to use “center”, then new data might not completely erase old data since the line will vary in length. You can move the text closer to the center by adding spaces before “ brightness = ” (inside the quotes). You can change the alignment by replacing “left” with “center” or “right”.
You can also suppress (hide) the cursor by using disp_cursor(0) before the while loop (not shown).
<Run> the program to see the output screen shown to the right.
	
[image:]

[image:]

	4. [bookmark: _GoBack]
Slow the display down a bit by adding a sleep() statement right after the disp_at() statement. Be sure it is indented to match the other statements in the while block. Enter a delay value (number of seconds) for the argument.

<Run> the program again and determine the lowest and highest values that the brightness sensor delivers by changing the light intensity hitting the sensor.

	
[image:]

	5. You can set the range of values that the brightness sensor delivers using the statement
 brightns.range(min, max)
found on [math]> Brightness…
Place this statement before the while loop. Use any values for min and max but be sure that min < max.

Change the two range values (we use 0, 255) and run the program again to observe the values produced. You now have a custom digital light meter.

Why is this important? We’ll see in the next few lessons…
	
[image:]

©2021 Texas Instruments Incorporated	3	education.ti.com
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.jpeg

