
 10 Minutes of Code – Python UNIT 3: APPLICATION

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES

©2021 Texas Instruments Incorporated 1 education.ti.com

Unit 3: Brightness, if and while with the TI-Innovator™ Hub Application: Lite Music

In this application, you will control sounds using the brightness

sensor. There are three parts to this project:

1. Light tones (frequencies)

2. Notes using tones (frequencies of notes)

3. Notes using a list of note “names”

Objectives:

 Set the brightns.range() so that the value is

suitable for making sounds

 Play sounds and musical notes by varying the

brightness.

In an earlier lesson, you learned about sound.tone() and sound.note() using

the TI-Innovator Hub. In this lesson, you will use the brightness sensor to create

‘noise’ and ‘music’ (sometimes it is hard to tell the difference!). There are three

different options when working with the Sound module and this activity

demonstrates all three approaches.

Teacher Tip: Musical notes have specific frequencies of the form 55*2**(k/12) where k is a

whole number (k>=0). Tones can be any frequency. You can use sound.tone() to produce

either tones or just notes using the ‘correct’ frequencies.

Part 1: Light Tones

1. Again, use the original ‘brightness meter’ program from the first lesson in this

unit. Make another copy of the program using <Files> <Manage> Replicate

Program (ours is BRIGHTD) and add import sound near the top using

[math] ti_hub… Hub Built-in devices.

In the next step you must decide what brightns.range() would be

appropriate to use to make sounds that you can hear.

2. For tones we can use any frequency between 0 and 8000 Hz, but many of

these frequencies are too high or too low for humans to hear. Start with a

range of (100, 1000) and adjust it to your liking later.

 10 Minutes of Code – Python UNIT 3: APPLICATION

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES

©2021 Texas Instruments Incorporated 2 education.ti.com

3. Add the sound.tone() statement below the brightns.measurement()

statement and use the variable b for the frequency argument. Set the

sound’s time to your preference and use the same value in the sleep()

statement so that the TI-Innovator Hub and the handheld are in sync.

Try making the sleep() value a little larger than the tone time value. This

puts a little silent gap between sounds.

<Run> your program now and then adjust the numbers you used.

Teacher Tip: The next section incorporates music theory from Unit 1.

Part 2: Musical Notes Using Frequencies

4. In the five octaves pictured, there are a total of 60 notes (12 per octave).

Note A1 (A in the first octave) has frequency 55 Hz.

Subsequent notes have frequency 55 * 2 ** (k/12), where k is the note

number after A1. A1 is note number zero since when k=0, 2**(0/12) = 1.

5. To play ‘notes,’ modify your program:

- Change the brightns.range() to be 0…59.

- brightns.measurement() produces a decimal value but we only want

integers so

- convert b to an integer using b = int(b).

 int() is found on <Fns…> Type.

Calculate a note’s frequency using f = 55*2**(b/12).

Use the variable f in the sound.tone(,) statement for frequency.

Try the program again. Some notes might be too high or too low. What can

you do to limit the range of the notes?

 10 Minutes of Code – Python UNIT 3: APPLICATION

 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB TEACHER NOTES

©2021 Texas Instruments Incorporated 3 education.ti.com

Part 3: Notes Using a List

6. Recall that the sound object can also use .note “names”.

At the top of your program (before the while loop), make a list of note

“names” as you did in an earlier lesson:

 notes = [“C5”, ”D5”, ”E5”, …]

Note names are any of the letters ABCDEFG (either upper- or lowercase)

followed by a number from 1 to 8 representing the octave number.

Set the brightness.range(,) to be (0, # of notes in your list -1).

Convert the variable b to an integer.

Use the variable b as the index of the notes list:

 sound.note(notes[b], .25)

 Run the program now.

This program plays the notes in the list with low brightness using the beginning

notes and high brightness using the notes from the end of the list.

Teacher Tip: Here is a partial list of notes. Insert ‘F’ (flats) and/or ‘S’ (sharps) where

appropriate.

notes = ['A1', 'B1', 'C1', 'D1', 'E1', 'F1', 'G1', 'A2', 'B2', 'C2', 'D2', 'E2', 'F2', 'G2', 'A3', 'B3', 'C3',

'D3', 'E3', 'F3', 'G3', 'A4', 'B4', 'C4', 'D4', 'E4', 'F4', 'G4', 'A5', 'B5', 'C5', 'D5', 'E5', 'F5', 'G5']

Writing the list of notes is more easily done using a computer text editor. Then transfer the

.py file to the calculator using TI-Connect CE.

