[image: TI Logo] 10 Minutes of Code – Python	 UNIT 2: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON WITH THE TI-INNOVATOR™ HUB 	STUDENT ACTIVITY
	Unit 2: for loops with the TI-Innovator Hub
	Skill Builder 2: Loop Through Color

	In this lesson, you will learn about color mixing to make a variety of colors on the color LED using just several if statements in a loop.

	Objectives:

	
	· Use if statements to change the color of the LED
· Use copy line/paste line and edit for simpler coding of longer programs.

	Many colors are possible (over 16 million!) using the color LED on the TI-Innovator Hub. This lesson develops a program that gradually changes the color LED from red to blue by mixing changing amounts of each color.
	[image:]

	1. Start a new Python Hub Project (ours is called COLORS) and add import color from [math] ti_hub….
[bookmark: _Hlk82055905]Tip: you can also easily type this statement (and any others) manually using the <a A #> Character Map.
This program will gradually increase and decrease two of the LED’s three color channels to mix some colors.
Start by assigning values to two variables: step is the space (increment) between color values and delay is the time delay for each color step. Begin with a step of 10 and a delay of 0.1 at first. Type the words step and delay or use simpler variables like s and d.
Assign 0 to two variables, r and b, representing the starting values for the red and blue channels.
	
[image:]

	2. Add the loop
 while not escape():

from [math] ti_system…
so that when you run the program you can press the [clear] key to exit at any time.
	
[image:]

	3. Begin the loop block by turning the LED on using the current values of r and b for the red and blue channels. We will not use the green channel at all. These variables will change value further down in the loop.
 color.rgb(r, 0, b)
Then use the delay variable in the sleep() function found on [math] time…
 sleep(delay)
	[image:]

	4.
We will write four if structures to change the values of r and b. Each will gradually change one color channel.

The first if structure increases the value of r when b is 0.
. r += step means the same as r = r + step

	
[image:]

	
5. Next check to make sure r does not exceed 255. If it does, then limit r to 255 and start to increase b. This gradually adds blue to the bright red LED.
	
[image:]

	6.
Do the same with the value of b: when b exceeds 255 we limit it to 255 and then decrease the value of r. This removes red gradually from the mixed colors (bright magenta).
	
[image:]

[bookmark: _GoBack]

	7. Finally, when r reaches (or passes, depending on step) 0, limit it to 0 and begin decreasing the value of b. This gradually darkens the blue LED

We now have the four if structures shown to the right. Again, think carefully about the effect of each.
<Run> the program and watch the color LED brighten to red, then change to magenta (purple) and get pretty bright, then gradually change to blue and then…

	
[image:]

	8. When the blue value decreases, it eventually takes on a value less than 0 and then the program tries to use that value in the color.rgb() function which creates the error shown here.
When decreasing b from 255 by 10’s (our step value) we encounter -5 which causes the error. There are several ways to correct this runtime error. Try it yourself before seeing two suggestions in the next step.
	
[image:]

	9. One fix is:
· only allow a non-negative value for b when executing the color.rgb() function:
 if b >= 0:
 color.rgb(r, 0, b)
 Tip: to indent a statement use the <Tools> menu.
· and modify the first if statement to include negative values for b in the condition:
 if b <= 0:
· and assign 0 to b inside this block:
 b = 0
Now all four if structures look pretty much the same!

Another possible fix is to just add if b<0: b=0 right before the
color.rgb() function (not shown)
	[image:]

	10. Try various values for step and delay. A large step and a small delay make the program run faster.
Challenge: can you incorporate the green channel, too? You can see all the colors of the rainbow if you mix the colors properly.
	[image:]

©2021 Texas Instruments Incorporated	1	education.ti.com
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.jpeg

